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Abstract 
Preservation of large volumes of documentary materials requires massive treatments to control 

fungal biodeterioration. Multi-inoculum in limited-dilution experiments is an economical format 

to provide informative data for fungal viability. Data gathering can be simpler and more precise, 

when the model for the assessment of viability depends on the number of colonized wells 

instead of the number of colonies, since the later vary in shape and definition. Probabilistic 

modeling for this kind of data led us to a truncated form of the Beta-exponential function, a 

variant from a family of generalized distributions, recently derived. We discuss performance 

from actual experimental data, and evaluate antifungal effect of biocide treatments in terms of 

viability.  

Introduction 
The quality and performance of statistical analysis depends on the chosen probability models 1–

4. Over-reliance on standard error, or the uncritical adherence to a limited set of well-known 

probability distributions, does not provide sufficient flexibility to account for all common 

datasets 5–8. A renewed interest in developing generalized probability distributions are 

conferring more flexibility in fitting real-life data, and has become an area of rapid advances in 

the last years 6,9,10. The extensions are derived by mathematically compounding two or more 

distributions, incorporating one or more parameters to the baseline model, transforming 

variables, or by elaborating the distribution of a function of their parameters (typically sum, 

ratio, or convolutions) 1,6,9,11–25.  

The Beta generalized family involve nearly all of the well-known models 20,23,26–32.  This 

generalized class of distributions can be defined by  

 𝐹(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏), 𝑥 > 0, 𝑎 > 0, 𝑏 > 0 ( 1 ) 

where, 𝐼𝑧(𝑎, 𝑏) = B(𝑧; 𝑎, 𝑏) B(𝑎, 𝑏)⁄  is the regularized incomplete beta function and 𝐺 is a 

cumulative distribution function (cdf). Recently, by taking 𝐺 as the cdf of an exponential 

distribution, Nadarajah & Kotz 29 obtained the beta-exponential density function 𝑓(𝑥) =

d𝐹(𝑥)/d𝑥, expressed in the form 
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𝑓(𝑥) =

𝜆

𝐵(𝑎, 𝑏)
exp(−𝑏𝜆𝑥) {1 − exp(−𝜆𝑥)}𝑎−1, ( 2 ) 

with the associated hazard rate function 𝜆(𝑥), and provided a comprehensive treatment of 

their properties. 

 

Mathematical generalizations like this family of functions, are often derived without a particular 

real-world question or data in mind. The resulting distributions compete a posteriori for the 

possibility of fitting into some application scenario.1,9,11–14,17–20,24,25,33–35. Despite being 

theoretically well supported, the pace of the practical introduction of these extensions are far 

behind the rate at which they are mathematically derived. In consequence, its use in life-

sciences applications remains scarce and underestimated.  

On another modeling avenue, insights about the nature of the data guide from the beginning 

the selection or construction of the distribution. The parameters enter by design, with a world-

domain interpretation, and so do the logical structures involved in the construction of the 

probability models. But often, the model starts to look intractable, and too early 

approximations prevent later arriving at well-studied extended distributions. The issue also 

arises with data of apparent simple nature.  

Species of fungi are well known for their cellulolytic and endoglucanase activities, and have 

been described as spoilers of paper and archival materials, impairing their quality and 

usefulness 36–38. Evaluation of biocidal effect is of relevance for the conservation of such 

materials. We undertake here the later modeling path to assess the viability of fungi (i.e., their 

ability to form progeny), with data from multiple inoculums in limited diluted experiments. The 

model is not selected here a priori from a tool-set of well-studied mathematical functions with 

built-in tuning parameters for shaping and data fitting. The viability model acquires the final 

structure after successive application of the rules of probability theory. Step by step, guided by 

the nature of the data, led us to a truncated form of the Beta-exponential function ( 2 ). The 

truncated variant, here derived, need re-normalization and impose border considerations not 

explicitly accounted in the comprehensive mathematical treatment of the original derivation 29. 

We delve into the logical structures of the model to account for the evidence and inferences 

expected from the experimental setup. Finally, we discuss performance in the estimation of 

viability of fungi spores, from actual data gathered by the experimental format from which the 

model was derived, and elaborate on the assessment of the impact and magnitude of the 

treatment effect.  
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Materials and Methods 

Data 
Data were taken from a study to evaluate the effect of irradiation in the viability of fungi 

spores, executed in the frame of an IAEA technical project for the development of treatments 

for paper conservation against biodeterioration 39–41.  

Definition of viability 
Criteria for determining microbial viability remain ambiguous 42, but there is agreement in 

define viability by the capacity of a microbial unit to proliferate 43,44. By viability we mean here 

the expected frequency of an average cell to form progeny or to multiply. This definition of 

viability, for example, can serve as a quantitative measure to assess the effect of a biocidal 

treatments. 

 

Figure 1: Experiment format delivering data for the model of viability. Left and right workflows are identical except that the 
sample of spores of the right is previously treated. 1) A suspension is prepared with an appropriate concentration of spores. The 
mean number of spores per inoculation 𝜆 is accurately estimated by counting spores in replicates samples. 2) Multiple wells are 
inoculated with replicate samples drawn from the solution (ex. 96 wells plate). 3) Inferences of viability is preformed from the 
collected data (c, N, and 𝜆). 4) The effect-size of the treatment is estimated from the untreated and treated data. 

Multiple-inoculums in limited diluted experiment 
An experimental format providing relevant data for the estimation of viability 𝜃, can be 

described as follows (Figure 1). N wells are inoculated with an average number 𝜆 of spores. This 
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average is accurately estimated from repeated samples drawn from a spore suspension, using a 

cell counting device. Samples of 10𝜇𝐿 inoculated in a well, with a given average of spores, are 

drawn from suspensions of spores at corresponding concentrations. Multiple inoculums 

experiments were performed in 96 and 24 wells plates. 

A well is not colonized if none of the inoculated (founder) spores produce progeny. The higher 

the viability, the more plausible the colonization of each well, and the more wells are expected 

to be colonized. The number 𝑐 of colonized wells is collected for viability estimation.  

To assess the effect of treatments, the viability of spores from untreated and treated samples 

are compared. The comparative experiment is sketched in Figure 1. Left and right workflows 

are identical except for that the sample of the right is previously treated. It is assumed that the 

experiments are conducted so that any differences in colonization found between untreated 

and treated inoculums can only be attributed to genuine effects of the treatment and not 

confounded with other factors. Viability, as here defined, does not consider possible cases of 

interaction. 

Software 
The computations of the models and plots have been performed with scripts written in 

Mathematica 45.  

Results and discussion 

Probabilistic modeling 

Inoculum colonization 

In an inoculation of 𝑛 spores with viability 𝜃, the chance that 𝑟 of them germinates follows a 

binomial distribution 

 Pr(𝑟|𝑛, 𝜃) = (
𝑛
𝑟

) 𝜃𝑟(1 − 𝜃)𝑛−𝑟 ( 3 ) 

The inoculated well will be colonized if one or more of the spores germinates. The probability of 

colonization ≡ 𝑟 > 0 is then 

 Pr(colonization|𝑛, 𝜃) = 1 − Pr(𝑟 = 0|𝑛, 𝜃) = 1 − (1 − 𝜃)𝑛 ( 4 ) 

From practical conveniences (time, resources, and labors), counting the number 𝑛 of spores at 

each inoculation is eluded in our experiments. Therefore, equation ( 4 ) cannot be directly used. 

All that the model demand to know, as accurately as possible, is the average number 𝜆 of 

spores inoculated per well, on the assumptions that the samples are draw from an inexhaustive 

suspension with a constant concentration of spore 𝜆. On this fundamental hypothesis, the 

uncertainty on the actual number 𝑛 of spores inoculated is ruled by a Poisson rule 46. 

 
Pr(𝑛|𝜆) = 𝑒−𝜆

𝜆𝑛

𝑛!
 ( 5 ) 
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The probability of colonization of a well, given 𝜆, can be obtained by averaging ( 4 ) over the 

possible actual number 𝑛 of spores distributed by ( 5 ), that is 

 Pr(colonization|𝜆, 𝜃) = ∑ Pr(colonization|𝑛, 𝜃) Pr(𝑛|𝜆)

𝑛

= 1 − 𝑒−𝜆𝜃 ( 6 ) 

Multiple inoculums 

Let 𝑤1, … , 𝑤𝑐 be the colonized wells from a total of 𝑁 wells, all inoculated with an average 

number 𝜆 of spores with viability 𝜃. The sampling probability of {𝑤𝑖} depends only on the 

number 𝑐 of wells that turned out colonized, and is ruled by the binomial distribution 

 Pr(𝑐|𝜃, 𝜆, 𝑁) = (1 − 𝑒−𝜆𝜃)
𝑐
(𝑒−𝜆𝜃)

𝑁−𝑐
 ( 7 ) 

When samples are drawn from various suspension with different concentrations corresponding 

to the average inoculations 𝜆1, … 𝜆𝑚, the sampling becomes 

 
Pr(𝑐1, … , 𝑐𝑚|𝜃, 𝜆1, … 𝜆𝑚, 𝑁1, … , 𝑁𝑚) = ∏ Pr(𝑐𝑖|𝜃, 𝜆𝑖, 𝑁𝑖)

𝑚

𝑖=1

= ∏(1 − 𝑒−𝜆𝑖𝜃)
𝑐𝑖

(𝑒−𝜆𝑖𝜃)
𝑁𝑖−𝑐𝑖

𝑚

𝑖=1

 

( 8 ) 

When 𝜆𝑖 = 𝜆, for 𝑖 = 1, … , 𝑚, equation ( 8 ) reduce to ( 7 ), where 𝑐 = ∑ 𝑐𝑖𝑖  and 𝑁 = ∑ 𝑁𝑖𝑖 . 

These expressions ( 7 ) and ( 8 ) as a function of the unknown 𝜃 (the likelihoods), carry all the 

relevant information contained in the data for the inference of viability. 

Inferences of viability 

By the Bayes theorem, the probability of 𝜃 given these data is  

 Pr(𝜃|𝑐1, … , 𝑐𝑚, 𝜆1, … 𝜆𝑚, 𝑁1, … , 𝑁𝑚)

=
Pr(𝜃) Pr(𝑐1, … , 𝑐𝑚|𝜃, 𝜆1, … 𝜆𝑚, 𝑁1, … , 𝑁𝑚)

Pr(𝑐|𝜆1, … 𝜆𝑚, 𝑁1, … , 𝑁𝑚)
 

( 9 ) 

where Pr(𝜃) = Pr(𝜃|𝜆1, … 𝜆𝑚, 𝑁1, … , 𝑁𝑚),  since by the experiment design, the number of 

spores per inoculums 𝜆𝑖, and the number of inoculated wells 𝑁𝑖 does not elicit information 

about the viability of the spores, without knowing the number of colonized wells. 

The denominator of ( 9 ) can be computed from 

 
Pr(𝑐1, … , 𝑐𝑚|𝜆1, … 𝜆𝑚, 𝑁1, … , 𝑁𝑚) = ∫ ∏ Pr(𝑐𝑖|𝜃, 𝜆𝑖, 𝑁𝑖)

𝑚

𝑖=1

1

0

d𝜃 ( 10 ) 

In the particular case when 𝜆𝑖 = 𝜆, for 𝑖 = 1, … , 𝑚 

 Pr(𝑐1, … , 𝑐𝑚|𝜆, 𝑁1, … , 𝑁𝑚) = 𝜆−1Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐) ( 11 ) 
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where 𝑐 = ∑ 𝑐𝑖𝑖  and 𝑁 = ∑ 𝑁𝑖𝑖 . Therefore, the exact expression for the probability distribution 

of viability ( 9 ) becomes 

 Pr(𝜃|𝑐1, … , 𝑐𝑚, 𝜆, 𝑁1, … , 𝑁𝑚)

=
𝜆

Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)
(1 − 𝑒−𝜆𝜃)

𝑐
(𝑒−𝜆𝜃)

𝑁−𝑐
, 

( 12 ) 

which is the Beta-exponential density ( 2 ), a member of the extended Beta family 29, except for 

the provision that symbol 𝜃 replace 𝑥, with the connotation that 0 < 𝜃 < 1, while 0 < 𝑥 in ( 2 

). Consequently, the normalization constant of this truncated form ( 12 ) is not the Euler beta 

but the incomplete beta 𝐵𝑧(𝑎, 𝑏) function, with 𝑧 = 1 − 𝑒−𝜆. The more general form is 

however ( 9 ), provided ( 8 ) and ( 10 ), which has more parameters than what can be found in 

the so far known beta extended families. 

Moment generating function 

The moment generating function defined by Mgf(𝑡) = ⟨exp(𝜃𝑡)⟩, for the case 𝜆𝑖 = 𝜆 is  

Mgf(𝑡) =
𝜆

Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)
∫(1 − 𝑒−𝜆𝜃)

𝑐
(𝑒−𝜆𝜃)

(𝑁−𝑐−𝑡/𝜆)
d𝜃

1

0

 

Which is an incomplete beta function, thus 

Mgf(𝑡) =
Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐 − 𝑡 𝜆⁄ )

Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)
, 𝑡 < 𝜆 

We find no analytical expression for the first and second moments of this function. Though 

there are codes to numerically compute the required derivatives 47, we choose to calculate the 

mean value of any function 𝑔(𝜃) of the viability by the numerical integration: 

 
⟨𝑔(𝜃)⟩ =

𝜆

Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)
∫ 𝑔(𝜃) (1 − 𝑒−𝜆𝜃)

𝑐
(𝑒−𝜆𝜃)

𝑁−𝑐
d𝜃

1

0

 ( 13 ) 

Of particular interest here are the first two moments of both, 𝑔(𝜃) = 𝜃 and 𝑔(𝜃) = log 𝜃, and 

their variance. 

Treated and untreated  

Parameters and data related to the treatment experiment will be denoted by an accent, i.e. 

𝜃′, 𝜆′, 𝑐′, 𝑁′. The setup experimental parameters are denoted 𝐷 = {𝜆, 𝑁} and 𝐷′ = {𝜆′, 𝑁′}. 

After the observed numbers of colonized wells 𝑐 and 𝑐′ of untreated and treated inoculums, the 

joint distribution of viabilities 𝜃 and 𝜃′ can be obtained from Bayes theorem. 

 
Pr(𝜃, 𝜃′|𝑐, 𝑐′, 𝐷, 𝐷′) = Pr(𝜃, 𝜃′|𝐷, 𝐷′)

Pr(𝑐, 𝑐′|𝜃, 𝜃′, 𝐷, 𝐷′)

Pr(𝑐, 𝑐′|𝐷, 𝐷′)
 ( 14 ) 
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Conditional on wildtype and treated data, the observations can be regarded as independent. 

Given the viabilities 𝜃 and 𝜃′, the colonized counts 𝑐 and 𝑐′ can be regarded as identically 

distributed and independent. 

 Pr(𝑐, 𝑐′|𝜃, 𝜃′, 𝐷, 𝐷′) = Pr(𝑐|𝜃, 𝐷) Pr(𝑐′|𝜃′, 𝐷′) ( 15 ) 

There is no reason to a priori consider logical dependency between 𝜃 and 𝜃′, then 

 Pr(𝜃, 𝜃′|𝐷, 𝐷′) = Pr(𝜃|𝐷) Pr(𝜃′|𝐷′) ( 16 ) 

In consequence, the denominator also factors into Pr(𝑐|𝐷) Pr(𝑐′|𝐷′), and by ( 11 ) yields 

 
Pr(𝑐, 𝑐′|𝐷, 𝐷′) =

1

𝜆
Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐) ×

1

𝜆′
Β

1−𝑒−𝜆′ (𝑐′ + 1, 𝑁′ − 𝑐′) ( 17 ) 

Substituting all these expressions in the joint distribution of viabilities ( 14 ), and using ( 11 ) and 

( 12 ) yields 

The modelling can further complicate, for example, when anticipating in advance that the 

treatment deteriorate viability. Being that the case, the prior join probability of untreated and 

treated viabilities cannot factorize like in ( 16 ). The less compromised way to introduce this 

prior knowledge is by keeping in Pr(𝜃′|𝜃, 𝐷, 𝐷′) the structure of Pr(𝜃′|𝐷′) in the range 𝜃′ ≤ 𝜃, 

and cero otherwise, that is 

 

Pr(𝜃′|𝜃, 𝐷, 𝐷′) =
(1 − 𝑒−𝜆′𝜃′

)
𝑐′

(𝑒−𝜆′𝜃′
)

𝑁′−𝑐′

𝜆′−1Β
1−𝑒−𝜆′𝜃(𝑐′ + 1, 𝑁′ − 𝑐′)

[𝜃′ ≤ 𝜃] ( 19 ) 

Notice the dependency on the viability 𝜃 of the untreated sample, introduced after 

normalization in the range 𝜃′ ≤ 𝜃 by the incomplete beta function in the denominator. This 

later case was not further elaborated in the present work. 

Treatment effect size 

The viability of the treated sample can be expressed in term of the wildtype sample as 𝜃′ =

𝑒𝛾𝜃. Thus, the ratio of viability in a log scale 𝛾 = log(𝜃′ 𝜃⁄ ), is a symmetric measure of the 

effect of the treatment. 

The expected effect size ⟨𝛾⟩ can be computed from ( 13 ), since ⟨𝛾⟩ = ⟨log 𝜃⟩ − ⟨log 𝜃′⟩, and 

the variance is equal to the sum of the variance of log 𝜃 and log 𝜃′, which can be also computed 

from ( 13 ). The probability density distribution of the effect 𝛾, given the data, is obtained by 

the double integral  

 Pr(𝜃, 𝜃′|𝑐, 𝑐′, 𝐷, 𝐷′) = Pr(𝜃|𝑐, 𝐷) Pr(𝜃′|𝑐′, 𝐷′)

=
(1 − 𝑒−𝜆𝜃)

𝑐
(𝑒−𝜆𝜃)

𝑁−𝑐

𝜆−1Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)
×

(1 − 𝑒−𝜆′𝜃′
)

𝑐′

(𝑒−𝜆′𝜃′
)

𝑁′−𝑐′

𝜆′−1Β
1−𝑒−𝜆′ (𝑐′ + 1, 𝑁′ − 𝑐′)

 
( 18 ) 
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Pr(𝛾|𝑐, 𝑐′, 𝐷, 𝐷′) = ∫ ∫ Pr(𝛾|𝜃, 𝜃′) Pr(𝜃, 𝜃′|𝑐, 𝑐′, 𝐷, 𝐷′)d𝜃′

1

0

1

0

d𝜃 

By the definition of the effect size 𝛾, the a priori density is Pr(𝛾|𝜃, 𝜃′) = 𝛿(𝛾 − log(𝜃′ 𝜃⁄ )), and 

from ( 16 ) the posterior density becomes 

∫ Pr(𝜃|𝑐, 𝐷) ∫ 𝛿(𝛾 − log 𝜃′ + log 𝜃)𝑒log 𝜃′
Pr(𝑒log 𝜃′

|𝑐′, 𝐷′)

0

−∞

1

0

d(log 𝜃′)d𝜃, 

which reduce to the single integral  

 
Pr(𝛾|𝑐, 𝑐′, 𝐷, 𝐷′) = 𝑒𝛾 ∫ 𝜃 Pr(𝜃|𝑐, 𝐷) Pr(𝑒𝛾𝜃|𝑐′, 𝐷′) [0 ≤ 𝜃𝑒𝛾 ≤ 1]

1

0

d𝜃 ( 20 ) 

The cumulative distribution of 𝛾 is computed by 

 

Pr(𝛾 < 𝛾𝑜|𝑐, 𝑐′, 𝐷, 𝐷′) = ∫ Pr(𝛾|𝑐, 𝑐′, 𝐷, 𝐷′) d𝛾

𝛾𝑜

0

 ( 21 ) 

Is there any effect? 

We proceed to assess if the inferences of the effect size are significant. The hypotheses 𝛾 < 0, 

𝛾 = 0 and 0 < 𝛾, corresponds to deterioration (biocide), no effect, or improvement 

(invigoration) of viability. The Bayes factor test is adopted to compare the null hypotheses 𝛾 =

0 versus the alternative hypothesis 𝛾 ≠ 0. We are not biased for either in advance, so we assign 

them equal prior probabilities. Any other choice lessens or strengthen the tolerance of decision 

on either hypothesis. 

 
BF(𝛾 = 0 vs. 𝛾 ≠ 0) =

Pr(𝑐, 𝑐′|𝛾 = 0, 𝐷, 𝐷′)

Pr(𝑐, 𝑐′|𝛾 ≠ 0, 𝐷, 𝐷′)
 ( 22 ) 

The numerator of ( 22 ) was already stablished by ( 10 ), since 𝛾 = 0 imply 𝜃 = 𝜃′. For the 

particular case 𝜆 = 𝜆′, it becomes 𝜆−1Β1−𝑒−𝜆(𝑐 + 𝑐′ + 1, 𝑁 + 𝑁′ − (𝑐 + 𝑐′)) by ( 11 ). The 

denominator of ( 22 ) is the product of incomplete beta functions, already stablished by ( 17 ). 

In its general case, the Bayes factor is expressed by 

 BF(𝛾 = 0 vs. 𝛾 ≠ 0|𝜆 ≠ 𝜆′)

= 𝜆
∫ Pr(𝑐|𝜃, 𝐷) Pr(𝑐′|𝜃, 𝐷′)

1

0
d𝜃

Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)Β
1−𝑒−𝜆′ (𝑐′ + 1, 𝑁′ − 𝑐′)

 
( 23 ) 

The particular case 𝜆 = 𝜆′, it can be expressed by the closer or more treatable form 
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BF(𝛾 = 0 vs. 𝛾 ≠ 0|𝜆) = 𝜆

Β1−𝑒−𝜆(𝑐 + 𝑐′ + 1, 𝑁 + 𝑁′ − 𝑐 − 𝑐′)

Β1−𝑒−𝜆(𝑐 + 1, 𝑁 − 𝑐)Β1−𝑒−𝜆(𝑐′ + 1, 𝑁′ − 𝑐′)
 ( 24 ) 

Minimum (maximum) effect 

The previous epigraph is suitable, for example, to ask if some environmental parameter is 

affecting in any degree a material. We can be interested in the hypothesis that a treatment 

produces an effect that is stronger than a given magnitude, with the addition of the 

uncertainty. For example, the viability of spores is reduced by 90% or more with probability 

Pr(𝛾 < log Δ | ⋯ ), computed by ( 21 ), where Δ = 𝜃′ 𝜃⁄ = 0.1. The hypothesis against lower 

viability can be expressed in terms of Bayes factor by  

 
BF(LD90) =

Pr(𝛾 < log Δ | ⋯ )

1 − Pr(𝛾 < log Δ | ⋯ )
 ( 25 ) 

Theoretical anticipations 

Accuracy and uncertainty 

The evidence provided by the number 𝑐 of colonized wells, out of 𝑁 = 11, is profiled in Figure 

2. The probability distribution of the viability 𝜃, i.e. Pr(𝜃|𝑐, 𝜆, 𝑁), is plotted for various 

parameters and data, in four hypothetical setups arranged by columns with distinct average 

number of spores per inoculation (𝜆 = 0.8, 1, 2 and 20).  

The case 𝜆 = 1 might be easier to grasp, since if exactly one spore is inoculated in a well, the 

chance of colonization ( 4 ) will be 𝜃, the parameter of interest, and the inference of 𝜃 would be 

ruled by a Beta distribution. However, 𝜆 is not the exact number but the average of spores 

inoculated per well, and by this experimental format it is quite difficult to inoculate exactly the 

same number of spores per well. Having inoculated one spore on average imply that some wells 

cannot colonize, not because the stochastic nature of the spore to yield progeny, but because 

the well contains no spore at all. The Beta distribution, having no provision for the chance of 

no-spore well, underestimate 𝜃, amounting all colonization failures to the viability of the spore. 

Further, since the uncertainty on the actual number of spores inoculated is not accounted in 

the Beta distribution model, the accurracy of their predictions are expected to be 

overoptimistic. The provision for the uncertainty on the actual number of spores inoculated is 

introduced by equation ( 6 ) into the model, leading by the rules of probability theory to the 

wider Beta-exponential distribution ( 12 ). These predicted issues are clearly exhibited in the 

column corresponding to 𝜆 = 1 of Figure 2, comparing the posterior distribution of 𝜃 of both 

distributions. The Beta distribution (dotted red profile) lag behind the Beta-exponential 

distribution (blue profile), and is also narrower. There is also the chance that a well be 

inoculated with more than one spore, increasing the chance of colonization. But the probability 

of no spore is 1.42 times the probability of more than one spore according to ( 5 ), supporting 

again the observed in the plots.  
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Weigh of the evidence 

Whether or not we are aware of the viability of the spores, the number of colonized wells will 

depend on the actual viability of the inoculated spores. Let then suppose that the unknown but 

actual viabilities of the spores in the four experiments are 𝜃 = 0.5, 0.4, 0.2, 0.02, respectively.  

These values have been chosen so that 𝜆 ×  𝜃 =  0.4 in each experiment, to simplify 

comparison (see columns heading in Figure 2). Consequently, the probability 1 − 𝑒−𝜆𝜃 of 

colonizing a well is also the same, 0.33, and the sampling probability  of colonizing 𝑐 of 𝑁 = 11 

wells is ruled by the same binomial distribution ( 7 ) in the four setup (green bargraph on the 

left of Figure 2). Therefore, the expected number of colonized wells is 𝑁(1 − 𝑒−𝜆𝜃) = 3.63, 

and the mode of ( 7 ) is 𝑐 = 3 (Figure 2).  

 

Figure 2: The extended beta exponential distribution of the viability 𝜃, equation ( 12 ), is profiled in blue for various parameters 
and data, in an experiment with 𝑁 = 11 wells. Dotted red profiles corresponds to the Beta distribution of 𝜃, with parameters 
𝑐 + 1 and 𝑁 − 𝑐 + 1.  Rows corresponds to the number 𝑐 of colonized wells. The left column shows in green the sampling 
probability of gathering 𝑐 colonized wells, were the unknown actual viability 𝜃 is indicated in green at the top of each column. At 
each plot, the mean ± standard deviation of 𝜃 is displayed at the top, according to the extended truncated beta exponential. 
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Vertical bars (gray) indicate 2 standard deviation from the mean (dashed line) of the distribution, and the putative viability at 
the top of the column is indicated with a vertical green bar in the plot. Red vertical line locates the mean of the beta distribution. 
Columns corresponds to distinct average number 𝜆 of spores per inoculation (indicated in the column head). 

Thus, in experiments of 𝑁 = 11 wells inoculated with 𝜆 = 1 spores per well on average, the 

most frequent outcome expected is 𝑐 = 3 colonized wells, when the (unknown) viability of the 

spores is 𝜃 = 0.4. Looking at the row panel (Figure 2) corresponding to the outcome 𝑐 = 3, the 

extended beta exponential distribution of 𝜃, conditioning on this outcome has mean 𝜃 =

0.41 ± 0.19 (blue dashed line), pretty close to the actual one, while the mean 0.3 (red line) of 

the beta distribution is markedly separated. So arise with the respetive mean 𝜃 of the other 

four 𝜃 in the row 𝑐 = 3 of Figure 2.  

Although all outcomes from 𝑐 = 0 to 𝑐 = 11 are stochastically plausible, the extreme one 

estimate mean 𝜃 farther than two standandard deviation from the actual 𝜃. However, these 

extreme cases are practically impossible, in the four setup. For exampe, the outcome 𝑐 = 8 are 

pretty unplausible, occurring with probability 0.007. The outcomes 𝑐 = 2,3,4,5 accounts for 

more than 80% chance, and all yields extended beta exponential distribution with mean of 𝜃 

within one standard deviation of the actual viability. 

Viability allowance 

The Beta distribution allot for high extreme viability, i.e. 𝜃 ≈ 1, only when all the wells are 

colonized, i.e. 𝑐 = 𝑁 (last row of Figure 2). The conditioning that each well contain exactly one 

spore precludes incomplete outcomes, i.e., 𝑐 < 𝑁, unless 𝜃 < 1. But because 𝜆 = 1 is the 

average spore per well, a single well have 37% chance to receive no spore, and in 11 wells 

there is more than 62% chance that four or more wells contain no spore. Those “empty” wells 

will not colonize even if the spores are 100% viable (i.e. 𝜃 = 1). Therefore, a realistic model 

should not rule out the 𝜃 ≈ 1 possibility.  

The allowance for 𝜃 ≈ 1 is rightly accounted by the Beta-exponential distribution in the 

truncated form, as can be seen by positive right tails in rows from 𝑐 = 5 to 𝑐 = 11 (Figure 2). 

This allowance is more acentuated when 𝜆 = 0.8, since more wells are expected to receive no 

spore. Even for 𝜆 = 2, there is allowance for that. The obvios case is 𝑐 = 𝑁, where no 

distribution can discard 𝜃 = 1 (last row of Figure 2). 

Shaping the distribution 

The parameter 𝑁 was given by experimental design, 𝜆 were measured, and the data 𝑐 is a 

discrete outcome, obtainable by counting colonized wells in the multiple inoculums 

experiment. The commonly used probability models can't accommodate the variety of shapes 

delivered by this extended function (Figure 2). Viability 𝜃 is our inferential target.  

Data analysis 

Inference of viability 

Data collected from the multiple inoculums’ experiments designed in these studies, are used to 

evaluate the statistical model for the inference of viability and treatment effect against 
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biodeterioration agents. Samples of 10𝜇𝐿 with an average 𝜆 of spores, were drawn from 

spores’ suspensions of Aspergillus niger with the corresponding concentrations, and inoculated 

in 96 and 24 wells plates. The outcomes and inferences are shown in Figure 3 for both, wildtype 

and treated samples. 

An average of 0.95, 1.9 and 3.8 wildtype spores were inoculated in 96 and 24 wells plates. An 

average of 420, 470 and 510 treated spores were inoculated in 96 well plates, as indicated in 

the left panel of Figure 3. Few wildtype spores (1 < 𝜆 < 4) were sufficient to colonize some 

wells out of 24, while about 500 are required for treated spores. This numbers alone accounts 

in favor of treatment efficacy, but there are aspects of the model's performance on real data, 

which merit a bit further discussion.   

A) wildtype 

 

 
B) treated (2 kGy) 

 

 
Figure 3: Parameters, outcomes, and inferences of multiple inoculums’ experiments performed for wildtype (A) and treated (B) 
samples of Aspergillus niger cultures. The viability 𝜃 and standard deviation 𝜎, as estimated from the model. The truncated beta 
exponential distribution of 𝜃 is profiled for each outcome at the right panel. 

The probability distributions of viability ( 12 ), profiled in the right panel of Figure 3, tightly 

overlap in both, wildtype and treated samples. Therefore, the inference are consistent, even for 

diffent number of inoculated spores. Each plot, however, show a seemingly outlier profile 

(yellow and green respectively). In these two particular cases, the inoculations exhausted the 

suspension, in the case of the treated sample, it fall short of 96 wells. This is a departure from 

the experimental assumptions. The modeling rely on the Poisson rule early in the derivations ( 5 
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), but it apply there on the assumption of inexhaustible suspensions. This non-compliance may 

affect all of the following, in particular, it may not lead to the truncated beta exponential 

distribution ( 12 ). Even though, this “outliers” did not performed so badly. The modeling based 

on fitting the data to a family of distributions are precluded from this type of analysis.   

A) 

 

colonized 
wells 

(wildtype c) 

 

   
B) 

 

colonized 
wells 

(wildtype c) 

 

Figure 4:  Tests for the hypothesis of no-effective vs effective treatment (𝛾 = 0 vs. 𝛾 ≠ 0). Each curve corresponds to a number 𝑐 
of colonized wells in the wildtype plate (color legend at the right), and the Bayes factor is plotted against the number 𝑐′ of 
colonized wells in the treated plate. A) Testing the effectiveness of the treatment by comparing untreated 𝜆 = 3.8 vs. treated 
𝜆′ = 470 samples in the experiments with 𝑁 = 24 and 𝑁′ = 96 wells, respectively. A vertical dashed line indicates the actual 
treatment outcome 𝑐′ = 34. B) Testing the effectiveness of the treatment by comparing treated 𝜆 = 470 vs. treated 𝜆′ = 510 
samples in the experiments with 96 inoculated wells. Vertical dashed lines indicate treatment outcomes 𝑐′ = 29,30,32,34,42. 
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Treatment comparison 

The effectiveness of the treatment is established by the model in terms of how much it reduces 

the viability of the wildtype spore population.  Some anticipations can be realized at first glance 

from the outcomes of our experiments, without requiring a model. But in general, the ratios 

𝑐 𝑁⁄  and 𝑐′ 𝑁′⁄  does not rightly indicate these directions and magnitudes. It depends as well on 

the average number of spores per inoculation in wildtype 𝜆 and treated 𝜆′ sample. The treated 

samples inoculations, Figure 3B, was performed with more than 100 times the number of 

spores inoculated from the wildtype sample Figure 3A. The biocidal effect of the treatment can 

be overwhelmingly established from these plots, since the support of 𝜃 and 𝜃′ do not overlap. 

We can see, how the model performs in terms of our definition of viability, comparing the 

hypothesis of no-effect versus effect, in terms of the Bayes factor test ( 23 ) and ( 24 ). Figure 4 

profiles the Bayes Factor, testing the hypothesis of no effect against effect of the treatment. 

Each curve corresponds to a fixed number 𝑐 of wildtype-colonized wells. With 𝑐 fixed, the curve 

is plotted along the Bayes factor computed for each number 𝑐′ of treated-colonized wells.   

In Figure 4A, 𝜆 = 3.8 wildtype spores were on average inoculated in 𝑁 = 24 wells, while 𝜆′ =

470 treated spores were on average inoculated in 𝑁′ = 96 wells. The Bayes factor for the 

outcome 𝑐 = 15 and 𝑐′ = 34 colonized wells, respectively, equal 1.6 × 10−28 (see the 

intersection of the dark blue curve with the vertical dashed line in Figure 4A).  

We now compare the treated sample experiments between them, as if the spores in each 

experiment were subjected to different treatments with similar competing effects. We know 

they are no different since all these inoculations are actually from spores subjected to the same 

2kGy treatment. Hence, we expect in every case a verdict in favor of the hypothesis of no 

effect. Figure 4B, compare treated λ = 470 vs. treated λ′ = 510 samples in the experiments 

with 96 inoculated wells. Vertical lines correspond to the “treated” sample outcomes 𝑐′ =

29,30,32,34,42. For the sake of clearness, only the curves 𝑐 = 29 and 𝑐 = 42 (magenta and 

yellow) are plotted, since the other curves of the actual outcomes are closely bounded between 

them. From 𝑐′ = 20 to 𝑐′ = 50,  all the Bayes factor traced between the curves 𝑐 = 29 and 𝑐 =

42 are well above one, indicating no evidence in support of treatment effect. 

Effect direction 

Once stablished the hypothesis that the treatment is effective, we need to know in which 

direction, biocide or invigorating, and quantitatively by how much. Bayes factor alone does not 

indicate the direction neither the magnitude of the effect, but something can be anticipated 

from the monotony of the curves in Figure 4. Bayes factor increase when wildtype and treated 

viability approach each other, i.e. when the treatment effect is smaller. Hence, since 𝑐 is 

constant along a curve, and Bayes factor increase with the number 𝑐′ of colonized wells, that 

means that by increasing treated viability, it gets closer to wildtype viability, thus the treatment 

is biocide. On the opposite, if Bayes factor decrease with the number 𝑐′ of colonized wells, that 

means that the treatment is invigorating. The curve in Figure 4A are all time increasing, which 

means that the treatment in this experiment is biocide. For comparable hypothesis, Figure 4B, 
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the monotony changes with the outcomes, which means that for similar treatments, the same 

experimental setup can resolve between biocide or invigorating.  

Effect magnitude 𝛾 

We chose a dataset of wildtype and treated samples with different number of inoculated wells 

𝑁 = 24 vs. 𝑁′ = 96, and different average of spores per wells 𝜆 = 3.8 and 𝜆′ = 470, 

respectively. Figure 5 plot the probability distribution of the effect ( 20 ) for the actual 

outcome 𝑐 = 15 and 𝑐′ = 34 of colonized wells, and for outcome combination of non and all 

colonized wells. Each plot can be identified by the number of colonized wells pair 𝑐, 𝑐′ as 

indicated in the top row and left column, respectively. 

Pr(𝜃| … ) 

𝜆
=

3
.8

,  
 𝑁

=
2

4
 

   
𝜆′ = 470,   𝑁′ = 96     

 

 

   
     

 

 

   
     

 

 

   
Figure 5: Inference of the magnitude of treatment efficacy. Red curve represents the probability distribution ( 20 ) of the efficacy 
𝛾 = 𝑙𝑛 𝜃′/𝜃, obtained from the number 𝑐′ of wells colonized by the treated samples with respect to the untreated ones 𝑐. Blue 
curve are the normal distributions with the same mean and standard deviation as the red one. In the untreated samples, a total 
of 𝑁 = 24 wells were inoculated with 3.8 spores on average. In treated samples, 𝑁′ = 96 wells were inoculated with 4.7 × 102 
spores on average. The respective probability distributions of viabilities are at the top and left margins coordinates. 

Figure 5 explore other hypothetical outcomes 𝑐 and 𝑐′, for 𝑁 = 24, 𝜆 = 3.8 and 𝑁′ = 96, λ =

470, including the extreme full colonization and the cero colonization. Suppose the outcome is 

𝑐 = 𝑁 and 𝑐′ = 0 colonized wells from each sample respectively. A dramatic treatment effect 

can be anticipated, since full colonization is obtained with only 3.8 wildtype spores per well, 
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while 470 treated spores per well were unable to colonize a single well in 96. Indeed, the 

probability distribution of the effect 𝜃 𝜃′⁄  is located between four and six order of magnitude, 

concentrated about 66 996. 

Perhaps, a provocative outcome is the no colonization 𝑐 = 𝑐′ = 0 for both wildtype and treated 

samples. Our first thinking did not anticipate relevant information favoring an effect from this 

outcome. However, the burden of the probability distribution of the effect 𝜃 𝜃′⁄  is located 

about 500, between 5 and 104, indicating a more probable biocide effect.  

A) 

 

B) 

 
Figure 6: The range 0 < 𝜃 < 0.00033 of the probability distribution of viability of the plots in Figure 5, given the outcomes 𝑐 =
𝑐′ = 0. 

We find an explanation by looking at the marginal probability distributions of the viability of 

wildtype and treated spores for these outcomes (Figure 6). The outcome 𝑐′ = 0 of 96 wells with 

470 treated spores on average, drastically concentrate the plausible range of 𝜃′ to the interval 

0 < θ < 0.00033, with a negligible probability of ~10−8 outside this range, practically ruling 

out this possibility (Figure 6B). However, the outcome 𝑐 = 0 of 24 wells of the wildtype spores 

does not convey such limited range for the viability (Figure 6A), allowing lot more possible 

combinations for the ratio 𝜃/𝜃′ favoring the biocide effect. Such kind of explanations were not 

immediately provided by our unaided intuition, but the model surface it for us. In cases that 

such explanation did not emerge after an exhaustive search, the primordial assumptions should 

be back revised, trying to identify cogent prior information not considered in the model. 

Table 1: Confidence of lethal dose 2kGy at various percentage 100𝛥, where 𝛥−1 = 𝜃/𝜃′, from the data 𝑐 = 15, 𝑁 = 24, 𝜆 = 3.8 
and 𝑐′ = 34, 𝑁′ = 96, 𝜆 = 470. 

2kGy Δ−1 Pr(𝜃 𝜃′⁄ > Δ−1) Bf(𝜃 𝜃′⁄ > Δ−1 𝑣𝑠.  𝜃 𝜃′⁄ < Δ−1) 
D%99 100 0.999 1132.81 

  D%99.5 200 0.869 6.614 
   D%99.67 300 0.441 0.788 
   D%99.75 400 0.139 0.162 
  D%99.8 500 0.034 0.035 

    

Lethal dose 

We are now interested in the hypothesis that a treatment produces an effect that is stronger 

than a given magnitude, say a dose that guarantees a reduction of the viability by 90%. We can 

take it for the lethal dose LD90 48, by quantifying the uncertainty with a probability, usually 

neglected. Inference of lethal dose from the wildtype data 𝑐 = 15, 𝑁 = 24, 𝜆 = 3.8 and 

treated data 𝑐′ = 34, 𝑁′ = 96, 𝜆 = 470, was computed with ( 21 ) and shown in Table 1, at 

various confidences. 
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Conclusions 
The truncated probabilistic model for the assessment of viability from colonized wells counts, 

here derived, is resolved at the spore level, and is numerically treatable. The resources required 

for this experimental format are economic and affordable to any labs. Data analysis also 

leverage information from extreme-boundary cases that are missed with some probability 

distribution approximations. The performance demonstrated, are suitable for the development 

of a methodology for antifungal treatments on massive documentary material of cultural 

heritage relevance.  
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