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Abstract

Information fusion is an important topic in scientific research. Soft likeli-

hood function is a common method of fusing evidence from multiple sources.

However, when the combined evidence contains equally important decision

information, the fusion results obtained using existing methods do not reflect

the attitudinal characteristics of decision makers. To address this problem,

a novel generalised soft likelihood function is developed in this paper. First,

a new notion of decision maker (DM) pair is defined, which is used to char-

acterise the outcome of the decision as well as the reliability of the evidence.

Then, a series of algorithms for correcting the initial evidence set data are

formulated. Eventually, a generic soft likelihood function for fusing com-

patible evidence information is proposed. Numerical examples are used to

illustrate the effectiveness of the proposed methodology.
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1. Introduction

In the field of information fusion, measurement of uncertain information

and processing of uncertain information are two crucial issues [1]. Like many

tools for dealing with uncertain information, such as fuzzy sets [2, 3, 4], Z

numbers [5, 6, 7, 8], D numbers [9], evidence theory [10, 11, 12, 13, 14],

evidential reasoning [15], R numbers [16], entropy-based approaches [17, 18],

and quantum-based approaches [19, 20, 21], likelihood function is also an

essential way of dealing with uncertain information by combining multiple

compatible pieces of evidence.

It is well known that the initial likelihood function is the product of

multiple probabilities. When there are probabilistic events in the evidence

set that are mutually exclusive with other propositions, using the likelihood

function to fuse this data information can produce results that are counter-

intuitive to human intuition [22]. Therefore, to overcome this problem, Yager

et al. [22] initially developed a novel algorithmic model in 2017, referred to as

the soft likelihood function. Compared to the initial likelihood function, this

soft likelihood function uses ordered weighted averaging (OWA) aggregation

[23, 24] to assign weights to the different likelihood function terms, which

allows the fusion of evidence information to remove the influence of conflicting

evidence. Moreover, as the OWA weights take into account the different

attitudinal characteristics of the decision makers, this also makes the soft

likelihood function more flexible when combining information from multiple
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sources of evidence. With these advantages, the soft likelihood function

proposed by Yager et al. has been extensively studied by many scholars in

different fields in recent years. In general, these studies can be distinguished

into two main categories, i.e., extending this soft likelihood function in other

domains of knowledge, and compensating for the shortcomings of this soft

likelihood function.

For instance, in the first group, Jiang and Hu [25] explored the value

of the soft likelihood function in combined belief structures based on the

context of Dempster-Shafer belief structures [26, 27]. Fei [28] discussed the

practical application of this soft likelihood function to interval-valued fuzzy

decision making. Based on the background of evidence theory and the soft

likelihood function, Fei et al. [29], and Li and Fei [30] respectively proposed

a new rule for combining evidential information in evidence theory. Fei et

al. [31, 32] also studied the soft likelihood function for decision making in

intuitionistic fuzzy and pythagorean fuzzy environments. The role of the soft

likelihood function to uncertain information processing based on D numbers

and Z numbers are investigated in our previous work [33, 34]. In addition,

based on the soft likelihood function, a novel multi-sensor fusion algorithm

is designed, and its application in target recognition systems is examined by

the author [35]. In the second group, by drawing inspiration from the model

proposed by Yager et al. Song and Deng [36] proposed a new soft likelihood

function based on the power OWA (POWA) operator [37, 38]. Recently,

the author in [39] discovered that the method proposed by Song and Deng

did not express the optimism of decision makers well, so they revised the

method from a theoretical perspective and proposed a new soft likelihood
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function. In terms of the development of the soft likelihood function, these

aforementioned studies have greatly filled in the development of the theory

of the soft likelihood function and can be regarded as a driving force for the

theory to move towards practice. Note that this paper is an improvement of

the algorithm of the soft likelihood function itself, and thus we focus on the

study of the second class of strategies.

By reviewing the existing studies on soft likelihood functions, we have

discovered that weights in soft likelihood functions are assigned to the like-

lihood term of each piece of evidence. However, when there is evidence of

equal probability in the evidence set, it is clear that the existing weighting

approach is not reasonable. This is because intuitively, evidence of the same

probability has equal importance, which means that they should have the

same priority. Moreover, we are aware that the above problem can create

the issue that the fusion results of soft likelihood functions do not reflect the

preferences of decision makers. Therefore, the goal of this paper is to find a

general soft likelihood function that can overcome the above-mentioned draw-

backs. In summary, the main contributions of this paper are summarised as

follows. (1) Firstly, a new concept of a decision maker (DM) pair is defined,

which is used to characterise the outcome of the decision and the reliability

of the evidence. (2) Then, based on the decision pair, a series of algorithms

for correcting the initial evidence set data are formulated. (3) Ultimately, a

generic soft likelihood function for fusing compatible evidence information is

proposed. (4) In addition, experiments show that the proposed method can

better reflect the relevance of decision preferences and fusion outcomes than

existing methods.
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The organizational structure of this paper is as follows. Section 2 in-

troduces some background information for this study. Section 3 reviews

the existing research on soft likelihood functions. Section 4 presents a new

generalised soft likelihood function. Section 5 illustrates the generality and

superiority of the proposed method by comparison. Finally, a conclusion of

this paper in Section 6.

2. Preliminaries

In this section, we review some basic concepts, such as likelihood function,

and some aggregation type operators.

2.1. Likelihood function [22]

The likelihood function is of great value in the evaluation of evidence,

allowing us to make further use of limited resources and thus focus our at-

tention on potential objects with greater likelihood. In a criminal justice case,

the more likely a suspect is, the more willing the police will be to investigate

that person.

Definition 1. For a given object Vτ , assume that evidence support is

collected from ϑ independent sources, denoted as Pτκ. Then the initial like-

lihood function is the product of these compatible probabilities, defined by

Lτ =
ϑ∏
κ=1

Pτκ (1)

Definition 2. Let πτ (κ) be the index of the κth maximum compatible

probability associated with the candidate Cτ such that Prodτ (q) is the prod-

uct of the qth maximum probability, then the likelihood function is defined
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by

Prodτ (q) =

q∏
κ=1

pτπτ (κ) (2)

2.2. Ordered weighted averaging (OWA) operator [23, 24]

Since its introduction by Yager [23], the OWA aggregation operator has

achieved many practical applications to date, such as data mining [40, 41],

decision making [42, 43], information fusion [22, 44], etc. A brief introduction

to this operator is defined as follows.

Definition 3. Let an OWA aggregation operator with dimension N sat-

isfy a mapping: <n → <. It has an associated N dimensional vector, ex-

pressed as

~W =
[
w1 · · · wN

]T
(3)

such that
N∑
i=1

wi = 1; 0 ≤ wi ≤ 1,∀i = 1, ..., N (4)

in which

OWA(a1, · · · , aN) =
N∑
q=1

wqvq (5)

and vq is the qth largest of the ax (x = 1, · · · , N).

In the above equations, ~W represents the OWA weighting vector, and its

component wq are called the OWA weights. If let π be an index function and

πx be the index of xth largest argument value, then the OWA operator can

be denoted by

OWA(a1, ..., an) =
n∑
x=1

wxaπx (6)

In particular, a functional method that characterizes the attitude of the
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decision makers is defined to obtain the OWA weights, denoted as

wx = (
x

N
)
1−α
α − (

x− 1

N
)
1−α
α (7)

in which 0 ≤ α ≤ 1. α is used as a parameter representing attitude pref-

erence. The larger the α, the more optimistic. Normally, α is taken as

0.1, ..., 1.

2.3. Power ordered weighted averaging (POWA) operator [37, 38]

Since the OWA weights depend only on the independent variables, and

there is no link between the candidate variables. To overcome this issue, by

introducing the idea of support functions in the power average (PA) opera-

tor, Yager [37] designed a unique power OWA (called the POWA) operator

defined as follows.

Definition 4. Let F be a basic unitinterval monotonic (BUM) function,

then a POWA operator can be defined by

POWAF(c1, ..., cn) =
N∑
q=1

vqcindex(q) (8)

in which

vq = F
(
Uq
TI

)
− F

(
Uq−1
TI

)
(9)

Uq =
N∑
q=1

Iindex(q) (10)

Iindex(q) = 1 + L(cindex(q)) (11)
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L(cindex(q)) =
N∑
p=1

Sup(cindex(q), cindex(p)) (12)

In the above formulas, Uq−1 is set equal to 0. Sup(·) function represents

the support that cq get from cp, and it contains the following properties:

- Sup(a, b) ∈ [0, 1]

- Sup(a, b) = Sup(b, a)

- Sup(a, b) ≥ Sup(x, y), if and only if |a− b| < |x− y|

According to the above, and then the POWA weights w
′
j are defined as

w
′

j =
Uj
TI
− Uj−1

TI
(13)

in which

Ui =
i∑

j=1

Ii (14)

with

Ii = wj

(
1 +

n∑
j=1,j 6=i

wjSup(ai, aj)

)
(15)

TI =
n∑
i=1

wj

(
1 +

n∑
j=1,j 6=i

wjSup(ai, aj)

)
(16)

In the above formulas, wj represents the OWA weights.

3. Existing soft likelihood functions

It is well known that the initial likelihood function can produce counter-

intuitive results when combining conflicting compatible evidence. Thus, soft

likelihood function was created precisely for this problem. In this section,
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by surveying the literature, we review the existing research on algorithms

for soft likelihood functions per se. Broadly speaking, the existing research

on soft likelihood functions can be distinguished into two main categories in

the following subsections, namely, the soft likelihood function based on OWA

operators and the soft likelihood function based on OWA operators.

3.1. Soft likelihood function based on OWA operator [22]

Initially, Yager et al. [22] suggested a new soft likelihood function by as-

signing OWA weights to each product term in the likelihood function, defined

as follows.

Definition 5. In connection with the OWA weights, the soft likelihood

function is formally defined as

LOWA
i,ω =

q∑
j=1

wjProdi(j) (17)

where wj indicates the OWA weights and Prodi(j) represents the likelihood

function values.

Next, Yager et al. [22] proposed a way to compute a reliable soft likeli-

hood associated with each pij by considering the product of the probabilities

associated with candidate events xi and the normalized reliability.

Definition 6. For each possible event xi, its normalized reliability rij is

calculated by

rij =
Rij

TRi

(18)

where TRi represents the total reliability associated with xi, i.e., TRi =∑q
j=1Rij. For each xi, then

∑q
j=1 rij = 1.
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Considering the index function σi, σi(k) is the kth largest index of these

products. piσi(k)×riσi(k) is the kth largest product of these p×r products. For

the xi, the ordering in the evidence is based on the product of the evidence’s

compatibility probability and the reliability of evidence. Therefore, since the

index function, the likelihood function is newly expressed by

Prodri (j) =

j∏
k=1

piσi(k) (19)

and Sij is denoted as

Sij =

j∑
k=1

riσi(k) (20)

in which Sij is the sum of the normalized reliability associated with the j

largest p× r products of the candidate xi.

If let f(·) represent a weight generation function for implementing a soft

likelihood function, the OWA weights of j = 1 to q associated with xi is

denoted by

wij = f(Sij)− f(Si(j−1)) (21)

Further, considering f(x) = xD with D = (1− α)/(α), where α is expressed

as optimism degree for decision makers. Finally, the weights of the reliable

soft likelihood function are defined as

wij = (Sij)
1−α
α − (Si(j−1))

1−α
α (22)

Using the above weights, finally, the reliable soft likelihood function value of
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xi can be obtained by

Lri,α =

q∑
j=1

((
Sij)

1−α
α

)
−
(
Si(j−1))

1−α
α

))
Prodri (j) (23)

In addition, Tian et al. [33, 34] recently extended the Yager et al.’s soft

likelihood function based on OWA operator to the domain of Z numbers and

D numbers to deal with uncertainty information characterized by knowledge

of different frameworks.

Remarks: As the methods proposed in this paper focus on the shortcom-

ings of existing soft likelihood function algorithms themselves, the extensions

mentioned above are not the focus of our discussion. Here we only briefly list

the work they have done; for more information please refer to Refs. [33, 34].

3.2. Soft likelihood function based on POWA operator [36, 39]

Following Yager et al.’s approach of assigning weights based on the OWA

operator, Song and Deng [36] subsequently proposed a soft likelihood function

based on the POWA operator. As described in the previous section, the

POWA operator, as an improvement of the OWA operator, better takes into

account the correlation between the probabilities of evidence. However, the

author in [39] recently found that the method proposed by song et al. does

not reflect the attitudinal characteristics of decision makers. Therefore, to

address this problem, they developed a modified soft likelihood function,

defined as follows.

Definition 7. With the POWA weights, this soft likelihood function is
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defined as

LPOWA
i,ω′ =

p∑
t=1

w
′

tProdi(t) (24)

where w
′
t indicates the OWA weights and Prodi(t) represents the likelihood

function values.

4. Proposed a generalized soft likelihood function

Based on the background knowledge in the previous two sections, it is

clear that the essence of the soft likelihood function is actually to assign dif-

ferent weights to the product terms obtained from each likelihood function

to solve the problem of conflicting data fusion. Yet when the same probabil-

ities occur in a set of compatible evidence sets, the existing soft likelihood

function assigns different weights to them. Clearly, it is not reasonable to

assign the same weights in this case, as evidence with the same probability of

support is intuitively of ”equal importance”, i.e. equal priority. We recognise

that these existing weight allocation methods may result in a final fusion that

does not reflect the level of decision makers’ preferences at different levels of

positivity. Furthermore, let us note that the phenomenon of ”equally impor-

tant probabilistic information” in the evidence set is a common occurrence in

real-world data fusion processes. Thus, our motivation here is to find a way

to cleverly handle this data information prior to fusion using a soft likelihood

function to better represent the decision maker’s level of preference.

In this section, we first define a novel representation of decision informa-

tion, which we call the decision maker (DM) pair, and which is seen as a

”container” that takes into account the decision maker’s decision informa-

tion as well as its own reliability. As ”equal” evidence emerges from the
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Figure 1: The hierarchical flow chart of the proposed negation method.

fused information, it is assimilated by the DM pair into an integrated body

of evidence, ultimately forming a new evidence set. The reliability of the

evidence information itself is then imported by means of a defined reliability

algorithm. Finally the evidence information from multiple sources is fused

through the proposed new likelihood function model. The flow chart of the

proposed generalized algorithm is shown in Fig. 1.

Definition 8. For the jth decision maker (DM), let < vij, rij > denote

the DM pair associated with him. Where vij represents the decision result

of the DM, and rij represents the reliability of the DM, i.e., the ability of

the expert to provide a correct assessment or solution to a given problem

domain. Then, suppose a suspect xi is considered, and its support degree
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compatible with n evidence sources is defined by

E
′
=

< vi1, ri1 >︸ ︷︷ ︸
DM−1

, ..., < vin, rin >︸ ︷︷ ︸
DM−n

 , 0 ≤ rij ≤ 1 (25)

where, the ordering of < vij, rij > depends on the first variable vij.

Next, we consider the representation of compatible evidence in a special

case. Assume there are q = n sources of evidence. Consider a suspect xi,

whose probability of being compatible with the n sources of evidence is E
′
.

If pi1 = · · · = piq (q ≤ n) in E
′
, then the compatible evidence set is represent

as E. That is

E
′
=

< pi1, ri1 >︸ ︷︷ ︸
DM−1

, < pi2, ri2 >︸ ︷︷ ︸
DM−2

, ..., < pin, rin >︸ ︷︷ ︸
DM−n

 (26)

⇓

E =

 < p, r >︸ ︷︷ ︸
DM−1 and ··· and DM−q

, ..., < pin, rin >︸ ︷︷ ︸
DM−n

 (27)

in which p =
∑q

j=1 pij/q and r =
∑q

j=1 rij/q.

Combining the index function αi, the likelihood function is defined as

follows

Prodi(j)
′
=

j∏
k=1

piαi(k) (28)

where the sort is determined by pi in < pi, ri >, αi(k) is the kth largest

index in the product of these pi, and the ordering is induced by αi(k). Here

Prodi(j)
′

represents the product of the first j ordered probabilities.
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Then, by the following formula, we calculate the normalized reliability of

each DM in the q evidence sources

µij =
rij
ri

(29)

where ri represents the sum of the reliability associated with xi, i.e., ri =∑q
j=1 rij. We can see that for xi, there is

∑q
j=1 µij = 1.

We further let βij is the sum of the normalized reliabilities associated

with the j largest p× µ (piαi(k) × µiαi(k)) products for candidate xi, which is

defined as follows

βij =

j∑
k=1

µiαi(k) (30)

In particular, if we consider the weight of the f(x) = xD function to

generate the soft likelihood function, then we have

wij = (βij)
1−γ
γ − (βi(j−1))

1−γ
γ (31)

where, the degree of optimsim is γ and D = (1− γ)/γ.

Finally, combined with the weight wij, the soft likelihood function is

expressed as follows

L̃i,γ =

q∑
j=1

(
(βij)

1−γ
γ − (βi(j−1))

1−γ
γ

)
Prodi(j)

′
(32)

5. Numerical comparisons

Usually, in a soft likelihood function, if the degree of optimism is more

correlated with the soft likelihood function value, it indicates that this soft
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likelihood is more reasonable [22, 39]. That is, the role of decision preferences

in this case is well captured by the results of the fusion of information from the

data. In this section, we shall demonstrate the computational process of the

proposed method using some numerical examples, and show the superiority

of the method by comparing it with the existing soft likelihood function in

each different case.

Remarks: Examples 1 and 2 are used to indicate the usability of the

proposed method. Where Example 1 is designed in the context that the initial

evidence set does not contain evidence of equal probability and does not

consider the reliability of the decision maker. Example 2 is designed under the

condition that the initial evidence set does not contain evidence of the same

probability and the reliability of the decision maker is considered. Examples

3 and 4 are used to point out the superiority of the proposed method. Where

Example 3 is designed in the context that the initial evidence set contains

evidence of the same probability and contains conflicting evidence in this

evidence set. Example 4 is designed under the condition that the initial

evidence set contains evidence of the same probability and that this evidence

set does not contain conflicting evidence. Furthermore, as the soft likelihood

function proposed by the author [39] (denoted in the figure as mi et al.) does

not take into account the reliability of the evidence sources, this part is not

discussed in the examples shown below.
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5.1. Example 1 (without considering reliability)

Assume we have q = 5 sources of evidence. Consider a suspect xi whose

probability of compatibility with the five sources of evidence is

E
′
= {pi1 = 0.5, pi2 = 1, pi3 = 0.3, pi4 = 0.8, pi5 = 0.7}

5.1.1. Results of the proposed soft likelihood function

We simply recall that in the proposed method, the weight is expressed

as wij = (βij)
(1−γ)/γ − (βi(j−1))

(1−γ)/γ, and Prodi(j)
′

=
∏j

k=1 piαi(k). Since

the reliability of the decision maker is not considered, in other words, the

reliability of the DM is equally important. In this case, we take ri1 = · · · =

ri5 = δ (0 ≤ δ ≤ 1). Then, the compatible evidence is expressed as

E =

< 0.5, δ >︸ ︷︷ ︸
DM−1

, < 1, δ >︸ ︷︷ ︸
DM−2

, < 0.3, δ >︸ ︷︷ ︸
DM−3

, < 0.8, δ >︸ ︷︷ ︸
DM−4

, < 0.7, δ >︸ ︷︷ ︸
DM−5


The normalized reliability of each of the five evidence sources is expressed as

follows

µij =
rij
ri

=
δ

5δ
= 0.2

Then, we calculate the value of pij × µij (p × µ), and the results are shown

in Table 1.
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Table 1: The probability-reliability products in Example 1.

j rij Probability (pij) Reliability (µij) pij × µij Index order (αi)

1 δ 0.5 0.2 0.1 4

2 δ 1 0.2 0.2 1

3 δ 0.3 0.2 0.06 5

4 δ 0.8 0.2 0.16 2

5 δ 0.7 0.2 0.14 3

As we can see from Table 1, using the index function αi, the order of

probability is expressed as αi(1) = 2, αi(2) = 4, αi(3) = 5, αi(4) = 1, αi(5) =

3. Then according to the index value, we calculate Prodi(j)
′

=
∏j

k=1 piαi(k),

which can be expressed as Prodi(j)
′
= Prodi(j−1)

′
piαi(k), and the calculation

results are shown in Table 2.

Table 2: The probability products in Example 1.

Ordered probability Prodi(j)
′

piαi(1) = pi2 = 1 Prodi(1)
′

= 1

piαi(2) = pi4 = 0.8 Prodi(2)
′

= 1× 0.8 = 0.8

piαi(3) = pi5 = 0.7 Prodi(3)
′

= 0.8× 0.7 = 0.56

piαi(4) = pi1 = 0.5 Prodi(4)
′

= 0.56× 0.5 = 0.28

piαi(5) = pi3 = 0.3 Prodi(5)
′

= 0.28× 0.3 = 0.084

Then, ordering the normalized reliabilities based on the index αi, we

can calculate the sum of the normalization probabilities, and the results are

shown in Table 3.

Table 3: The sum of the probabilities of normalized reliability in Example 1.

j 1 2 3 4 5

µiαi(j) 0.5 1 0.3 0.8 0.7

βij 0.2 0.2 0.2 0.2 0.2
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Next, we show the procedure for computing the values of the proposed soft

likelihood function under different preferences. In particular, taking γ = 0.5

as an example and using Eq. (32), we can obtain the results as shown in

Table 4.

Table 4: The soft likelihood function under γ = 0.5 in Example 1.

j βi(j) βi(j−1) wij Prodi(j)
′

wijProdi(j)
′

1 0.2 0 0.2 1 0.2

2 0.4 0.2 0.2 0.8 0.16

3 0.6 0.4 0.2 0.56 0.112

4 0.8 0.6 0.2 0.28 0.056

5 1 0.8 0.2 0.084 0.0168

From Table 4, we can see that
∑

j wij = 1. In this case where γ = 0.5

the soft likelihood value is 0.5448. Further, we consider the soft likelihood

function values under γ = 0.1, ..., 1, and the results are shown in Table 5.

Table 5: The values of the proposed soft likelihood function under different levels of

optimism in Example 1.

Function value
Degree of optimism

γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

L̃i,γ 0.1132 0.2070 0.3184 0.4330 0.5448 0.6508 0.7495 0.8404 0.9238 1.0000

5.1.2. Comparisons - without considering reliability

We review the soft likelihood function based on OWA operator proposed

by Yager et al. as Li,α =
∑5

j=1

(
( j
5
)(1−α)/α − ( j−1

5
)(1−α)/α

)∏j
k=1 piλi(k). Using

the index function λi(k), the order of probability is expressed as λi(1) =

2, λi(2) = 4, λi(3) = 5, λi(4) = 1, λi(5) = 3. Then, we consider the soft
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Figure 2: The comparison of different methods in Example 1.

likelihood function values under α = 0.1, ..., 1, and the results are shown in

Table 6. Similarly, we calculate the soft likelihood function values based on

the POWA operator proposed by the author under the same conditions, and

the results are also shown in Table 6. Figure 2 visualises the results of the

comparison between the proposed method, the Yager et al.’s method and the

author’s method.

Table 6: The comparison of different methods in Example 1.

Method
Degree of optimism

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yager et al.’s model [22] 0.1132 0.2070 0.3184 0.4330 0.5448 0.6508 0.7495 0.8404 0.9238 1.0000

The author’s model in [39] 0.1231 0.2206 0.3285 0.4378 0.5451 0.6482 0.7457 0.8369 0.9216 1.0000

Proposed model 0.1132 0.2070 0.3184 0.4330 0.5448 0.6508 0.7495 0.8404 0.9238 1.0000
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5.2. Example 2 (consider reliability)

Assume we have q = 5 sources of evidence. Consider a suspect xi whose

probability of compatibility with the five sources of evidence is

E
′
= {pi1 = 0.5, pi2 = 1, pi3 = 0.3, pi4 = 0.8, pi5 = 0.7}

and their evidence reliabilities are as follows

R = {ri1 = 1, ri2 = 0.7, ri3 = 0.5, ri4 = 0.6, ri5 = 0.4}

5.2.1. Results of the proposed soft likelihood function

Now we simply recall that in the proposed method, the weight is expressed

as wij = (βij)
(1−γ)/γ − (βi(j−1))

(1−γ)/γ, and Prodi(j)
′

=
∏j

k=1 piγi(k). Then,

the compatible evidence is expressed as

E =

< 0.5, 1 >︸ ︷︷ ︸
DM−1

, < 1, 0.7 >︸ ︷︷ ︸
DM−2

, < 0.3, 0.5 >︸ ︷︷ ︸
DM−3

, < 0.8, 0.6 >︸ ︷︷ ︸
DM−4

, < 0.7, 0.4 >︸ ︷︷ ︸
DM−5


The normalized reliability of each of the five evidence sources is expressed as

follows

µij =
rij
ri

=
rij
3.2

Then, we calculate the value of pij × µij (p × µ), and the results are shown

in Table 7.
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Table 7: The probability-reliability products in Example 2.

j rij Probability (pij) Reliability (µij) pij × µij Index order (αi)

1 1 0.5 0.3125 0.1563 2

2 0.7 1 0.2188 0.2188 1

3 0.5 0.3 0.1563 0.0469 5

4 0.6 0.8 0.1875 0.1500 3

5 0.4 0.7 0.1250 0.0875 4

Using the index function αi, the order of probability is expressed as

αi(1) = 2, αi(2) = 1, αi(3) = 4, αi(4) = 5, αi(5) = 3. Then according to the

index value, we calculate Prodi(j)
′

=
∏j

k=1 piαi(k), which can be expressed

as Prodi(j)
′

= Prodi(j − 1)
′
piαi(k), and the calculation results are shown in

Table 8.

Table 8: The probability products in Example 2.

Ordered probability Prodi(j)
′

piαi(1) = pi2 = 1 Prodi(1)
′

= 1

piαi(2) = pi1 = 0.5 Prodi(2)
′

= 1× 0.5 = 0.5

piαi(3) = pi4 = 0.8 Prodi(3)
′

= 0.5× 0.8 = 0.4

piαi(4) = pi5 = 0.7 Prodi(4)
′

= 0.4× 0.7 = 0.28

piαi(5) = pi3 = 0.3 Prodi(5)
′

= 0.28× 0.3 = 0.084

Then, ordering the normalized reliabilities based on the index αi, we

can calculate the sum of the normalization probabilities, and the results are

shown in Table 9.

Table 9: The sum of the probabilities of normalized reliability in Example 2.

j 1 2 3 4 5

µiαi(j) 0.2188 0.3125 0.1875 0.1250 0.1563

βij 0.2188 0.5313 0.7188 0.8438 1
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Next, we show the procedure for computing the values of the proposed soft

likelihood function under different preferences. In particular, taking γ = 0.5

as an example and using Eq. (32), we can obtain the results as shown in

Table 10.

Table 10: The soft likelihood function under γ = 0.5 in Example 2.

j βi(j) βi(j−1) wij Prodi(j)
′

wijProdi(j)
′

1 0.2188 0 0.2188 1 0.2188

2 0.5313 0.2188 0.3125 0.5 0.1563

3 0.7188 0.5313 0.1875 0.4 0.0750

4 0.8438 0.7188 0.1250 0.28 0.0350

5 1 0.8438 0.1562 0.084 0.0131

From Table 10, we can see that
∑

j wij = 1. In this case where γ = 0.5

the soft likelihood value is 0.4982. Further, we consider the soft likelihood

function values under γ = 0.1, ..., 1, and the results are shown in Table 11.

Table 11: The values of the proposed soft likelihood function under different levels of

optimism in Example 2.

Function value
Degree of optimism

γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

L̃i,γ 0.1330 0.2245 0.3087 0.3989 0.4982 0.6025 0.7074 0.8097 0.9075 1.0000

5.2.2. Comparisons - consider reliability

First, we review the method proposed by Yager et al. to include the re-

liability of evidence in the soft likelihood function as

Lri,α =
∑5

j=1

((
Sij)

(1−α)/α)− (Si(j−1))(1−α)/α))Prodri (j). Then using the in-

dex function σi, we have σi(1) = 2, σi(2) = 1, σi(3) = 4, σi(4) = 5, σi(5) = 3.
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Figure 3: The comparison of different methods in Example 2.

We consider the soft likelihood function values under α = 0.1, ..., 1, and the

results are shown in Table 12. Figure 3 shows the comparison between the

proposed method and Yager et al.’s method.

Table 12: The comparison of different methods in Example 2.

Method
Degree of optimism

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yager et al.’s model [22] 0.1330 0.2245 0.3087 0.3989 0.4982 0.6025 0.7074 0.8097 0.9075 1.0000

Proposed model 0.1330 0.2245 0.3087 0.3989 0.4982 0.6025 0.7074 0.8097 0.9075 1.0000

5.3. Summary of Examples 1 and 2

In the above two examples, by comparing the proposed method with

existing methods, the results show that:
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(1): (Example 1) When the reliability of the decision maker is not consid-

ered, the proposed method and the Yager et al.’s method have the same

soft likelihood function values at different levels of optimism. Further-

more, we also observe that the soft likelihood function values of the

proposed method and the author’s method in [39] exhibit slight vari-

ability under the same conditions, due to the use of POWA generating

function weights by the author in [39]

(2): (Example 2) When considering the reliability of the decision maker, the

proposed method and the Yager et al.’s method show exactly the same

trend of variation at different levels of optimism, i.e., both methods

have the same soft likelihood function value.

Therefore, based on the above results, we can conclude that the proposed

method degrades to approximately the same results as the existing method,

considering as well as not considering reliability, when the compatible evi-

dence set supporting the occurrence of an event does not contain the same

probabilities. In this case, the preference parameters in both the proposed

and existing methods reflect the degree of optimism of the decision maker

in the fusion results of the soft likelihood function. Thus Examples 1 and

2 illustrate the usability of the proposed method. Next, we shall illustrate

the superiority of the proposed method compared to the existing method by

comparison and analysis through two additional examples.
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5.4. Example 3 (contains conflicting evidence)

Assume we have q = 3 sources of evidence. Consider a suspect xi whose

probability of compatibility with the three sources of evidence is

E
′
= {pi1 = 1, pi2 = 1, pi3 = 0}

Obviously, we can see that the third compatible probability corresponds to

a conflict evidence.

5.4.1. Comparisons - without considering reliability

In this case, we take ri1 = ri2 = ri3 = δ (0 ≤ δ ≤ 1). Then, the evidence

of compatibility after conversion using the proposed method is expressed as

E =

 < 1, δ >︸ ︷︷ ︸
DM−1 and DM−2

, < 0, δ >︸ ︷︷ ︸
DM−3


As in the previous steps, the proposed method is used to calculate the

values of the soft likelihood function at different levels of optimism as shown

in Table 13. At the same level of optimism, the results calculated by Yager

et al.’s method and the author’s previous model are also shown in Table

13. Figure 4 shows the comparison between the Yager et al.’s method, the

author’s method and the proposed method in this paper.
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Figure 4: The comparison of different methods without considering reliability in Example
1.

Table 13: The comparison of different methods without considering reliability in Example

1.

Method
Degree of optimism

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yager et al.’s model [22] 0.0260 0.1975 0.3883 0.5443 0.6667 0.7632 0.8405 0.9036 0.9559 1.0000

The author’s model in [39] 0.0366 0.2300 0.4243 0.5763 0.6925 0.7827 0.8543 0.9122 0.9600 1.0000

Proposed model 0.0020 0.0625 0.1984 0.3536 0.5000 0.6300 0.7430 0.8409 0.9259 1.0000

5.4.2. Comparisons - consider reliability

It is assumed that for these three sources of evidence, namely

E
′
= {pi1 = 1, pi2 = 1, pi3 = 0}
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and that their corresponding reliability is

R = {ri1 = 1, ri2 = 0.7, ri3 = 0.5}

Then, the evidence set of compatibility after conversion using the proposed

method is expressed as

E =

 < 1, 0.85 >︸ ︷︷ ︸
DM−1 and DM−2

, < 0, 0.5 >︸ ︷︷ ︸
DM−3


Similarly, as in the previous steps, the proposed method is used to calcu-

late the values of the soft likelihood function at different levels of optimism

as shown in Table 14. At the same level of optimism, the results calculated

using Yager et al.’s method are also shown in Table 14. Figure 5 shows the

comparison between the proposed method and the Yager et al.’s method.

Table 14: The comparison of different methods under the condition of reliability in Ex-

ample 3.

Method
Degree of optimism

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yager et al.’s model [22] 0.0982 0.3565 0.5479 0.6793 0.7727 0.8421 0.8954 0.9376 0.9718 1.0000

Proposed model 0.0156 0.1572 0.3398 0.4996 0.6296 0.7346 0.8202 0.8909 0.9499 1.0000

5.5. Example 4 (without containing conflicting evidence)

Assume we have q = 3 sources of evidence. Consider a suspect xi whose

probability of compatibility with the three sources of evidence is

E
′
= {pi1 = 1, pi2 = 1, pi3 = 0.5}
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Figure 5: The comparison of different methods under the condition of reliability in Exam-
ple 3.

5.5.1. Comparisons - without considering reliability

Similarly, in this case, we take ri1 = ri2 = ri3 = δ (0 ≤ δ ≤ 1). Then,

the evidence of compatibility after conversion using the proposed method is

expressed as

E =

 < 1, δ >︸ ︷︷ ︸
DM−1 and DM−2

, < 0.5, δ >︸ ︷︷ ︸
DM−3


Then, as in the previous steps, the proposed method is used to calculate

the values of the soft likelihood function at different levels of optimism as

shown in Table 15. At the same level of optimism, the results calculated

using Yager’s method and the author’s previous model [39] are shown in

Table 15. Figure 6 shows the comparison between the Yager et al.’s method,
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Figure 6: The comparison of different methods without considering reliability in Example
4.

the author’s method [39] and the proposed method in this paper.

Table 15: The comparison of different methods without considering reliability in Example

4.

Method
Degree of optimism

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yager et al.’s model [22] 0.5130 0.5988 0.6981 0.7722 0.8333 0.8816 0.9202 0.9518 0.9780 1.0000

The author’s model in [39] 0.5183 0.6150 0.7121 0.7881 0.8463 0.8914 0.9272 0.9561 0.9800 1.0000

Proposed model 0.5010 0.5313 0.5992 0.6768 0.7500 0.8150 0.8715 0.9204 0.9629 1.0000
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5.5.2. Comparisons - consider reliability

Assume we have q = 3 sources of evidence. Consider a suspect x whose

probability of compatibility with the 3 sources of evidence is

E
′
= {pi1 = 1, pi2 = 1, pi3 = 0.5}

and their evidence reliabilities are as follows

R = {ri1 = 1, ri2 = 0.7, ri3 = 0.5}

Similarly, the evidence of compatibility after conversion using the pro-

posed method is expressed as

E =

 < 1, 0.85 >︸ ︷︷ ︸
DM−1 and DM−2

, < 0.5, 0.5 >︸ ︷︷ ︸
DM−3


Finally, as in the previous steps, the proposed method is used to calculate

the values of the soft likelihood functions at different levels of optimism as

shown in Table 16. At the same level of optimism, the results calculated using

Yager et al.’s method are shown in Table 16. Figure 7 shows the comparison

between the Yager et al.’s method and the proposed method.

Table 16: The comparison of different methods in Example 4 under the condition of

reliability.

Method
Degree of optimism

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yager et al.’s model [22] 0.5491 0.6783 0.7740 0.8396 0.8864 0.9210 0.9477 0.9688 0.9859 1.0000

Proposed model 0.5078 0.5786 0.6699 0.7498 0.8148 0.8673 0.9101 0.9454 0.9749 1.0000
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Figure 7: The comparison of different methods under the condition of reliability in Exam-
ple 4.

5.6. Summary of Examples 3 and 4

Based on the values obtained from the calculation of the two numerical

examples above and the visualisation of the results in the graph, we can see

that:

Example 3: When there is conflict evidence in the evidence set of compatible

probability, in this case:

(1): If the reliability of the decision maker is not taken into account, the

variation of the preference parameter with the value of the soft like-

lihood function in the proposed method is more relevant (i.e., more

linear) than in the methods of Yager et al. and the author’s approach

in [39]
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(2): The variation of the preference parameter with the value of the soft

likelihood function in the proposed method is also more relevant than

the method of Yager et al., if the reliability of the decision maker is

considered.

Example 4: In an alternative decision-making setting, where the compatible

evidence set does not contain conflicting evidence, in which case:

(1): When the reliability of the decision maker is not considered, the vari-

ation of the preference parameter with the value of the soft likelihood

function in the proposed method is more relevant than in the method-

ology of Yager et al. and the author in [39].

(2): When considering the reliability of the decision maker, the variation of

the preference parameter with the value of the soft likelihood function

in the proposed method is also more relevant than in the Yager et al.’s

method.

Thus, with Examples 3 and 4, we illustrate the superiority of the proposed

soft likelihood function compared to existing methods for fusing evidence

data when compatible evidence sets contain equally important evidence, and

in two respects, whether they contain conflicting evidence.

5.7. Discussion and analysis

It is shown by some numerical examples that, in general, the proposed

method degrades to Yager et al.’s method when the same probabilities do

not exist in a compatible evidence set. When there is ”equally important

evidence” in the evidence set, the proposed method gives a better conver-

gence effect, i.e., it better reflects the level of decision makers’ preferences
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at different levels of optimism. Thus, in other words, this also confirms that

the proposed method is indeed a generalised method in these cases.

6. Conclusion

In this paper a generalised soft likelihood function is proposed. First,

a novel concept of DM pair is introduced, which integrates the reliability

of decision outcomes and evidence sources. Next, a series of algorithms for

correcting the initial set of compatible evidence is formulated. Ultimately,

a generic soft likelihood function for fusing compatible evidence informa-

tion is defined. By using some examples of design, we have shown that the

proposed method is indeed a broad approach. Moreover, some general ad-

vantages about the proposed method have been verified. More specifically,

when the compatible evidence set supporting the occurrence of an event does

not contain the same probabilities, the proposed method’s calculations ap-

proximate the results of existing methods. When the compatible evidence set

contains ”evidence of equal status”, the proposed method better reflects the

relevance of decision preferences and fusion outcomes than existing methods.

However, it is worth noting that the proposed approach, while obtaining

”consistency” in preferences and results, may underestimate the necessity

of the evidence source itself. Therefore, finding a more perfect general soft

likelihood function will be the goal of our future exploration. In addition, in

the future, we plan to use the proposed method in more scenarios to further

explore the practical value of the proposed method.
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