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Abstract. We study in full detail the inner product of oriented points
in conformal geometric algebra and its geometric meaning. The notion of
oriented point is introduced and the inner product of two general oriented
points is computed, analyzed (including symmetry) and graphed in terms
of point to point distance, and angles between the distance vector and
the local orientation planes of the two points. Seven examples illustrate
the results obtained. Finally, the results are extended from dimension
three to arbitrary dimensions n.
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1 Introduction

This work is a substantial extension of [13]. In this work we apply conformal
geometric algebra (CGA) to the description of points, including a planar ori-
entation. An excellent general reference on Clifford’s geometric algebras is [14],
a short engineering oriented tutorial is [10], and [17] describes a free software
extension for a standard industrial computer algebra system (MATLAB). Al-
ternatively, all computations could be done in the optimized geometric algebra
algorithm software GAALOP [6]. Introductions to CGA are given in [2,4] and ef-
ficient computational implementations are described in [6]. CGA has found wide
ranging applications in physics, quantum computing, molecular geometry, engi-
neering, signal and image processing, neural networks, computer graphics and
vision, encryption, robotics, electronic and power engineering, etc. Up to date
surveys are [1,8,12]. An introduction to the notion of oriented point can be found
in [5]. Prominent applications could be to LIDAR terrain strip adjustment [11],
protein geometry modelling [15], and machine learning.

⋆ Dedicated to the truth, including the children who died in the 700% to
1600% increase in Excess Deaths among Children since European Medicines
Agency approved COVID Vaccine for Kids, [Source: The Expose of 18
Sep. 2022, https://expose-news.com/2022/09/18/eu-forced-investigate-17x-increase-
excess-deaths-children/, last accessed 29 Sep. 2022]. Please note that this research
is subject to the Creative Peace License [9].
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In the current work, we begin with the CGA expression for oriented points
in three Euclidean dimensions and compute their inner products (Section 2). We
study the geometric information included in this inner product with the help of
a wide range of representative examples (Section 3), analyze the most important
term that includes the direction of the line segment connecting the two points
and their two point orientations in detail (Section 4), and study the symmetries
of the inner product of oriented points and plot the result (Section 5). Finally,
we extend our framework from three to n Euclidean dimensions (Section 6). The
paper concludes with Section 7, References and Appendix A with detailed proofs
of oriented point inner product symmetries.

2 Computation of inner product of oriented points

We consider the inner product of two oriented points in conformal geomet-
ric algebra [5], as reference for practical CGA computations in this section
we recommend the introductory chapter of this volume and [7]. Note that in-
ner product and wedge product have priority over the geometric product, e.g.,
iq · qE = (iq · q)E, etc. An oriented point is given by the trivector expression of
a circle with radius zero (r = 0) in CGA,

Q = iq ∧ q + [
1

2
q2iq − q(q · iq)]e∞ + iqe0 + iq · qE, (1)

where the three-dimensional position vector of Q is the vector q ∈ R3, the unit
oriented bivector of the plane (orthogonal to the normal vector nq of the plane)
is iq ∈ Cl2(3, 0), e0 is the vector for the origin dimension, e∞ is the vector for
the infinity dimension, and the origin-infinity bivector is E = e∞ ∧ e0, with

e20 = e2∞ = 0, e0 · e∞ = −1, e0E = −e0, e∞E = e∞, (2)

and e0 and e∞ are both orthogonal to R3. The central pseudoscalar of CGA
I = e123E = i3E = Ei3, I

−1 = −i3E, leads to the dual (bivector) form of the
oriented point

Q∗ = QI−1 = −Qi3E

= −(iq ∧ q)i3E + [
1

2
q2iqi3 − q(q · iq)i3]e∞E + iqi3e0E − (iq · q)i3E2

= i∗q · qE + [
1

2
q2(−i∗q) + q(q ∧ i∗q)]e∞ + i∗qe0 + i∗q ∧ q

= i∗q · qE + [−1

2
q2i∗q + q(qi∗q − q · i∗q)]e∞ + i∗qe0 + i∗q ∧ q

= i∗q · qE + [
1

2
q2i∗q − q(q · i∗q)]e∞ + i∗qe0 + i∗q ∧ q,

= nq ∧ q + [
1

2
q2nq − q(q · nq)]e∞ + nqe0 + nq · qE, (3)

using nq = i∗q for the normal vector of bivector iq. The same expression for Q∗ is
found in [5], equation (4). In Section 6 we will show how to generalize the dual
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form (3) of oriented points to arbitrary dimensions. The equivalence of Q and
Q∗ = QI−1 is obvious due to Q = QI−1I = Q∗I.

For comparison we also state the expression of a conformal point (without
orientation: no) and circle1 in CGA:

Qno = q +
1

2
q2e∞ + e0, C = Q+

1

2
r2iqe∞, (4)

where Qno is simply given by the three-dimensional position vector q ∈ R3 plus
two terms in e∞ and e0, while the conformal expression for the circle is the same
as the oriented point (1), albeit with finite radius r > 0.

The Euclidean bivector iq specifying the Euclidean carrier of the circle, re-
spectively the orientation (local plane information) of the oriented point, can be
obtained from the term iqe0 in (1) as (right contraction: ⌊ )

iq = −(C ∧ e∞)⌊E = −(Q ∧ e∞)⌊E. (5)

The point Qno, geometrically at the center of the circle C, can be directly ob-
tained as2

Qno = Ĉe∞C = Q̂e∞Q, (6)

the three-dimensional position vector q ∈ R3 as

q =
(Qno ∧ E)⌊E
−Qno · e∞

, (7)

and the radius of the circle as

r2 =
CĈ

i2q
. (8)

We take a second oriented point P positioned at the origin p = 0 with plane
orientation bivector ip,

P = ipe0. (9)

Now we compute the inner product of P and Q by taking the scalar part3 of
their geometric product

P ·Q = ⟨PQ⟩ =
〈
(ipe0)

{
iq ∧ q +

[1
2
q2iq − q(q · iq)

]
e∞ + iqe0 + iq · qE

}〉
=

〈
ipe0

[1
2
q2iq − q(q · iq)

]
e∞

〉
= −

{1

2
q2

〈
ipiq

〉
−

〈
ipq (q · iq)

〉}
= −1

2
q2ip · iq +

〈(
ip · q + ip ∧ q

)
(q · iq)

〉
= −1

2
q2ip · iq +

〈
(ip · q)(q · iq)

〉
= −1

2
q2ip · iq −

〈
(q · ip)(q · iq)

〉
. (10)

1 Two ways to obtain a circle in CGA are: (1) by the outer product of any three
conformal points on the circle, (2) by combining center vector q, carrier bivector iq
and radius r as specified by (1) and (4).

2 For comparison one can norm (scale) the homogeneous result, such that the e0-
component becomes one: Qno/(−Qno · e∞). Since the radius term in C (right side
of (4)) is proportional to e∞, it does not contribute in (6), due to e2

∞ = 0.
3 The scalar (grade zero) part is in GA conventionally indicated by ⟨A⟩ = ⟨A⟩0.
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Note that in this situation q becomes the Euclidean distance vector from P (at
the origin) to Q.

We now use the fact that the unit oriented bivector iq of the plane is dual to
the unit normal vector nq via multiplication with the central three-dimensional
Euclidean volume pseudoscalar i3 = e1e2e3, i

2
3 = −1,

iq = nqi3, ip = npi3. (11)

This gives by (70) and (67) in [10], where × is the standard cross product of
three-dimensional vector algebra,

q · ip = q · (npi3) = (q ∧ np)i3 = −q × np, q · iq = −q × nq. (12)

Therefore

−⟨(q · ip)(q · iq)⟩ = −⟨(q × np)(q × nq)⟩ = −(q × np) · (q × nq). (13)

Note: The resulting quadruple product appears in the proof of the spherical law
of cosines [18]. The quadruple product can be expanded to

−(q × np) · (q × nq) = −[q2np · nq − (q · nq)(q · np)]

= −q2[np · nq − (q̂ · nq)(q̂ · np)], (14)

with unit P to Q distance direction vector q̂, such that q = |q|q̂. Note also that
from (11)

ip · iq = −np · nq. (15)

Then we can write the full inner product of two oriented points as

P ·Q =
1

2
q2np · nq − [q2np · nq − (q · nq)(q · np)]

= −1

2
q2np · nq + (q · nq)(q · np)

= q2[−1

2
np · nq + (q̂ · nq)(q̂ · np)]

= q2[−1

2
cosαpq + cosΘq cosΘp], (16)

if we define cosαpq = np ·nq, cosΘq = q̂ ·nq, and cosΘp = q̂ ·np, where αpq is
the dihedral angle between the two point orientation planes, and Θq is the angle
between the P to Q distance vector q and nq, while Θp is the angle between
q and np, respectively. See Fig. 1 for illustration, with P at the origin, and q
replaced by d.

Remark 1. Note that the above relation (16) is fully general, even if P is a
point in general position. Because our special situation, with P at the origin, is
only different from the general situation by a global translation, which will not
change the inner product scalar P ·Q = ⟨PQ⟩. In the general case, the vector q
will simply be replaced by the Euclidean distance vector between the two point
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positions d = q − p, see Fig. 1. Furthermore, because P · Q = ⟨PQ⟩ is also
invariant under global rotations, only the relative orientations of np, nq, and d
matter. That is, any pair of oriented points that differs from the pair P and Q
only by a global motor (translation and rotation), has the same inner product.
In this sense the inner product shows intrinsic properties of the pair of oriented
points P and Q.

Remark 2. Note that the (non-oriented) distance between two points Pno and
Qno in CGA also results from their inner product

Pno · Qno = −1

2
q2. (17)

The product of two oriented points (16) and their corresponding non-oriented
CGA points (17) is therefore in general related by

P ·Q = −1

2
q2[np · nq − 2(q̂ · nq)(q̂ · np)]

= Pno · Qno [np · nq − 2(q̂ · nq)(q̂ · np)]

= Pno · Qno [cosαpq − 2 cosΘq cosΘp]. (18)

P

QQd Q

^

d
n

n

p

q

i p

i q
Qp

a pq Q q

np
nq

nq
d

d̂

Fig. 1. Illustration of inner product of two oriented points P and Q, with Euclidean
distance vector d = q − p, αpq dihedral angle between the two orientation planes ip
and iq, Θq angle between d and nq, and Θp angle between d and np, respectively.

For the special case, depicted in Fig. 2 with two parallel orientation planes4,
i.e. np = nq, np ·nq = 1 (i.e. αpq = 0), we have with the consequence Θ = Θq =
Θp that

P ·Q = q2(−1

2
+ cos2 Θ) = −1

2
q2(1− 2 cos2 Θ) =

1

2
q2 cos 2Θ

= −Pno · Qno cos 2Θ, (19)

using the trigonometric identity 1 − 2 cos2 Θ = − cos 2Θ. The corresponding
graph for P ·Q can be seen in Fig. 3.
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P

d Q
d

np

i p

i p
Q

d̂

n

n

p

Fig. 2. Illustration of inner product of two parallel oriented points P and Q, with
Euclidean distance vector d = q − p, dihedral angle αpq = 0, and equal Θ = Θp = Θq

angles between d and np = nq, respectively.

For the special case, depicted in Fig. 4 that additionally Θ = 0, i.e. both
planes are parallel and the distance q perpendicular to the planes we have

P ·Q =
1

2
q2 = −Pno · Qno. (20)

3 Examples

To gain some intuition for what the inner product of two oriented points in
CGA (16) means, we compute and sketch several examples, always assuming for
simplicity that the first point P is positioned at the origin: p = 0. That is we
always have d = q. Even though we will later fully graph the inner product P ·Q
in Fig. 10, after having discussed its symmetries, we still think it is good to first
look at a representative range of concrete examples.

Example 1. First we look at two parallel planes at orthogonal distance three, as
depicted in Fig. 4.

ip = iq = e12, np = nq = e3, q = 3e3, q2 = 9, q̂ = e3. (21)

Then we can compute directly

P ·Q =
〈
e12 e0

[1
2
9 e12 − 3 e3 (3 e3 · e12)

]
e∞

〉
= −1

2
9 e12 e12 =

9

2
, (22)

because e0[
1
29e12 − 3e3(3e3 · e12)] = [ 129e12 − 3e3(3e3 · e12)]e0, e0 · e∞ = −1,

e3 · e12 = 0, and e212 = −1. The result also confirms (20), and corresponds to
the point labeled (a) in Fig. 3.

4 This will also approximately be the case, if two matching oriented points are com-
pared, e.g. in LIDAR terrain strip adjustment [11].
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Q d½

P · Q
 ½ q2

 - ½ q2

Q

(a)

(b)

(c)

Fig. 3. Graph of inner product of two oriented points P ·Q with parallel orientations
(αpq = 0 for all angles Θ = Θp = Θq ∈ [−π/2, π/2] of the Euclidean distance vector
d = q − p with the normal orientation vector np = nq. Point (a) marks angle Θ = 0,
compare Example 1 and Fig. 4. Point (b) marks Θ = π/4, compare Example 3 and
Fig. 6. Finally, point (c) marks Θ = π/2, compare Example 2 and Fig. 5.

We obtain the same result, if we apply (16) instead. Toward this we compute

cosαpq = e3 · e3 = 1, cosΘq = e3 · e3 = 1, cosΘp = e3 · e3 = 1. (23)

Hence, as expected

P ·Q (16)
= 9(−1

2
+ 1) =

9

2
. (24)

Example 2. Next we look at two parallel planes, and the points are separated
by a vector in the plane, i.e. the P glides along its own plane by q to become Q,
see Fig. 5. Assuming

ip = iq = e12, np = nq = e3,

q = e1 + e2, q2 = 2, q̂ =
1√
2
(e1 + e2), (25)

we obtain

cosαpq = e3 · e3 = 1, cosΘq =
1√
2
(e1 + e2) · e3 = 0,

cosΘp =
1√
2
(e1 + e2) · e3 = 0. (26)

Applying (16) the inner product becomes

P ·Q = 2(−1

2
+ 0) = −1. (27)
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P

d Q
d

p
i p

i p
d̂

n

n

p

Fig. 4. Illustration of inner product of two fully aligned oriented points P and Q,
with Euclidean distance vector d = q − p, dihedral angle αpq = 0, and equal angles
Θp = Θq = 0 between d and np = nq, respectively.

P Q

d

n np p

i p
i p

d̂

Fig. 5. Illustration of inner product of two parallel oriented points P and Q, with
Euclidean distance vector d = q − p in the common orientation plane, i.e., dihedral
angle αpq = 0, and equal angles Θp = Θq = π/2 between d and np = nq, respectively.

In this case only the first term in (16) proportional to np · np contributes, and
the result corresponds to the point labeled (c) in Fig. 3.

Remark 3. Generally, whenever ip = ±iq and q ∧ ip = 0 (q in the common
orientation plane) then

P ·Q = ±Pno · Qno = ∓1

2
q2, (28)

i.e. as expected the orientation of the two points then becomes insubstantial in
the result, apart from the ±1 relative orientation factor. Example 2 conforms to
these requirements with ip = iq and q ∧ ip = 0.

Example 3. We now look again at two parallel planes, but the Euclidean distance
vector q is at angle π/4 with the planes, see Fig. 6. We assume

ip = iq = e12, np = nq = e3,

q = e1 + e3, q2 = 2, q̂ =
1√
2
(e1 + e3), (29)
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P

Q

dn

n

p

p

i p

ip

p/4

d̂

Fig. 6. Illustration of inner product of two parallel oriented points P and Q, with
Euclidean distance vector d = q − p at angle π/4 to the common orientation plane,
i.e., dihedral angle αpq = 0, and equal angles Θp = Θq = π/4 between d and np = nq,
respectively.

and obtain

cosαpq = e3 · e3 = 1, cosΘq =
1√
2
(e1 + e3) · e3 =

1√
2
,

cosΘp =
1√
2
(e1 + e3) · e3 =

1√
2
. (30)

Applying (16) the inner product becomes

P ·Q = 2(−1

2
1 +

1√
2

1√
2
) = 0. (31)

Note that this is a special case, where both terms in (16) are non-zero, but
happen to cancel each other. The result corresponds to the point labeled (b) in
Fig. 3.

Example 4. Now we take two planes perpendicular to each other (dihedral angle
αpq = π/2, and the distance vector is perpendicular to the first and parallel to
the second5, see Fig. 7. We assume

ip = e12, iq = e23, np = e3, nq = e1,

q = 3e3, q2 = 9, q̂ = e3, (32)

and obtain

cosαpq = e3 · e1 = 0, cosΘq = e3 · e1 = 0, cosΘp = e3 · e3 = 1. (33)

5 Obviously, two orthogonal planes and the distance vector perpendicular to any of
the two, always means that in three dimensions it is necessarily parallel to the other
plane.
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P
Qd

d

n

n

p

q

i p

i q

d̂

Fig. 7. Illustration of inner product of two orthogonally oriented points P and Q,
with Euclidean distance vector d = q − p parallel to the second orientation plane
(perpendicular to the first), i.e., dihedral angle αpq = π/2, and angles Θp = 0, Θq =
π/2, between d and the two perpendicular vectors np, nq, respectively.

Applying (16) the inner product becomes

P ·Q = 9(−1

2
0 + 0) = 0. (34)

Example 5. This example is simply a variation of the previous one, with a dif-
ferent orientation of iq, see again Fig. 7. We assume

ip = e12, iq =
1√
2
(e13 + e23), np = e3, nq =

1√
2
(−e2 + e1),

q = 3e3, q2 = 9, q̂ = e3. (35)

and obtain

cosαpq = e3 ·
1√
2
(−e2 + e1) = 0, cosΘq = e3 ·

1√
2
(−e2 + e1) = 0,

cosΘp = e3 · e3 = 1. (36)

Applying (16) the inner product becomes zero again

P ·Q = 9(−1

2
0 + 0) = 0. (37)

Remark 4. Obviously, if the two planes are orthogonal to each other, and the
Euclidean distance vector is parallel to one of the planes, the result is always
zero, independent of the distance q = |q| =

√
q2 of the two points.

Example 6. In this example the second plane is tilted with respect to the first by
a dihedral angle of π/4. The distance vector is perpendicular to the first plane
and at angle π/4 with the second, see Fig. 8.

ip = e12, iq =
1√
2
(e12 + e23), np = e3, nq =

1√
2
(e3 + e1),

q = 3e3, q2 = 9, q̂ = e3. (38)
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P

Q

n  = d

n

p

q

i p

i q
d

^

p/4

Fig. 8. Illustration of inner product of two oriented points P and Q, with Euclidean
distance vector d = q−p perpendicular to the first orientation plane and at angle π/4
to the second, i.e., dihedral angle αpq = π/4, and angles Θp = 0, Θq = π/4, between d
and the two perpendicular vectors np, nq, respectively.

We obtain

cosαpq = e3 ·
1√
2
(e3 + e1) =

1√
2
, cosΘq = e3 ·

1√
2
(e3 + e1) =

1√
2
,

cosΘp = e3 · e3 = 1. (39)

Applying (16) the inner product becomes

P ·Q = 9(−1

2

1√
2
+

1√
2
) =

9

2
√
2
. (40)

Here both terms in (16) contribute and the second term cosΘq cosΘp dominates,
making the overall sign positive.

Example 7. Here we take the two planes to be parallel, and a more general
Euclidean distance vector, see Fig. 9.

ip = e12, iq = e12, np = e3, nq = e3,

q = 3e2 + 2e3, q2 = 13, q̂ =
1√
13

(3e2 + 2e3). (41)

We obtain

cosαpq = e3 · e3 = 1, cosΘq = e3 ·
1√
13

(3e2 + 2e3) =
2√
13

,

cosΘp = e3 ·
1√
13

(3e2 + 2e3) =
2√
13

. (42)
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P

d
Qdnp

i p

i p

Q d̂

n

n

p

Fig. 9. Illustration of inner product of two parallel oriented points P and Q, with
general Euclidean distance vector d = q − p, dihedral angle αpq = 0, and angles
Θp = Θq = arccos(2/

√
13) = 56.31◦, between d and the two perpendicular vectors np,

nq, respectively.

Applying (16) the inner product becomes

P ·Q = 13(−1

2
+

4

13
) = −5

2
. (43)

Here again both terms in (16) contribute and the first term, − 1
2 cosαpq, domi-

nates.

4 About the term (q̂ · nq)(q̂ · np) in P · Q

– For np ∦ nq the two plane normal vectors together define a plane, that can be
specified by the bivector np∧nq. This allows to split the Euclidean distance
vector q into parts parallel q∥ and perpendicular q⊥ to the np∧nq-plane. In
the inner products of (q̂ ·nq)(q̂ ·np) of (16), the perpendicular q⊥ part will
not contribute, because it is perpendicular to both np and nq. So we get

(q̂ · nq)(q̂ · np) = (q̂∥ · nq)(q̂∥ · np). (44)

– For nq = np, the part q⊥ perpendicular to nq drops out, and only the part
q̂∥ parallel to nq contributes.

(q̂ · nq)(q̂ · np) = (q̂∥ · np)
2. (45)

– If q̂ ⊥ nq or q̂ ⊥ np, then

(q̂ · nq)(q̂ · np) = 0, (46)

and

P ·Q = −1

2
q2 cosαpq = Pno ·Qno cosαpq. (47)
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If furthermore np = nq, i.e., the two planes have identical orientations and
hence cosαpq = 1, then

P ·Q = −1

2
q2 = Pno ·Qno. (48)

– For q̂ = nq = np or q̂ = −nq = −np we the get a maximal contribution of
(q̂ · nq)(q̂ · np) to the inner product. Then

P ·Q =
1

2
q2 = −Pno ·Qno. (49)

– For q̂ = nq = −np or q̂ = −nq = np we the get a minimal contribution of
(q̂ · nq)(q̂ · np) to the inner product. Then

P ·Q = −1

2
q2 = Pno ·Qno. (50)

5 Symmetries of P · Q

In this section we first study the symmetries of the inner product P · Q of two
oriented points. Then we use the results to plot P · Q as function of the three
angles αpq, θp and θq.

The inner product of two oriented points in CGA of (16) is a function of the
Euclidean distance |q|2 = q2, and the three unit vectors q̂, nq, and np, i.e. the
unit direction of the Euclidean distance, and the two unit normal vectors of the
two planes.

P ·Q = q2[−1

2
np · nq + (q̂ · nq)(q̂ · np)] = g(|q|2,np,nq, q̂)

= |q|2f(np,nq, q̂). (51)

The function f(np,nq, q̂), as proven in Appendix A, has the following symme-
tries

f(−np,nq, q̂) = f(np,−nq, q̂) = −f(np,nq, q̂),

f(np,nq,−q̂) = f(np,nq, q̂), f(nq,np, q̂) = f(np,nq, q̂). (52)

That is, changing the sign of any one of the two plane normal vectors changes
the sign of P ·Q, while changing the sign of the Euclidean distance vector leaves
P · Q invariant. Hence, f is odd with respect to (w.r.t.) np and nq. It is even
w.r.t. q̂, and symmetric w.r.t. interchanging np and nq, manifestations of the
symmetry P ·Q = Q · P .

Taking the above symmetries of P ·Q into account, we graph in Fig. 10 the
values of the product for two points at unit distance |d| = 1 for five discrete
values of the dihedral angle αpq ∈ {0, 0.9, π/2, 2.1, π} and for the two angles Θp,
Θq, between the distance vector d and the two point orientations np and nq,
respectively, with values in the range of Θp, Θq ∈ [0, π/2]. This is one quarter of
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Fig. 10. Illustration of inner product of two oriented points P and Q, with Euclidean
distance vector d = q − p, |d| = 1, for dihedral angles between the two orientation
planes αpq ∈ {0, 0.9, π/2, 2.1, π}, and Θp, Θq ∈ [0, π/2], respectively.

the full Θp, Θq ∈ [−π/2, π/2] plane of angles relative to d. Due to the symmetries
in (52), the graph is the same in every of the four quadrants of the Θp, Θq-
plane. The graph further correctly shows the symmetry across the diagonal line
Θp = Θq. A general non-unit distance |d| between P and Q scales the graph
vertically by the factor |d|2. When interpreting the graph, note the natural
spherical triangle restriction of |Θp −Θq| ≤ αpq ≤ |Θp +Θq|.

Remark 5. We observe that gradient ascent appears to lead from all sides to
matching orientations of Θp = Θq = 0, i.e., full alignment, which would provide
good conditions for applications in machine learning, optimization and adjust-
ment of orientations.

6 Inner product of oriented points for n-dimensional
Euclidean space

In this section we aim to show that the inner product relationship (16) of oriented
points in CGA, applies in any dimension n ≥ 2, up to an overall sign.

We are now working with CGA Cl(n+1, 1) of n-dimensional Euclidean space
Rn. Its pseudoscalar is

I = In+1,1 = InE, In = e1e2 · · · en, E = e∞ ∧ e0, (53)
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with squares

E2 = 1, I2 = (InE)2 = I2nE
2 = I2n =

{
+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3.

(54)

Depending on the dimension n we therefore have the inverse of the pseudoscalar
to be

I−1 =

{
+I, n mod 4 = 1, 0
−I, n mod 4 = 2, 3.

(55)

The dual of a multivector M ∈ Cl(n+ 1, 1) is given by

M∗ = MI−1, M = M∗I. (56)

Especially for two bivectors Mb and Nb we have the inner product relationship
with the duals of the bivectors to be

⟨M∗
b N

∗
b ⟩ = ⟨Mb(±I)Nb(±I)⟩ = ⟨MbNbI

2⟩

= ⟨MbNb⟩
{
+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3

}
, (57)

where we used the commutation of INb = NbI for bivectors Nb. For example in
the case of n = 3 we have

⟨M∗
b N

∗
b ⟩ = −⟨MbNb⟩, (58)

which also proves (15). We now construct an oriented point in Cl(n + 1, n)
by taking a dual sphere vector centered at the Euclidean position of the point
p ∈ Rn intersected with a dual equator plane6 orthogonal to normal unit vector
np ∈ Rn, n2

p = 1, and take the limit of the sphere radius r → 0. The dual sphere
is

σ = S∗ = Cp −
1

2
r2e∞, (59)

with conformal center point

Cp = p+
1

2
p2e∞ + e0. (60)

The dual equator plane that has to include the center Cp and be normal to np

is

µ = Plane∗ = np + de∞ = np + (p · np)e∞, (61)

using oriented distance d ∈ R from the origin

d = Cp · np = (p+
1

2
p2e∞ + e0) · np = p · np. (62)

6 Strictly speaking this is a hyper-plane of dimension n− 1.
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The dual of the equator circle7 is given by the outer product of dual equator
plane and dual sphere

Circle∗ = µ ∧ σ = [np + (p · np)e∞] ∧ (Cp −
1

2
r2e∞). (63)

Taking the limit of sphere radius r → 0, and inserting the expression for Cp, we
get the dual of an oriented point in CGA Cl(n + 1, 1) located at p ∈ Rn and
oriented normal to np

P ∗ = (np + p · np e∞) ∧ (p+
1

2
p2e∞ + e0)

= np ∧ p+
1

2
p2npe∞ + (p · np)e∞p+ npe0 + (p · np)(e∞ ∧ e0)

= np ∧ p+ [
1

2
p2np − p(p · np)]e∞ + npe0 + (p · np)E, (64)

where we used the anti-commutation e∞p = −pe∞. A second dual oriented
point located at q ∈ Rn and oriented normal to nq is then given by

Q∗ = nq ∧ q + [
1

2
q2nq − q(q · nq)]e∞ + nqe0 + (q · nq)E, (65)

in full agreement with (3) for n = 3. Locating the first dual oriented point at
the origin, i.e. p = 0, it becomes

P ∗ = npe0. (66)

The inner product with the second dual oriented point in general position q, q
therefore marking the oriented distance vector of the two points, becomes

⟨P ∗Q∗⟩ = ⟨npe0{nq ∧ q + [
1

2
q2 − q(q · nq)]e∞ + nqe0 + (q · nq)E}⟩

= ⟨npe0[
1

2
q2nq − q(q · nq)]e∞⟩ = ⟨np[

1

2
q2nq − q(q · nq)]⟩

=
1

2
q2(np · nq)− (q · np)(q · nq), (67)

using e0v = −ve0 for any vector v ∈ Rn, especially for v = [ 12q
2nq − q(q ·nq)],

and −⟨e0e∞⟩ = 1. Because P ∗ and Q∗ are bivectors, the inner product of P and
Q becomes by (57)

⟨PQ⟩ = ⟨P ∗Q∗⟩
{
+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3

}
=

{
+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3

}
[
1

2
q2(np · nq)− (q · np)(q · nq)], (68)

7 Note that in general dimensions this is a hyper-circle in the sense that for n = 2 it is a
point pair, for n = 3 a normal circle, for n = 4 the circle is itself a three-dimensional
sphere embedded in four dimensions, etc.
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and obviously agrees by (58) in three dimensions (n = 3) with (16).
The analysis of the preceding Sections 2, 4 and 5 therefore fully applies in

general dimensions n ≥ 2, up to an overall sign8 due to the value of I2, which
is easy to take into account. And examples analogous to Section 3 are obviously
easy to construct.

7 Conclusion

In this work we have reviewed the formulation of oriented points in conformal ge-
ometric algebra (CGA), and computed the inner product of two oriented points
in terms of their distance vector (its direction and length) and their two point
orientations. The geometric meaning of this inner product is elucidated based
on a set of representative illustrated examples, analysis of the key term in the
inner product, symmetry analysis and graphing of P ·Q. Finally, the approach
is extended from three to n Euclidean dimensions. As pointed out in Remark
5, the inner product of oriented points apparently provides good conditions for
applications in machine learning, optimization and adjustment of orientation.
Furthermore, our new results may find application in LIDAR terrain strip ad-
justment computations, where points on overlapping strips need to be compared
together with the local plane orientation of the respective strip9, see e.g. [11], or
in protein geometry modeling10 [15, 16], etc.

Acknowledgments

The author wishes to thank God: Ecce ancilla Domini. (I am the Lord’s servant.)
(Luke 1:38, NIV, Biblegateway). He further thanks his colleagues W. Benger, D.
Hildenbrand and M. Niederwieser, as well as everybody involved organizing and
sponsoring ICACGA 2022. The author finally thanks all anonymous reviewers
for providing excellent comments and advice.

References

1. S. Breuils, K. Tachibana, E. Hitzer, New Applications of Clifford’s Geometric Al-
gebra. Adv. Appl. Clifford Algebras 32, 17 (2022). DOI: https://doi.org/10.1007/
s00006-021-01196-7

8 Taking the absolute value |⟨PQ⟩| = |⟨P ∗Q∗⟩|, completely removes this overall di-
mension dependent sign, and may be all that is needed in many applications.

9 A correspondence is defined between pairs of points from overlapping (airborne laser
scanning) strips and from their normal vectors (conventionally) or local strip plane
bivectors (our choice) fitted to the neighboring points (in the same plane in the same
strip). Note that the normal vectors are dual to the plane bivectors via multiplication
with the three-dimensional space pseudoscalar I3 = e1e2e3. . . .Two corresponding
points in overlapping strips should belong to the same plane but need not to be iden-
tical. Quoted from page 11 of [11].

10 The latest research on this topic by A. Pepe et al. already includes the evaluation
of the inner product of oriented points, see Section 4.3 of [16].



18 Eckhard Hitzer

2. L. Dorst, D. Fontijne, S. Mann, Geometric algebra for computer science, an object-
oriented approach to geometry, Morgan Kaufmann, Burlington (2007).

3. G. El Mir, C. Saint-Jean, M. Berthier, Conformal Geometry for Viewpoint Change
Representation, Adv. Appl. Clifford Algebras 24(2), pp. 443–463 (2014), DOI:
https://doi.org/10.1007/s00006-013-0431-3.

4. D. Hestenes, H. Li, A. Rockwood, New Alg. Tools for Class. Geom., in G. Sommer
(ed.), Geom. Comp. with Cliff. Alg., Springer, Berlin, 2001, DOI: https://doi.org/
10.1007/978-3-662-04621-0 1.

5. D. Hildenbrand, P. Charrier, Conformal Geometric Objects with Focus on Ori-
ented Points, Proceedings of 9th International Conference on Clifford Algebras
and their Applications in Mathematical Physics, K. Gürlebeck (ed.) Weimar, Ger-
many, 15–20 July 2011, 10 pages. Preprint: http://www.gaalop.de/wp-content/
uploads/LongConformalEntities ICCA91.pdf

6. D. Hildenbrand, Foundations of Geometric Algebra Computing, Springer, Berlin,
2013. Introduction to Geometric Algebra Computing, CRC Press, Taylor & Francis
Group, Boca Raton, 2019.

7. E. Hitzer, K. Tachibana, S. Buchholz, I. Yu, Carrier Method for the Gen-
eral Evaluation and Control of Pose, Molecular Conformation, Track-
ing, and the Like, Adv. in App. Cliff. Alg., 19(2), (2009) pp. 339–
364, DOI: https://doi.org/10.1007/s00006-009-0160-9. Preprint: https:
//www.researchgate.net/publication/226288320 Carrier Method for the General
Evaluation and Control of Pose Molecular Conformation Tracking and the Like.

8. E. Hitzer, T. Nitta, Y. Kuroe, Applications of Clifford’s Geometric Algebra.
Adv. Appl. Clifford Algebras 23, 377–404 (2013). DOI: https://doi.org/10.1007/
s00006-013-0378-4

9. E. Hitzer, Creative Peace License. http://gaupdate.wordpress.com/2011/12/14/
the-creative-peace-license-14-dec-2011/, last accessed: 12 June 2020.

10. E. Hitzer, Introduction to Clifford’s Geometric Algebra. SICE Journal of Con-
trol, Measurement, and System Integration, Vol. 51, No. 4, pp. 338–350, April
2012, (April 2012). Preprint: http://arxiv.org/abs/1306.1660, last accessed: 12
June 2020. DOI: https://doi.org/10.48550/arXiv.1306.1660

11. E. Hitzer, W. Benger, M. Niederwieser, et al. Foundations for Strip Adjustment
of Airborne Laserscanning Data with Conformal Geometric Algebra. Adv. Appl.
Clifford Algebras 32, 1 (2022). DOI: https://doi.org/10.1007/s00006-021-01184-x

12. E. Hitzer, C. Lavor, D. Hildenbrand, Current Survey of Clifford Geometric Algebra
Applications. Math Meth Appl Sci. pp. 1–31 (2022). DOI: https://onlinelibrary.
wiley.com/doi/10.1002/mma.8316

13. E. Hitzer, Inner product of two oriented points in conformal geometric algebra, in
D. DaSilva, E. Hitzer, D. Hildenbrand (eds.), Proceedings of ICACGA 2022, LNCS
Vol. 13771, Springer, New York, 2023.

14. P. Lounesto, Cliff. Alg. and Spinors, 2nd ed., CUP, Cambridge, 2006.
15. A. Pepe, J. Lasenby and P. Chacon, Using a Graph Transformer network to pre-

dict 3D coordinates of proteins via Geometric Algebra modeling, in D. DaSilva, E.
Hitzer, D. Hildenbrand (eds.), Proceedings of ICACGA 2022, LNCS Vol. 13771,
Springer, New York, 2023.

16. A. Pepe, J. Lasenby and P. Chacon, Modeling orientational features
via Geometric Algebra for 3D protein coordinates prediction, preprint,
https://www.researchgate.net/publication/367221465 Modeling orientational
features via Geometric Algebra for 3D protein coordinates prediction, accessed
28 June 2023.



Inner product of oriented points in CGA 19

17. S. J. Sangwine, E. Hitzer, Clifford Multivector Toolbox (for MATLAB), Adv.
Appl. Clifford Algebras 27(1), pp. 539–558 (2017). DOI: https://doi.org/10.1007/
s00006-016-0666-x, Preprint: http://repository.essex.ac.uk/16434/1/author final.
pdf.

18. “Spherical law of cosines,” Wikipedia, https://en.wikipedia.org/wiki/Spherical
law of cosines, last accessed 04 Sep. 2021.

A Proof of symmetries of P · Q

We now prove the symmetries of the inner product of oriented points P ·Q given
in (52). According to (51) the factor function f in P ·Q = q2f is defined as

f(np,nq, q̂) = −1

2
np · nq + (q̂ · np)(q̂ · nq). (69)

Therefore,

f(−np,nq, q̂) = −1

2
(−np) · nq + (q̂ · (−np))(q̂ · nq)

= −1

2
np · (−nq) + (q̂ · np)(q̂ · (−nq)) = f(np,−nq, q̂), (70)

which proves the first identity in (52).
Similarly,

f(np,−nq, q̂) = −1

2
np · (−nq) + (q̂ · np)(q̂ · (−nq))

= −
(
− 1

2
np · nq + (q̂ · np)(q̂ · nq)

)
= −f(np,nq, q̂), (71)

proves the second identity in (52).
Moreover,

f(np,nq,−q̂) = −1

2
np · nq + ((−q̂) · np)((−q̂) · nq)

= −1

2
np · nq + (q̂ · np)(q̂ · nq) = f(np,nq, q̂), (72)

proves the third identity in (52).
Finally,

f(nq,np, q̂) = −1

2
nq · np + (q̂ · nq)(q̂ · np)

= −1

2
np · nq + (q̂ · np)(q̂ · nq) = f(np,nq, q̂), (73)

proves the fourth identity in (52).


