
A New Approach to Unification Part 2: Deducting particle physics
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In a series of 4 papers an approach to a unified physics is presented. In part 1 the foundation
of such an approach is given. Here in part 2 it will be shown how particle physics follows. In
part 3 gravitational physics will be derived. In part 4 open fundamental questions of actual
physics are answered and the concept of a new cosmology is introduced.
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Basic equations found in part 1.

To simplify quoting, here some results from part 1 of the series:
Our four dimensional (4d) world is a submanifold of the assigned spacetime, a six dimen-

sional (6d) Minkowski space. In this it holds
• a 6d Klein-Gordon equation without mass term

∂α∂αϕ = 0 with α = 1, 2 . . . 6 and the 6d wavefunction ϕ. (1)
• a 6d Dirac equation without mass term

γα∂αϕ = 0 with (8x8)-matrices γα describing an SU(8) symmetry. (2)
ϕ is a spinor with 8 components.

• a Lagrangian L6D based on the 6d Dirac equation
L6D = Φ+γα (∂α − igAα) Φ− LB (3)

• a Lagrangian L6KG based on the 6d Klein-Gordon equation
L6KG = ((∂α − igAα) Φ)

+ ((∂α − igAα) Φ)− L6B. (4)

with Φ = (ϕ1, ϕ2, ϕ3, ϕ4)
T (T means transposed), where the ϕi are solutions of the Dirac

resp. Klein-Gordon equation. The Aα representing the boson fields are Hermitian 4x4-
matrices described by the 15 generators λ̂k of SU(4) and an according number of Yang-

Mills fields Wαk as Aα =
∑15

k=1 λ̂kWαk. g is a coupling factor defining the strength of
interaction.
The free boson field part L6B is given by

L6B = −1

4

15∑
i=1

WαβiW
αβ
i with Wαβi = ∂αWβi − ∂βWαi + 2g

15∑
j,k=1

fijkW
j
αW

k
β . (5)
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The fijk are the structure constants of SU(4).

• With the 6d coordinates x6α = x6α(T, u, v, x) (x stands for x1, x2, x3, coordinates occur-
ring also in 4d, and u,v for coordinates not accessible for a 4d observer) and the Jacobi
determinant J(T, u, v, x) the 6d action integral S can be written as

S =

∫
dx3dT

∫
dudvJ(T, u, v, x)L6(T, u, v, x).

The inner integral

L̂4 =

∫
dudvJ(T, u, v, x)L6(T, u, v, x). (6)

is called non-interpretable Lagrangian.

1 Introduction

The current state of particle physics is represented by the standard model. It deals with forces
other than gravity and allows classifying the elementary particles and deriving the forces in
a systematic way.[1]

Since Heisenberg introduced the first flavor quantum number, the isospin, and linked it
to the SU(2) group, symmetries have become increasingly important in particle physics. To
enable classification of the growing number of newly discovered particles the SU(2) group was
expanded. At first it was sought that the multiplets of an SU(3) symmetry would be suitable to
map the structure of the particle families.[2, 3] This made it necessary to find three interacting
entities causing the symmetry. After years of debate, the view prevailed that most elementary
particles are not really elementary, but are made up of a new type of particles called quarks,
fermions with spin ½.

Subsequent accelerator experiments however showed, that there are particle families
which cannot be arranged in the structure of the SU(3) multiplets. It needs the multiplets
of SU(4) to get an enough powerful structure. A fourth quark was postulated and also found
in a particle formed from this fourth quark and its antiquark.

In the meantime, 6 quarks are known and the standard model assumes that there are no
more

Combining a quark and an antiquark the mesons and combining three quarks or three
antiquarks the baryons are generated. All families can be arranged in the multiplets of SU(4).

If one smashes any elementary particles in a particle accelerator to get a quark, one
always gets only new particles in which there are several quarks, never a quark alone.

For a comprehensive theory the question arises why just the SU(4) symmetry allows clas-
sifying elementary particles and why there are 6 quarks.

Demanding that the Lagrangians do not change under local transformations described
by the U(1), SU(2) or SU(3) group, what is achieved by introducing suitable bosonic fields, the
gauge theories of the standard model allows deducting the electromagnetic, weak and strong
force.[4] Interaction is executed by the exchange of spin 1 gauge bosons. Each symmetry
demands its specific bosons: one photon without rest mass for U(1) , three massive particles
W+,W− and Z0 for SU(2) and eight gluons for which it is not yet clear whether they are
massless or have small masses for SU(3).

All attempts to formulate also a gauge theory of gravitation are not yet successful. Trying
to formulate a quantum field theory of gravity demanding instead of the unitary symmetries a
spacetime symmetry as e.g. given by the Poincaré group the problem of non-renormalizabilty
occurs.[5]

It is not understandable that different symmetries are required for the three forces that
usually act simultaneously in an atom. To solve this problem under the term GUT (Grand
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Unified Theory) research is done on a more general symmetry of the Lagrangian that allows
deducting all three forces. As promising candidates Lie groups as SU(5) or SO(10) were
considered containing the required groups as subgroups. But up to now all approaches
did fail.[6, 7, 8] Srednicki writes in [8]: "A great variety of grand unified models can be
constructed, with and without supersymmetry. Which, if any, are relevant to the natural
world is a question yet to be answered."

The task for UR is to answer the question why just these symmetries allow deriving the
forces and how they can be unified? Does there exist further forces (except gravity)?

Introducing particle mass is one of the fundamental problems of physics. It was first found
in quantum electrodynamics that can be understood as a gauge theory with U(1) symmetry.
For some time it was a problem that some series describing the solution diverge. This
happens e.g. if in the interaction a particle with mass is assumed. By a mathematical
trick, the renormalization, this divergence can be overcome. However, the mass attributed
to the particle does not follow from the theory but the experimentally found value must be
inserted.[9]

The SU(2) and SU(3) symmetries of the gauge theories do not allow any particles with
mass at all. It needs the Higgs mechanism destroying afterwards these symmetries to make
it possible that some particles can have a mass.[10, 11] The mechanism allows particles to get
mass but it cannot tell which particle has mass and how large it is.

Introducing this rather unmotivated additional field in a harmonic picture seems to be an
alien element.

It was considered a great success and confirmation of the standard model of particle
physics when 2012 in accelerator experiments a boson was found, which was attributed to the
Higgs field.

In the perspective of UR the mass-problems are not a surprise. Mass is not an original
feature of 6d physics. It is one of the entities filling the gap in information on the way from
6d to 4d physics.

The standard model does not explain dark matter and some actual observations with
muonic hydrogen.

Looking at the way in which the standard model was developed, we can see that it is
essentially a theory defining individual solutions for certain experimental findings without
asking why the findings are as they are. It is the task of a unification theory to derive the ad
hoc explanations made in the standard theory from a uniform point of view and to point out
ways beyond the standard model.

In the following it will be shown that the UR approach is able to this.
As found in part 1 of the series the aim of UR in deducting 4d physics is finding the 4d

Lagrangian equivalent to the non-interpretable Lagrangian. In general this means a nonlinear
integral transform. Nonlinear because the 6d wave functions and Yang-Mills fields in L̂4 and
the 4d wave functions and Yang-Mills fields in L4 occur each at least quadratic.

The basic approach to find the 4d Lagrangian means solving the variational problem of
the 6d Lagrangian, solving the found equation of motion, putting the hereby found wave-
functions and Yang-Mills fields in the non-interpretable Lagrangian and adapting a 4d La-
grangian.

Regarding the (mathematical) difficulties occurring in solving the equations of nowadays
physics the same or even larger problems can be expected for a more comprehensive theory
like UR. The computational effort to implement the procedure for the whole Lagrangian so
currently seems not to be feasible.

Often if the whole system (at the moment) is too complex to be examined in physics
simpler subsystems are considered. The so gained knowledge allows already substantial
conclusions. The same procedure is taken here. To get basic information at first simple
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versions of the 6d Lagrangian are considered. Additional terms are successively added to the
Lagrangian and discussed. The examination is completed by symmetry aspects.

One of the strengths of UR compared to other unification approaches is that it allows
deriving physically relevant results using approximations.

The nonlinear transform makes that the symmetry of the Euclidean 6d space has far
reaching consequences for 4d physics. Depending on the 6d symmetry the character of 4d
metric is different. In this part physics as a 4d observer it sees will be derived starting with
translational symmetry in 6d.

2 Systematics of bosons

Starting point is the 6d Lagrangian built on the 6d Klein Gordon equation without a mass
term. It will be investigated how this equation translates for a 4d observer in generating 4d
physics.

2.1 Free particles and particle mass

The easiest situation is given assuming all Yang-Mills fields being zero and neglecting all
effects caused by spin. With these simplifications equation (3) becomes

L6KG =
∂Φ∗

∂T

∂Φ

∂T
− ∂Φ∗

∂u

∂Φ

∂u
− ∂Φ∗

∂v

∂Φ

∂v
−

3∑
i=1

∂Φ∗

∂xi

∂Φ

∂xi
(7)

(Due to the proximity to the special theory of relativity a metric with positive dT 2 is chosen).
Variation gives four equations of motion all independent of each other and all equal

∂2ϕ

∂T 2
− ∂2ϕ

∂u2
− ∂2ϕ

∂v2
− ∂2ϕ

∂x21
− ∂2ϕ

∂x22
− ∂2ϕ

∂x23
= 0. (8)

The solution of one is also valid for the others.
This Klein-Gordon equation is a 6d partial differential equation with constant coefficients.

With a product ansatz ϕ = ψ (x, T )U (u)V (v) it can be separated in three equations

∂2ψ

∂T 2
−

3∑
i=1

∂2ψ

∂x2i
= k21ψ,

∂2U

∂u2
= k22U and

∂2V

∂v2
= k23U.

k1, k2 and k3 are constants with k21 = k22 + k23 .
The non-interpretable Lagrangian becomes L̂4 =

∫
dudvL6KG(T, u, v, x) and is equal

to the sum over four Lagrangians expressed in the single wavefunctions. Introducing ϕ in one
term of L̂4 using the two last above equations integration over u and v can be carried out by
partial integration. Since the wave function on the infinitely distant surface is zero, it follows

L̂4 =
∂ψ⋆

∂T

∂ψ

∂T
−

3∑
i=1

∂ψ⋆

∂xi

∂ψ

∂xi
−
(
k22 + k23

)
ψ⋆ψ. (9)

This is an equation of the form of a common Lagrangian of the 4d Klein-Gordon equation
but expressed in 6d variables.

So the search for the correct 4d Lagrangian is rather easy. It just means interpreting the
6d variables as 4d variables to get the proper 4d Lagrangian L4.

Defining time t by
cdt = dT (10)
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and identifying λC given by
1/λ2C = k22 + k23 (11)

as the reduced Compton wavelengths, the adapted 4d Lagrangian is given by

L4 =
1

c2
∂ψ⋆

∂t

∂ψ

∂t
−

3∑
i=1

∂ψ⋆

∂xi

∂ψ

∂xi
− 1

λ2C
ψ⋆ψ. (12)

This shows that UR starting with a timeless 6d Euclidean space via the assigned spacetime
for translational symmetry gives in 4d a Minkowski spacetime as is demanded by special
relativity.

2.1.1 Dispersion relation and conservation of energy

Solving the equation of motion related to equation (12) we get ψ = exp i(ωt − kx), a plane
wave, where ω is the frequency and k the wave number. Implementing this solution in the
Lagrangian gives the dispersion relation

ω2 = c2k2 +
c2

λ2C
. (13)

The identical result is achieved solving the 6d Klein-Gordon equation in the same way. So
the 4d dispersion relation from the point of view of the assigned space is exact. This shows
its fundamental significance.

We see that not mass is an original entity but frequency, wave number and Compton
wavelengths. This differentiates the top down approach of UR from the classical approach
based on Newton’s basic assumption of mass.

Historically the 4d Klein-Gordon equation is interpreted as describing the behavior of a
relativistic particle and its antiparticle with mass m0.[12] The relationship between dispersion
relation, following from the quantum physical equation, and the characteristics of a classical
particle is established by the wave-particle dualism. With

m0 =
h̄

λCc
, E = h̄ω and p = h̄k (14)

(p is the momentum, E the energy of the particle) the dispersion relation for a particle reads
E2 = p2c2 +m2

0c
4. This is the relativistic law of the conservation of energy.

It follows that m0c
2 can be interpreted as the equivalent of the kinetic energy in the two

not accessible dimensions.
Deducting 4d from 6d physics "particle" up to now however is a meaningless entity whose

relevance still has to be found.

2.1.2 Bondary conditions

In addition to the differential equations there are boundary conditions defining the possible
eigenvalues k1, k2 and k3. Here only the boundaries of U and V are to be discussed. Knowing
the boundary conditions not exactly to simplify the considerations it is assumed that U and
V are zero at the boundary of a rectangle with length lu resp. lv .

Then for the general solutions U = a cos(k2u) + ā sin(k2u) and V = b cos(k3v) +
b̄ sin(k3v) in which a, ā, b and b̄ give the amplitudes of the specific modes in the total wave
function for u = 0 it holds a = 0 and for v = 0 accordingly b = 0. For u = lu results
k2lu = nuπ with nu = 1, 2 . . . and for v = lv at last k3lv = nvπ with nv = 1, 2 . . ..
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Particle mass or Compton wavelength become discrete

m0 =
h̄

λCc
=
πh̄

c

√
n2u
l2u

+
n2v
l2v
. (15)

The possible values of particle mass correspond to the eigenvalues of an oscillating plate with
edge length roughly the Compton wavelength.

The so found characteristics of mass are different to those of theories with compactifica-
tion. In these the additional dimensions must be extremely small what generates a huge mass
of possible particles whereas in UR lu and lv can become also very large so that particle mass
can become very small.

This result opens up a way to explain in part 4 of the series dark matter.
In the standard model of particle physics the Higgs mechanism destroying the symmetries

of the Lagrangians is needed to allow particles with mass. UR needs no additional symmetry
breaking field as the transition from six to four dimensions destroys the SU(4) symmetry. The
approach also gives no indication of the existence of symmetry breaking fields.

Introducing particle mass this way is compatible with the demanded gauge invariance.
In the 6d Lagrangian no mass term exists so it is gauge invariant without restraint. Only
the transition produces in the 4d Lagrangian the mass term forbidden for gauge invariance.
Because there is however no need for the 4d Lagrangian to be gauge invariant the generated
mass term there makes no trouble.

2.2 Maxwell’s equations

The deduction given in the last section is simplified by setting all Yang-Mills fields to zero. A
more comprehensive derivation has to start with the 6d Lagrangian without free boson field
part and the Yang-Mills fields being introduced as parameters given by external fields. From
this a 4d Lagrangian with Yang-Mills fields must be deduced.

Whether a solution of the resulting equation of motion in general is possible is not yet
clear. But there exists a special case in which the calculations can be realized.

Among the generators of SU(4) given in table 1 of part 1 of the series with λ̂3 there is
one, that has elements unequal to zero only in his diagonal. We examine the situation that
all Young-Mills fields besides Wα3 (α = 1 . . . 6) related to this generator are zero. The only

elements of the generator unequal to zero are
(
λ̂3

)
11

= 1 and
(
λ̂3

)
22

= −1. This simplifies

the 6d Lagrangian to

L6KG = ((∂α + igWα3)ϕ
⋆
1) (∂α − igWα3)ϕ1

+((∂α − igWα3)ϕ
⋆
2) (∂α + igWα3)ϕ2. (16)

The resulting equation of motion decomposes into

∂α (∂α − igWα3)ϕ1 − igWα3 (∂α − igWα3)ϕ1 = 0

and the conjugate complex equation for ϕ2. It is to sum over α.
Introducing x, T, u, v, ψ, U and V as for free particles and assuming that the Young-Mills

fields connected to the derivatives with respect to x and T depend only on x and T and
the Young-Mills fields connected to the derivatives with respect to u and v depend only on
u resp. v each equation by a produktansatz can be split into three equations depending on
x, T , u or v. This gives e.g.

∂u (∂u − igWu3)U − igWu3 (∂u − igWu3)U + k22U = 0.
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The index u means the α related to the variable u.
This equation is solved by U = C exp

(
ik2u+ ig

∫
Wu3du

)
. An accordant solution is

found for V .
Inserting these solutions into L̂4 and integrating over u and v we get as for free particles

the 4d Lagrangian of a particle or its antiparticle with rest mass in an electromagnetic field.
The four components of the vector potential of the electromagnetic field are given by the four
Young-Mills fields connected with the derivatives with respect to x and T .

As the 4d vector potential is equivalent to Maxwell’s equations they can be deducted.[13]

2.3 Grand Unified Theory (GUT) and Higgs particle

As mentioned, one of the open questions of the standard model is why there are different
symmetries needed for the three forces. The various GUT approaches try to find a common
symmetry allowing to deduct all three forces in one step.

For UR, the question is exactly the opposite. In 6d there is one force and one symmetry.
This means that the goal pursued by GUT is already answered in the basis of the approach.
Instead of looking for a unification of forces, it must be shown that the one force existing in
6d leads to the correct forces in 4d.

The SU(4) symmetry of the 6d Lagrangian in UR demands a boson field with 15 spin 1
gauge bosons.

Calculating the transition from six to four dimensions for the bosons means:
1. Deriving the equation of motion from the Lagrangian of the free boson field part L6B

given in equation (5)
2. Solving the system of coupled nonlinear partial differential equations for the 90 com-

ponents of the Yang-Mills fields, implementing the found solutions in L6B , integrating
over u and v.

3. Arranging the various terms found under item 2 in the schemes as given by equation
(5) for free boson field Lagrangians in 4d with appropriate unitary symmetries.

4. Assigning suitable terms not fitting in the scheme to mass terms.

This calculation still has to be done. But also without overcoming the mathematical prob-
lems associated with that procedure some important conclusions can be drawn by symmetry
considerations.

The transition from six to four dimensions destroys the SO(6) symmetry. Because of the
close relation between SO(6) and SU(4) this also causes distortions of the SU(4) symmetry and
hence influences the character of the force. Depending on the respective Yang-Mills fields
the distortion shows itself more or less pronounced. In the 4d Lagrangian we therefore can
expect as modified symmetries besides an SU(4) symmetry the symmetries of the subgroups
of SU(4) i.e. SU(3), SU(2) and U(1).

So the symmetry considerations allow choosing the possible symmetries of the 4d Lagran-
gians in which the various terms of L6B are to be sorted. The free boson fields in 4d must
have SU(4), SU(3), SU(2) and U(1) symmetry. For each one a coupling factor can be extracted.
Remaining terms can be assigned to particle mass of some gauge bosons.

Besides the 4d force with SU(4) symmetry the other found forces are just those of the stan-
dard model. Their deduction here can serve as a justification of the there ad hoc introduced
symmetries.

As the Yang-Mills fields of the standard model have all together 48 components it can
be seen that the 4d SU(4) symmetry cannot be mapped in its entirety. It can exist only for
particular Yang-Mills fields. Experimental results strongly suggest that a 4d force with SU(4)
symmetry exists.[14]
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Unification of the three forces is not achieved by choosing a superior symmetry in 4d as
GUT is trying to do but by ascribing them to a unique root.

It needs solving the mathematical problems associated with the transit procedure to get a
deeper insight allowing to understand how the 15 gauge bosons of the 6d force are converted
into the in total 12 gauge bosons of the standard model. But it is obvious that representatives
of the three extra gauge bosons must exist in 4d. One of them could be the at CERN found
heavy boson interpreted as Higgs boson, what means that two others could be found.

3 Systematics of fermions

3.1 Deducting the 4d Dirac equation

To further develop the standard model of particle physics we have to examine the behavior of
particles with spin ½. Taking effects generated by spin into account the 6d Lagrangian based
on the Dirac equation (3) has to be used. Setting as for spinless particles all Yang-Mills fields
to zero this Lagrangian also is split in four equal Lagrangians each for one spinor and each
with an equation of motion given by a Dirac equation.

The question arises how the 4d Dirac equation is related to the 6d one. Two approaches
to an answer will be demonstrated.

1. The 6d Dirac equation is written with (8x8)-Dirac-type matrices and a spinor with eight
components. Splitting the spinor in an upper spinor ϕt and lower one ϕb, both with four
components, and the (8x8)-matrices as given in part 1 section 3.2 of the series in four (4x4)-
matrices the 6d Dirac equation can be transformed in a coupled equation for the two spinor
parts. Thus we find

γα∂αϕ = (a∂2 + b∂3 + c∂5 + d∂6)ϕ
t + E4 (∂1 − i∂4)ϕ

b

+E4 (∂1 + i∂4)ϕ
t − (a∂2 + b∂3 + c∂5 + d∂6)ϕ

b = 0 (17)

E4 is a unit (4x4) matrix.
The parts (a∂2 + b∂3 + c∂5 + d∂6)ϕ

t resp.ϕb of the equation have the structure of 4d
Dirac equations. Setting E4 (∂1 − i∂4)ϕ

b = mϕt and E4 (∂1 + i∂4)ϕ
t = −mϕb the equa-

tions decouple to two common Dirac equations with a mass term.

2. The deduction of the 4d from the 6d Klein-Gordon equation indicates another way how
we can transform a 6d into a 4d Dirac equation. As already used when constructing the 6d
Dirac equation each of the eight components of its spinor obeys a 6d Klein-Gordon equation.
For each of these equations as shown the transition to a 4d Klein-Gordon equation with
particle mass can be carried out. Following the procedure of Dirac we can construct thereof
a 4d spinor equation. The 6d Dirac equation without mass term so is related to a 4d Dirac
equations with one.

3.2 The SU(4) ordering principle of particles

Experimental results of particle physics demand an SU(4) symmetry that within the scope
of 4d physics cannot be deducted. Besides some exotics the elementary particles can be
classified according to their properties into families assigned to the multiplets of the SU(4)
group.

To explain this behavior the standard model assumes an inner structure of the elementary
particles build up by quarks. These fermions are generating the SU(4) symmetry. It is an ad
hoc assumption to describe the observations.

UR is able to justify the occurrence of this symmetry. It is a consequence of the SU(8)
symmetry of the 6d Dirac equation.
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The procedure given under 2. in section 3.1 shows that the resulting 4d spinor is rather
loosely connected to the starting 6d one. As the transformation relates not spinor to spinor
but components only, the SU(8) symmetry of the 6d spinor is not reflected by the 4d Dirac
equation and must be introduced by additional assumptions.

The SU(4) group used in the standard model does not describe the full symmetry of the
quarks. As they also have the SU(2) symmetry of the spin their full symmetry is given by
SU(4)⊗SU(2) (⊗ means the Kronecker product). This means that every element of the (4x4)
matrices describing SU(4) is replaced by a (2x2) matrix. Together a subset of the unitary
(8x8) matrices demanded by the SU(8) symmetry of the 6d Dirac equation is generated what
explains the ordering principle.[15]

3.3 SU(8) symmetry and flavour quantum numbers

Groups can be classified by representation-independent parameters. These can be determined
by the eigenvalues of Casimir operators. To define a group SU(n), the eigenvalues of n-1
Casimir operators are required. This means that the Casimir operators of the SU(8) group of
the 6d Dirac equation generate a seven dimensional multiplet structure.

To fix a position in the multiplets seven parameters must be defined. Taking spin as
one of these, associating the six remaining parameters with the six flavour quantum numbers
characterizing the six quarks and six leptons of the standard model seems to be likely.

That does not mean that the Casimir operators and the flavour quantum numbers are the
same, but they can be mapped on each other.

This allows the conclusion that besides the known six quarks and leptons there exist no
others.

It shows that the standard model by introducing quarks is transmitting the SU(8) symme-
try of the 6d Dirac equation to 4d. So UR justifies the ad hoc made assumptions.

Furthermore, the SU(8) structure provides space for the inclusion of the exotic particles
found for example by the Belle or BES collaborations in recent years and certainly also in the
future, particles which cannot be explained within the framework of the standard model. [16]

4 Fermions in an external field

As with the procedure for the introduction of Maxwell’s equations from the Lagrangian based
on the Klein-Gordon equation a deduction of a comprehensive spinor-equation should start
with the 6d Lagrangian without free boson field but including all Yang-Mills fields as pa-
rameters given by external fields. From this a 4d Lagrangian with Yang-Mills fields must be
deducted. Its equation of motion is a generalized Dirac equation.

The wave function – still to be found – solving it would be characterized by the seven
quantum numbers given by the Casimir operators. These discrete quantum numbers dictate
in which steps change by interaction is possible.

In the interpretation of fundamental physical structures as proposed by UR given in part
4 of this series this fact will prove to be crucial. It makes the SU(8) symmetry to a key for
understand 4d physics.
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