
Topological Theory of Hopf Bundle and Mass

Garry Goodwin
garry goodwin@hotmail.co.uk

August 7, 2024(Revised)

Abstract

Why a particle has the specific rest mass it does is an open ques-
tion. An alternative theory of mass is put forward. Rest mass is due
to discrepant topologies found at the intersection of a Hopf bundle
and 3-space. The rest masses of six lighter hyperons and electron are
derived as functions of the proton and neutron, reducing nine free pa-
rameters to two. The most significant outcome is the derivation of the
electron mass due to baryon mass splitting.
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In the Standard Model the Higgs field imparts mass to fundamental par-
ticles. In the crowd analogy the field acts like a throng impeding a celebrity
as they attempt to cross a room.[1] The slower the progress, the stronger the
interaction and the heavier the particle. If we dig a little bit deeper, particles
that exhibit internal Lie group symmetry at higher energy states gain mass
when spontaneous symmetry breaking couples with the Higgs field.[2, 3] The
caveat is the Higgs field interacts with quarks, leptons and some bosons, but
not photons; while the bulk of Hadron mass is due to quark confinement and
not the Higgs field. Unable to predict why a particle has the precise mass
that it does, the Standard Model leaves particle rest mass an open question.
An alternative theory of mass begins to address this problem by rethinking
how a particle resists a force. Mass is due to homotopic non-equivalence
between force and particle. The intersection of the particle and field is also
responsible for the entirety of a particle’s mass. This simplifying premise
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enables the calculation of values for six light hyperons and the electron as
functions of the proton and neutron masses.

The topological theory put forward considers a particle to be an S3 Hopf
bundle. The geometry is well understood.[4, 5, 6, 7] A Hopf bundle maps
a 3-sphere to a 2-sphere. The 3-sphere is the set of four dimensional points
S3. The 2-sphere is a two dimensional surface described by the set of three
dimensional points S2. A Hopf fibration continuously maps S3 to S2. This
is done with Hopf maps. A Hopf map (h : S3 → S2) is a surjective function
that maps a subset of S3 elements to a point in S2. An individual Hopf
map describes a circle (Hopf circle). Continuous mapping entails an infinite
number of maps for each point in S3; this requires an infinite bundle of circles
that in total connect each S2 point to every point in S3. The total space is
transitive.

A physical interpretation is added to this potted account of a Hopf bundle.
A ‘Hopf particle’, as we shall call it, is a 3-sphere that intersects an ambient
three dimensional manifold (3-space). In 3-space the Hopf particle appears
as a 2-sphere. A force external to the Hopf particle is a 3-space vector.
The location an external force contacts the Hopf particle has the topology
of a point in 3-space; this contrasts the bundle of Hopf circles that form the
surface of the 3-sphere at the same location. The topological discrepancy
raises the question of the homotopic non-equivalence of circle and point. The
problem may be pictured as a cone mapping. If we imagine the point is the
apex of the cone, unless its topology is punctured, the point force is unable
to pass to the base circle. In reverse, only by cutting may the circle deform
retract to a point. On this view, a particle with topology that deform retracts
to a point offers no resistance and is massless. In the case of Hopf particle and
external 3-pace force, resistance to change in location and speed is interpreted
as a manifestation of the force having to jump topologies. In other words,
particle mass results from a Hopf particle not breaking symmetry when acted
on by a 3-space force. With every location on the 2-sphere a bundle of
Hopf circles related to every point on the 3-sphere, and a total space that
is transitive, the totality of the 3-sphere is the measure of resistance to an
external force regardless of the magnitude of the 3-space force.

Five equations characterise Hopf particle rest mass. The first tells us
mass is determined by the size of the 3-sphere. For example, if the mass of
the proton is 938.272 MeV then r ≈ 3.622 MeV. I.E.
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M = 2π2r3. (1)

The volume of a 2-sphere is the space the Hopf particle occupies in the
ambient 3-space. This is the volume of an ordinary ball.

V =
2M

3π
=

4π

3
r3. (2)

At Eq. (2), r is the radius derived at Eq. (1). In the case of the proton
Vp ≈ 199.108 MeV; this is the volume measured in 3-space.

ρ =
M

V
=

3π

2
. (3)

Eq. (3) means a Hopf particle is a hyper-dense ball in 3-space. The excess
mass, here called ‘hypermass’, is indirect evidence of an extra dimension.
Hypermass (H) is the difference between mass and volume.

H = M − V. (4)

Hopf particle mass has the Hopf/hypermass signature (H-signature):

M = (H)(
ρ

ρ− 1
). (5)

H-signatures found in the mass data suggest lighter hyperons are Hopf
particles. For the initial three input values the 2024 CODATA recommended
values are used while ignoring the standard deviation.[8]

Mp = 938.272 089 43 MeV/c2

Mn = 939.565 421 94 MeV/c2

Me = 0.5109 998 959 069 MeV/c2
(6)
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For instance, the Σ rest masses each have an H-signature that is a function
of the Mp and Mn values.

MΣ+ = (2Mp −Mn)(
ρ

ρ− 1
) ≈ 1189.3712. (7)

MΣ0 = (Mn)(
ρ

ρ− 1
) ≈ 1192.6546. (8)

MΣ− = (4Mn − 3Mp)(
ρ

ρ− 1
) ≈ 1197.5797. (9)

All three derived values are close to the observed masses. The Parti-
cle Data Group (PDG) fit for MΣ+ is 1189.37 ±0.07.[9] While the PDG fit
for MΣ0 is 1192.642 ±0.024, Eq. (8) is particularly close to Wang 1192.65
±0.020.[10] Eq. (9), however, is over four standard deviations shy of the
PDG value (1197.449 ±0.030). The present PDG fit for MΣ− draws on
three results. Schmidt (1197.43) and Gurev (1197.417) are too low to be the
value derived here, though Eq. (9) is within one standard deviation of Gall
(1197.532 ±0.057).[11, 12, 13]

The H-signatures for the Ξ pair introduce a complication that provides a
way to check whether Eqs. (8, 9) are reliable.

MΞ0 = (MΣ0)(
ρ

ρ− 1
)− Vp ≈ 1314.8104. (10)

(MΣ−)(
ρ

ρ− 1
)− Vp ≈ 1321.0622. (11)

Eq. (10) is within one standard deviation of the PDG fit and is close to
Fanti (1314.82 ±0.06)[14], but a problem looms. When the basic pattern of
Eq. (10) is repeated at Eq. (11) the result 1321.0622 is over nine standard
deviations adrift of the PDG fit for MΞ− . The present PDG recommended
value 1321.71 Mev draws on a large 1992-1995 data sample [15] making a
future nine standard deviation downward adjustment unlikely. If MΣ− is
indeed close to 1321.71, a fudge ≈ 0.511 is needed. I.E.
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MΞ− = (MΣ− +Me)(
ρ

ρ− 1
)− Vp ≈ 1321.7109. (12)

At face value the extra Me weighting appears ad hoc, but there is a firm
reason for thinking otherwise. First, we give the formula for the Ω− (Omega)
mass.

MΩ− =


3MΞ0 + 2MΞ−
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ρ

ρ− 1


≈ 1672.4824. (13)

From Eq (13), VΩ = 354.9118 using Eqs. (1, 2). The next formula is
evidence the Me weighting is not ad hoc.


(MΣ0)


MΞ− −MΞ0

MΣ− −MΣ0


−MΞ0 − VΩ−


ρ− 1

ρ


(Me) ≈ 0.511. (14)

Eq. (14) gives a value ≈ 0.511 regardless of the unit of mass used.
When the three input values are Me = 1,Mp = 1836.152 673 426,Mn =
1838.683 662 (CODATA 2024) it is particularly obvious 0.511 is not an arte-
fact. Nonetheless, while the final number may be denominated in any system
of units, the resemblance to Me in MeV is puzzling. It is certainly wrong
to suggest nature privileges an arbitrary system of units. However, given it
takes only a small adjustment within one standard deviation to Mn for the
Eq. (14) value to converge on the CODATA 2024 recommended value for Me

in MeV, it is unlikely the resemblance is a coincidence. Importantly, while
the final value ≈ 0.511 depends on the input value used for Me, Eq (14)
allows the numerical value for Me to be calibrated without referencing the
CODATA value. On this condition Me is no longer a free parameter. For
instance, using the values for Mp and Mn introduced at Eq. (6), Me = Eq.
(14) when Me ≈ 0.510 999 021. Thus, given it is accepted Eq. (14) ∝ Me

in MeV, we can say the number of input values is reduced from three to two,
with Me a complicated function of Eq. (14).

It is also worth noting that if the CODATA and PDG 2024 rest mass
values in MeV are used as inputs at Eq. (14) the result is ≈ 0.55. Topological
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theory predicts future adjustments to the observed rest masses will see Eq.
(14) converge on a number closer to 0.511.

Admittedly, the pattern of mass splitting seen in Eqs. (7, 8, 9, 10, 11,
12, 13) lacks a detailed theory to explain why we might expect 0.511 at Eq.
(14). Looking at this from another direction, Eq. (14) also hints the mass
of the electron is due to the relationship between baryonic matter. These
questions are left open for the time being. Nonetheless, the equations this
paper set forth allow mass values for Σ+,Σ0,Σ−,Ξ0,Ξ−,Ω− and the electron
to be derived as functions of p and n. Nine free parameters are thereby
reduced to two.
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