
Feed Forward Neural Network for Intent
Classification: A Procedural Analysis

Brady Steele1

Brady.Steele@selectquote.com, Bsteele45@gatech.edu

Abstract—This research paper presents an in-depth exploration

of a neural network architecture tailored for intent classification

using sentence embeddings. The model comprises a feedforward

neural network with two hidden layers, ReLU2 activation func-

tions, and softmax activation in the output layer. This paper metic-

ulously examines the technical intricacies involved in data pre-

processing, model architecture definition, training methodologies,

and evaluation criteria. Detailed explanations are provided for

the rationale behind architectural decisions, including the incor-

poration of dropout3 layers for regularization and class weight

balancing techniques for handling imbalanced datasets. Moreover,

the mathematical foundations of the chosen loss function (sparse
categorical cross-entropy)4 and optimization algorithm (Adam opti-
mizer)5 are thoroughly elucidated, shedding light on their roles in

facilitating model training and convergence. Through empirical ex-

periments and theoretical analyses, this paper offers insights into

the effectiveness and resilience of the proposed neural network

architecture for intent classification tasks. It serves as a technical

guide for engineers aiming to comprehend, implement, and opti-

mize neural network models for practical application in natural

language processing endeavors.

1 The author would like to thank SelectQuote and Georgia Institute of Technology.
2 ReLU: Rectified Linear Unit.
3 Dropout: A regularization technique used to prevent overfitting in neural networks by randomly

setting a fraction of input units to zero during training.
4 Sparse Categorical Cross-Entropy: A loss function used for multi-class classification tasks with

integer labels.
5 Adam Optimizer: An optimization algorithm that combines the benefits of AdaGrad and RMSProp

optimizers.

1

1 INTRODUCTION

1.1 Background and Motivation

A customer service phone platform facilitates interactions by providing auto-

mated prompts to customers calling in, followed by their responses. The goal of

the neural network discussed in this paper is to accurately classify these prompts

and responses into one of the predefined intents, namely: answered_question,

off_topic, operator_human, please_wait, repeat_question, or more_info.

1.2 Problem Statement

Intent classification in this domain poses several challenges, including the need

to accurately capture the nuanced semantic relationships between the prompts,

responses, and intent labels while effectively managing issues such as data spar-

sity and class imbalance. To address these challenges, the proposed architecture

leverages a feedforward neural network paradigm, which facilitates efficient

computation and parameter optimization.

The core of the model lies in its mathematical underpinnings, rooted in the

principles of linear algebra, calculus, and optimization theory. Through rigor-

ous mathematical formulations, I unravel the intricate processes of forward and

backward propagation6, which underlies the training of the neural network.

1.3 Methodology

Intent classification using neural network architectures involves a systematic pro-

cess encompassing data preprocessing, model architecture design, training pro-

cedures, and evaluation metrics. The below sections provide a detailed overview

of the methodology employed in this solution.

2 DATA PREPROCESSING

Data preprocessing is a critical step in preparing the raw input data for training

and inference. It involves several sub-tasks, including handling missing values,

text tokenization, label encoding, chunking, and generating embeddings.

6 Forward and backward propagation are key processes in training neural networks, involving the

calculation of output and error gradients, respectively.

2

2.1 Handling Missing Values

Missing values within the dataset can introduce noise and hinder the learning

process of machine learning models. The following function is designed to ad-

dress this issue by meticulously parsing the JSON-formatted strings within the

prompt column of the comma-separated dataset. Through JSON parsing tech-

niques, relevant information pertaining to agent prompts and user responses is

extracted. Furthermore, missing values are identified and managed within the

parsing function to ensure the integrity of the dataset. By systematically han-

dling missing values, the preprocessing pipeline mitigates the risk of biased or

inaccurate model training.

2.2 Text Tokenization

Within the Prompt and Response Extraction Function, JSON-formatted strings sourced

from the prompt column of the DataFrame are transformed into Python list struc-

tures for iterative analysis. Leveraging regular expressions, the function iterates

over each prompt component, scrutinizing role and content attributes to discern

agent prompts and user responses.

By employing regular expressions via the ’re.search()’ function, specific patterns

indicative of agent prompts and user responses are identified wihin the content

of each prompt component. Upon pattern identification, the function extracts

corresponding text segments, delineating agent prompts and user responses as

distinct tokens. This tokenization process lays the groundwork for subsequent

feature extraction and model training tasks by segmenting the prompt data into

granular units.

Additionally, post-extraction, tokens undergo refinement and standardization to

ensure uniformity and consistency in representation, crucial for harmonizing

textual data and mitigating potential inconsistencies arising from formatting or

context structure variations.

2.3 Label Encoding

The scikit-learn LabelEncoder7 is a versatile tool designed to transform categor-

ical labels into numerical representations, a crucial step in machine learning

workflows.

7 The ’LabelEncoder’ class in scikit-learn: Documentation.

3

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

label_encoder = LabelEncoder()

df[’encoded_intent’] = label_encoder.fit_transform(df[’intent’])

Listing 1—Label Encoding

Internally, the LabelEncoder initializes an empty dictionary to store the mappings

between categorical labels and their corresponding numerical representations.

When the fit() method is called with the categorical label data, the LabelEncoder
scans through the unique labels in the dataset and assigns a unique integer to

each label, preserving the order in which they appear. This process effectively

creates a one-to-one mapping between the categorical labels and the assigned

integers with encoded target value labels between 0 and n classes - 1.

Subsequently, when the transform() method is invoked, the LabelEncoder utilizes

the mappings generated during the fitting stage to convert the categorical la-

bels in new datasets or during predictions into their numerical counterparts.

This transformation is achieved by simply looking up each label in the internal

dictionary and replacing it with its corresponding integer value.

Labeled Intents

Intent Name Intent Label

answered_question 0

off_topic 1

repeat_question 2

please_wait 3

more_info 4

operator_human 5

Table 1—Example implementation of LabelEncoder numerical

representations

2.4 Chunking

The chunking process plays a pivotal role in managing memory resources effi-

ciently, particularly pertinent when handling sizable datasets, thereby mitigating

the likelihood of memory overflow errors. This technique involves dividing the

dataset into smaller, manageable segments, with the size of each segment dictated

by the parameter chunk size. Mathematically, let’s denote:

• N as the total number of samples (or rows) in the dataset.

4

• C as the chunk size, representing the number of samples in each chunk.
• K as the total number of chunks, calculated as K = ⌈N/C⌉ , where ⌈·⌉ denotes

the ceiling function, ensuring that any remainder from division is accounted

for.

Now, let’s define the indexing process for chunking:

• For the kth chunk, the starting index startk is given by

startk = (k − 1) × C

• The ending index endk for the kth chunk is calculated as

endk = min(N, k × C)

ensuring that the last chunk may be smaller if N is not perfectly divisible by

C.

These indices delineate the boundaries of each chunk within the dataset. The

chunking process then iteratively extracts the segments of the dataset based on

these indices, ensuring that each segment contains C samples except for the last

chunk, which may contain fewer samples if N is not evenly divisible by C.

2.5 Embedding

Subsequently, these extracted chunks are forwarded to an embedding model,

denoted as the embedder, which orchestrates the conversion of textual inputs

into dense numerical representations, commonly referred to as embeddings. The

embedder, instantiated with the architecture all-MiniLM-L6-v28, operates as a

transformer-based model designed to encode semantic information from the

input prompts and responses efficiently.

The all-MiniLM-L6-v2 architecture embodies a sophisticated combination of trans-

former layers optimized for semantic encoding of textual data. It comprises sev-

eral key components:

1. MiniLM Backbone:
• MiniLM represents a variant of the transformer architecture optimized for

efficiency in both training and deployment scenarios.

8 The all-MiniLM-L6-v2 SentenceTransformer: Documentation

5

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

• The all-MiniLM-L6-v2 variant specifically denotes a configuration character-

ized by six transformer layers (L6). These layers are stacked atop one another,

forming a deep hierarchical structure for processing input sequences.

2. Transformer Layers:
• Each transformer layer integrates multi-head self-attention mechanisms and

position-wise feedforward networks.

• Multi-head self-attention enables the model to focus on different parts of

the input sequence simultaneously, capturing contextual dependencies and

semantic relationships across tokens.

• Position-wise feedforward networks introduce non-linear transformations

to the token embeddings, facilitating the extraction of higher-level features

and semantic information.

Mathematically, at each layer l , the input embeddings Embl−1 undergo trans-

formations according to the following formulation:

Outl = LayerNorm(MHA(Embl−1) + Embl−1)

where MHA denotes the multi-head self-attention mechanism, and LayerNorm

represents layer normalization. This iterative process progresses through each

layer until reaching the final transformer layer (L6).

Additionally, the embedder leverages HuggingFace’s SentenceTransformers9 frame-

work, which provides a high-level interface for utilizing pre-trained transformer

models in tasks related to sentence embeddings. The framework offers a wide

range of pre-trained models, including all-MiniLM-L6-v2, facilitating seamless

integration into various NLP pipelines.

HuggingFace’s SentenceTransformers framework abstracts away the complexities of

model loading, tokenization, and inference, allowing researches and practitioners

to focus on their specific NLP tasks. Behind the scenes, the framework handles

the instantiation of pre-trained models, tokenization of input text, and computa-

tion of sentence embeddings using efficient GPU-accelerated implementations.

For each chunk of prompts and responses, the embedding model orchestrates

9 HuggingFace SentenceTransformers: Documentation

6

https://www.sbert.net/

the generation of embeddings for individual sequences, culminating in sets of

prompt and response embeddings. These embeddings, stored within lists desig-

nated as prompt embeddings and response embeddings, respectively, represent con-

densed numerical representations that encapsulate the semantic nuances of the

textual data.

2.6 Principal Component Analysis

Principal Component Analysis (PCA) is a linear transformation technique used to re-

duce the dimensionality of high-dimensional data while preserving as much vari-

ance as possible. Given a dataset X consisting of n observations of d-dimensional

vectors x1, x2, ..., xnwhere xi ∈ Rd , PCA aims to find a set of orthonormal vec-

tors10 v1, v2, ..., vd , known as principal components, that capture the maximum

variance in the data.

1. Center the data by subtracting the mean vector x̄:

x̄ =
1

n

n∑
i=1

xi

x
′
i = xi − x̄

2. Compute the covariance matrix11 C of the centered data:

C =
1

n

n∑
i=1

x
′
ix

′T
i

3. Find the eigenvectors v1, v2, ..., vd and eigenvalues12 λ1, λ2, ..., λd of C. Sort

the eigenvectors in descending order of their corresponding eigenvalues.

4. Project the centered data onto the principal components to obtain the trans-

formed dataset:

Y = X
′
V

• Y is the transformed dataset.
• X

′
is the centered data matrix.

• V = [v1, v2, ..., vd] is the matrix of eigenvectors.

10 Orthonormal vectors: A set of vectors that are orthogonal (perpendicular) to each other and have a

length of 1.
11 Covariance matrix: A matrix that summarizes the covariance between multiple variables.
12 Eigenvectors and eigenvalues: Concepts from linear algebra representing special vectors and scalars

associated with a square matrix.

7

The scatterplot of PCA-transformed data visualizes the principal components

in a lower-dimensional space. Each point in the scatterplot represents a data

point projected onto the principal components. The scatterplot reveals semantic

relationships among sentences. Clusters of points indicate groups of semantically

similar sentences, while the spatial arrangement of points reflects underlying

semantic structures captured by the embedding model.

Figure 1—Principal Component Analysis Scatterplot

3 MODEL ARCHITECTURE

In this section, the sophisticated design decisions and formulations that construct

the foundation of each layer within the intent classification neural network are

examined. From a broad overview of a standard feedforward neural network,

to an analysis of the mathematical underpinnings of each component, the inner

workings of the architecture are unveiled, demonstrating its adaptability and

efficacy in discerning complex patterns within the data.

3.1 Overview of Feedforward Neural Networks

Feedforward neural networks (FNNs), also known as multilayer perceptrons (MLPs),
represent a fundamental class of artificial neural networks characterized by their

8

unidirectional flow of information13. The architecture of an FNN consists of

multiple layers14 of interconnected neurons15, each layer comprising a set of

nodes responsible for processing and transforming input data. The mathematical

breakdown of these networks is as follows:

1. Layer-wise Computation
• Let X denote the input data, a vector of features, and Xij represent the ith

feature of the jth data point.

• Each neuron in the input layer receives the input features and performs a

weighted sum of the inputs along with the bias term b. Mathematically, the

output of neuron i in the input layer can be represented as:

Z
(1)
i =

n∑
j=1

W
(1)
ij Xij + b

(1)
i

• W
(1)
ij denotes the weight connecting the jth input feature to the ith neuron

in the first hidden layer.
• b

(1)
i is the bias term associated with neuron i.

2. Activation Function
• After computing the weighted sum, an activation function is applied element-

wise to introduce non-linearity into the network’s computations. Common

activation functions include the rectified linear unit (ReLU), sigmoid, and hyper-
bolic tangent (tanh) functions. Below are example implementations for each

of the above:
• Rectified Linear Unit (ReLU)

f(x) = max(0, x)

Graphically, the ReLU function looks like a linear function for positive

inputs and flat lines for negative inputs, as it only passes positive values

through unchanged.

13 Unidirectional flow of information: Refers to the flow of data through the network from input to

output without any feedback loops.
14 Layers: Structures within neural networks comprising interconnected neurons that process and

transform input data.
15 Neurons: Basic units of computation within neural networks, analogous to biological neurons.

9

• Sigmoid Function

f(x) =
1

1 + e−x

The sigmoid function maps any real-valued number to a range (0,1), mak-

ing it suitable for binary classification tasks where the output represents

the probability of belonging to one class.

• Hyperbolic Tangent (tanh) Function

f(x) =
ex − e(−x)

ex + e(−x)

The tanh function maps any real-valued number to the range (-1,1), making

it suitable for classification tasks where the output needs to be symmetric

around zero.

3. Hidden Layers
• In a feedforward neural network, one or more hidden layers exist between

the input and output layers. Each hidden layer performs a series of compu-

tations similar to the input layer, with the output of one layer serving as the

input to the next. Mathematically, the output of neuron i in the kth hidden

layer can be expressed as:

Zk
i = f

 m∑
j=1

Wk
ijZ

(k−1)
j + bk

i


• W

(k)
ij denotes the weight connection neuron j in the (k-1)th layer to neuron

i in the kth layer.
• Z

(k−1)
j is the output of neuron j in the (k-1)th layer.

• b
(k)
i is the bias term associated with neuron i in the kth layer.

4. Output Layer
• The output layer aggregates the information from the final hidden layer

and produces the network’s output. For classification tasks, the output layer

typically consists of neurons corresponding to the number of classes in the

dataset, with each neuron representing the probability of belonging to a

particular class. The softmax function is commonly used to compute these

probabilities, ensuring that the outputs sum to one.

• Mathematically, the output of neuron i in the output layer can be expressed

10

as:

Z
(L)
i =

ezi∑C
j=1

ezj

• zi represents the weighted sum of inputs to neuron i.
• C is the total number of classes.
• The softmax function computes the probability of class i given the inputs.

3.1.1 Softmax Activation Function

The softmax activation function is a fundamental component of neural network

architectures, commonly used in the output layer to generate probability distri-

butions over multiple classes.

Definition

• Given an input vector

z = (z1, z2, ..., zn)

the softmax function transforms the raw logits into a probability distribution

over n classes. The softmax activation function for the ith class is defined as:

P (yi |z) =
ezi∑n
j=1

ezj

• P (yi |z) represents the probability of the ith class given the input logits z.
• e denotes Euler’s number (approximately 2.71828).
• zi is the raw logit associated with the ith class.
• ezi∑n

j=1
e
zj is the sum of exponential values over all classes.

Properties

1. Normalization: The softmax function ensures that the output probabilities

sum to one, guaranteeing a valid probability distribution:

n∑
i=1

P (yi |z) = 1

This property is crucial for interpreting the output of the neural network as

class probabilities.

11

2. Positivity: Since the softmax function involves exponentiation, the output

probabilities are non-negative for all i:

P (yi |z) ⩾ 0

3. Monotonicity: The softmax function is monotonically increasing. As the input

logits increase, the corresponding probabilities also increase:

zi ⩽ zj ⇒ P (yi |z) < P
(
yj |z

)
This property ensures that higher logit values correspond to higher probabili-

ties, preserving the ordinal relationship between classes.

4. Interpretation: The softmax function transforms the raw output of the neural

network into a probability distribution, allowing for intuitive interpretation

and decision-making. By converting logits into probabilities, the softmax acti-

vation enables the model to output confident predictions about the likelihood

of each class.

5. Application: In practice, the softmax function is used in multi-class classifi-

cation tasks, where the goal is to assign input data to one of several possible

categories, such as in intent classification. The output probabilities produced

by softmax facilitate decision-making by identifying the most probable class

for a given input.

6. Limitations: In cases of highly imbalanced datasets or when dealing with

noisy or ambiguous inputs, softmax probabilities may not accurately reflect

the underlying uncertainty in the data. Additionally, softmax outputs are

sensitive to outliers and large input values, potentially leading to unstable

gradients during training.

3.2 Impact of Neurons and Hidden Layers on Model Complexity

The architectural configuration of a neural network, characterized by the number

of neurons and hidden layers, plays a pivotal role in determining its computa-

tional complexity, expressive capacity, and generalization performance. In the

below subsections, the mathematical intricacies underlying the effects of varying

these architectural parameters are uncovered.

12

3.2.1 Increasing Neurons per Layer

• Let Nl represent the number of neurons in layer l, where l denotes the layer

index. As Nl increases, the model’s capacity to learn complex functions is

augmented. Mathematically, the neural network’s hypothesis space expands,

enabling it to approximate more intricate mappings from input to output.

• The expressive power of the network is enhanced as a larger number of neurons

allows for the representation of more nuanced and detailed features in the data

manifold. Formally, the hypothesis space of the neural network, denoted by H,

increases with the cardinality of the neuron set.

• However, an excessively high number of neurons may lead to overparameteri-

zation, where the model becomes overly flexible and susceptible to memorizing

noise in the training data. This phenomenon, often referred to as overfitting,

can result in poor generalization to unseen examples.

3.2.2 Decreasing Neurons per Layer

• Conversely, reducing the number of neurons per layer diminishes the model’s

complexity and expressive capacity. A sparser representation space is created,

limiting the network’s ability to capture intricate patterns and relationships

within the data.

• By constraining the model’s capacity, the risk of overfitting is mitigated. A

simpler model is less prone to capturing noise in the training data, thereby

promoting better generalization to unseen instances.

3.2.3 Increasing Hidden Layers

• Introducing additional hidden layers deepens the neural network architecture,

facilitating the extraction of hierarchical features from the input data. Each

layer learns increasingly abstract representations of the input, enabling the

model to capture complex relationships.

• The compositional nature of deep architectures enables the network to decom-

pose the learning task into a series of hierarchical transformations, leading to

enhanced feature abstraction and representation learning.

13

• However, the depth of the network increases, vanishing and exploding gradient

phenomena16 may manifest during backpropagation, impeding the training

process.Techniques such as residual connections and layer normalization are

employed to alleviate these issues.

3.2.4 Decreasing Hidden Layers

• Simplifying the network architecture by reducing the number of hidden layers

results in a shallower model. While computationally lighter, shallower net-

works may struggle to capture complex, hierarchical structures in the data.

• Shallower architectures are more prone to underfitting, particularly in scenar-

ios where the data exhibits intricate patterns that necessitate deeper feature

hierarchies for effect representation.

• Nonetheless, shallow networks offer computational efficiency and are advan-

tageous when dealing with relatively simple datasets or resource-constrained

environments.

3.2.5 Optimal Architecture Exploration

Determining the optimal neural network architecture involves navigating the in-

tricate trade-off between model complexity, expressive power, and generalization

performance. Experimental validation, cross-validation techniques, and hyper-

parameter optimization methodologies play crucial roles in identifying the most

suitable architectural configuration for a given task and dataset.

4 INTENT CLASSIFICATION ARCHITECTURE

The neural network architecture described herein represents the solution im-

plemented for intent classification. The architecture of this feedforward neural

network is comprised of an input layer, a first hidden layer, a dropout layer, a

second hidden layer, and an output layer.

4.1 Input Layer

16 Vanishing and exploding gradient phenomena: Issues encountered during the training of deep

neural networks, where gradients become extremely small (vanishing) or extremely large (exploding).

14

Figure 2—Basic architecture of the intent classification neural

network. Source

input_shape=(X_train.shape[1])

Listing 2— Input Layer

The input layer serves as the initial point of interaction between the raw input

data and the neural network. It is characterized by its dimensions, determined

by the shape of the input data.

Given that

X_train.shape[1]

represents the number of features in each input sample, the input layer is defined

with 512 neurons, utilizing the tf.keras.layers.Dense function. Mathematically, the

output of this input layer can be represented as:

z [1] = W [1]T · x + b [1]

• z [1] is the output of the input layer.
• W [1] represents the weight matrix of the input layer.
• x denotes the input data.
• b [1] is the bias vector of the input layer.

4.2 First Hidden Layer

15

https://www.oreilly.com/library/view/r-deep-learning/9781788478403/f852725a-e941-4c7c-9542-68f860a56763.xhtml

tf.keras.layers.Dense(512, activation=’relu’, input_shape=(X_train.shape[1],))

Listing 3—First Hidden Layer

The first hidden layer consists of 512 neurons and employs the Rectified Linear

Unit activation function, denoted by σ. The activation of the first hidden layer

can be mathematically expressed as:

a [1] = σ
(
z [1]

)
• a [1] represents the activation of the first hidden layer.
• z [1] denotes the output of the input layer.

4.3 Dropout Layer

tf.keras.layers.Dropout(0.2)

Listing 4—Dropout Layer

Following the activation of the first hidden layer, a dropout layer is introduced

with a dropout rate of 0.2. Mathematically, during training, the dropout layer

modifies the activations by randomly setting a fraction (0.2 in this case) of them

to zero. This can be represented as a binary mask operation:

a
[1]
dropout = D [1] ⊙ a [1]

• a
[1]
dropout represents the dropout-applied activation of the first hidden layer.

• D [1] denotes the binary dropout mask.
• ⊙ denotes the element-wise multiplication operation.

4.4 Second Hidden Layer

tf.keras.layers.Dense(256, activation=’relu’)

Listing 5—Second Hidden Layer

The second hidden layer comprises 256 neurons, each activated by the Rectified

Linear Unit function. The mathematical formulation for the activation of the

second hidden layer is analogous to that of the first hidden layer:

a [2] = σ
(
Z [2]

)
• a [2] represents the activation of the second hidden layer.
• z [2] denotes the output of the first hidden layer.

16

4.5 Output Layer

tf.keras.layers.Dense(len(set(encoded_intents)), activation=’softmax’)

Listing 6—Output Layer

The final layer in the intent classification architecture is the output layer. This

layer serves as the final stage responsible for producing intent predictions. This

layer comprises 6 output neurons, each mapped to a specific encoded intent.

The neuron count of the output layer will always correspond to the number of

encoded elements in the y target values.

The softmax activation function is utilized for this multi-class scenario, transform-

ing the raw output into a probability distribution across the different intents in

the dataset.

5 PRACTICAL ANALYSIS OF TRAINING PROCEDURES

Training a feedforward neural network involves a complex interplay of math-

ematical principles, technical considerations, and practical strategies aimed at

optimizing model parameters and improving predictive performance. In this

comprehensive exploration, the intricate details of key training procedures, in-

cluding loss functions, optimization algorithms, regularization techniques, class

weight balancing, and early stopping mechanisms are examined within the con-

text of feedforward neural networks.

5.1 Train-Test Split vs. K-Fold Cross Validation:

Training neural networks involves partitioning the dataset into subsets for train-

ing and evaluation. Two common approaches for this purpose are train-test split
and k-fold cross validation.

5.1.1 Train-Test Split

Train-test split is a straightforward approach to assess model performance by

dividing the dataset into two disjoint sets: a training set and a test set. Let D
represent the dataset, consisting of n samples. The train-test split divides D into

two subsets: Dtrain and Dtest .

1. Mathematical Formulation
• Let the following equation represent the training set, where m is the number

17

of training samples.

Dtrain =
{
(Xi , yi)

}m

i=1

• Let the following equation denote the test set, where k is the number of test

samples.

Dtest =
{(

Xj , yj

) }k

j=1

• The split ratio γ determines the proportion of data allocated to the training

set, typically ranging from 0.5 to 0.9.

• The compliment of γ constitutes the test set, such that k = n − m.

2. Advantages
• Train-test split is easy to implement and understand, making it suitable for

quick model evaluation. This can easily be imported from scikit-learn, using

the following code:

from sklearn.model_selection import train_test_split

Listing 7—Train-Test Split

• It requires less computation resources compared to k-fold cross validation,

making it suitable for large datasets.

3. Limitations
• Model performance may vary significantly depending on the random split,

leading to unreliable estimates of performance.

• The performance metric computed on a single test set may not accurately

reflect the model’s generalization ability.

5.2 K-Fold Cross Validation

K-fold cross validation (KFCV) is a robust validation technique that partitions

the dataset into K folds, with each fold serving as the test set once, while the

remaining K − 1 folds are used for training. The process is repeated K times,

with each fold acting as the test set exactly once.

18

Figure 3—Example Implementation of K-Fold Cross Validation.

Source

1. Mathematical Formulation
• Let the following equation denote the dataset.

D =
{
(Xi , yi)

}n

i=1

• KFCV partitions D into K disjoint subsets, denoted as
{
D1, D2, ..., Dk

}
.

• For each iteration k from 1 to k:

• Dk is designated as the test set, denoted as Dk
test .

• The union of all other subsets D Dk constitutes the training set, denoted

as Dk
train .

• The model is trained on Dk
train and evaluated on Dk

test .

• Performance metrics are averaged across all K folds to obtain an overall

estimate of model performance.

2. Advantages
• KFCV provides a more reliable estimate of model performance by averaging

results over multiple iterations, reducing the variance introduced by random

data splits.

19

https://www.researchgate.net/figure/Schematic-diagram-of-k-fold-cross-validation-principle-adapted-from-Phung-and-Rhee_fig3_373540181

• KFCV maximizes data utilization by training and testing the model on all

samples in the dataset.

• It can be imported from scikit-learn just as easily as train-test split, using the

following code:

from sklearn.model_selection import KFold

Listing 8—K-Fold Cross Validation

3. Limitations
• KFCV requires training the model K times, resulting in increased compu-

tational overhead compared to train-test split, especially for large K values.

This means that it may be computationally expensive, especially for complex

models and large datasets.

5.3 Loss Functions

Loss functions quantify the discrepancy between predicted and actual outputs,

guiding the optimization process during training. Below are some common loss

functions, their underlying formulations, and practical applications.

1. Mean Squared Error (MSE):

1

N

N∑
i=1

(yi − ŷi)
2

MSE is widely utilized in regressions tasks.

• yi represents the true label
• ŷi denotes the predicted output
• N is the total number of samples

For instance, in predicting housing prices based on features like square footage

and location, MSE quantifies the average squared difference between predicted

and true prices.

2. Binary Cross-Entropy:

−
1

N

N∑
i=1

[yi log (ŷi) + (1 − yi) log (1 − ŷi)]

20

Binary cross-entropy is suitable for binary classification tasks.

• yi is the trust binary label (0 or 1)
• ŷi is the predicted probability

For instance, in medical diagnosis to distinguish between healthy and dis-

eased individuals, binary cross-entropy quantifies the dissimilarity between

predicted and actual disease probabilities.

3. Categorical Cross-Entropy:

−
1

N

N∑
i=1

C∑
j=1

yij log
(
ŷij

)
Categorical cross-entropy is employed in multi-class classification tasks.

• yij is an indicator function denoting whether class j is the true class for

sample i
• ŷij is the predicted probability

For instance, in image classification to categorize images into different classes,

categorical cross-entropy measures the discrepancy between predicted and

true class probabilities.

4. Sparse Categorical Cross-Entropy:

L (θ) = −
1

N

N∑
i=1

C∑
j=1

1 (yi = j) log
(
ŷij

)
Sparse categorical cross-entropy computes the discrepancy between the true

integer-encoded labels and the predicted probability distributions over the

classes.

• N is the number of samples
• C is the number of classes
• yi is the true label for sample i
• ŷij is the predicted probability of sample i belonging to class j

It is specifically designed for multi-class classification tasks where the labels

are provided as integers. It is computationally efficient compared to one-hot

21

encoding the labels. For instance, in intent classification where sentences are

classified into different intent categories, sparse categorical cross-entropy mea-

sures the dissimilarity between predicted and true intent labels.

5.4 Optimization Algorithms

Optimization algorithms are crucial for adjusting the parameters of the neural

network, such as weights and biases, in order to minimize a predefined loss

function. This process involves iteratively updating the parameters based on

the gradients of the loss function with respect to those parameters. In this sec-

tion, theoretical foundations and practical considerations are explored for some

common optimization algorithms.

1. Gradient Descent: This algorithm updates model parameters iteratively by

moving in the direction of the negative gradient of the loss function. This

fundamental optimization technique leverages principles from calculus to

navigate the parameter space efficiently. Mathematically, this update is repre-

sented as:

θt+1 = θt − η∇L (θt)

• θt denotes the parameters at iteration t.
• η is the learning rate, controlling the step size of the parameter updates.
• ∇L (θt) is the gradient of the loss function with respect to the parameters.

Gradient descent variants like Stochastic Gradient Descent (SGD) and Mini-batch
Gradient Descent enhance computational efficiency by updating parameters

based on subsets of training data. These variants enable faster convergence

and mitigate memory constraints associated with processing large datasets.

2. Adam Optimizer: This is an adaptive optimization algorithm that amalga-

mates the advantages of AdaGrad and RMSProp, offering efficient convergence

and robustness across a diverse range of optimization landscapes.

Adam computes individual adaptive learning rates for different parameters

based on estimates of first and second moments of the gradients. It leverages

momentum-based updates and adaptive learning rate scheduling to navigate

complex optimization spaces effectively.

It updates parameters using the following equations:

mt+1 = β1mt + (1 − β1) ∇L (θt)

22

vt+1 = β2vt + (1 − β2) (∇L (θt))
2

m̂t+1 =
mt+1

1 − βt+1

1

v̂t+1 =
vt+1

1 − βt+1

2

θt+1 = θt − η
ˆmt+1√

v̂t+1 + ϵ

• mt and vt are the first and second moment estimates of the gradient.
• β1 and β2 are decay rates.
• η is the learning rate.
• ϵ is a small constant to prevent division by zero.

Adam’s adaptive learning rate scheme enhances convergence speed and stabil-

ity by dynamically adjusting learning rates for each parameter based on their

past gradients and velocities. The incorporation of momentum and adaptive

learning rates mitigates issues like vanishing or exploding gradients, facilitat-

ing efficient training of neural networks.

5.5 L1 and L2 Regularization

L1 and L2 regularization are foundational techniques employed to constrain

the complexity of neural network models by penalizing large parameter values.

These regularization methods play a vital role in preventing overfitting and

enhancing the generalization performance of the models.

5.5.1 Theoretical Foundations

1. Conceptual Basis: The primary idea behind L1 and L2 regularization is to im-

pose constraints on the magnitude of the model parameters. Large parameter

values often indicate complex interactions within the network, which can lead

to overfitting, where the model memorizes noise in the training data rather

than capturing underlying patterns.

2. Penalty Terms: In both L1 and L2 regularization, penalty terms are added to

the standard loss function, effectively modifying the optimization objective

to prioritize simpler models. These penalty terms encourage the model to

prefer solutions with smaller parameter values, thereby reducing the risk of

overfitting.

23

3. Mathematical Formulation:
• L1 Regularization (Lasso): In L1 regularization, the penalty term is propor-

tional to the absolute values of the model parameters:

Lreg (θ) + λ ∥ θ ∥1

Here, ∥ θ ∥1 denotes the L1 norm of the parameter vector θ, and λ is the

regularization coefficient that controls the strength of regularization.

• L2 Regularization (Ridge): In L2 regularization, the penalty term is propor-

tional to the squared values of the model parameters:

Lreg (θ) + λ ∥ θ ∥2

2

Here, ∥ θ ∥2

2
denotes the L2 norm of the parameter vector θ.

5.5.2 Implementation

1. Effect on Parameter Updates: During the training process, the addition of

regularization penalty terms modifies the gradient descent optimization al-

gorithm. The gradients computed during backpropagation are augmented

by the derivatives of the regularization terms, leading to smaller updates for

parameters with larger magnitudes.

2. Fit and Complexity Trade-off: The regularization coefficient λ controls the

trade-off between fitting the training data and keeping the model simple.

Higher values of λ result in stronger regularization, leading to simpler models

with reduced capacity to fit noise in the data.

3. Robustness to Outliers: L1 regularization tends to produce sparse solutions

by driving some parameters to exactly zero, effectively performing feature

selection. This property makes L1 regularization robust to outliers and irrel-

evant features, as it automatically prunes unnecessary parameters from the

model.

4. Computational Considerations: While L2 regularization typically has a closed-

form solution and be computed efficiently, L1 regularization (due to non-

differentiability of the absolute function) often requires specialized optimiza-

tion algorithms such as proximal gradient descent or coordinate descent.

24

5.5.3 Practical Considerations

1. Cross-Validation for Hyperparameter Tuning: The choice of regularization

coefficient λ is critical and is often determined using techniques such as cross-
validation, where different values of λ are evaluated on a validation set to

select the one that yields the best generalization performance.

2. Normalization of Features: L2 regularization is sensitive to the scale of the in-

put features, as it penalizes the squared magnitudes of the parameters. There-

fore, it is often beneficial to normalize the input features to have zero mean

and unit variance before applying L2 regularization.

5.6 Dropout: Stochastic Neuron Deactivation

Dropout is a powerful regularization technique aimed at enhancing the robust-

ness and generalization capabilities of neural networks by introducing stochas-

ticity during training. By randomly deactivating a fraction of neurons in each

layer, dropout prevents the network from relying too heavily on specific neu-

rons or features, thereby encouraging the learning of more diverse and robust

representations.

5.6.1 Theoretical Foundations

1. Ensemble Learning Perspective: Dropout can be viewed as a form of en-

semble learning, where multiple subnetworks are trained simultaneously by

randomly removing neurons during each training iteration. This ensemble

of subnetworks provides a diverse set of hypotheses, leading to improved

generalization performance.

2. Preventing Co-Adaptation: Dropout prevents co-adaptation among neurons

by introducing noise into the network during training. This noise disrupts the

intricate dependencies between neurons, forcing each neuron to learn more

independently and reducing the risk of overfitting.

3. Approximation to Model Averaging: In a probabilistic sense, training a neural

network with dropout can be interpreted as approximating model averaging,

where the network learns to make predictions by averaging over multiple

dropout masks.

25

5.6.2 Implementation Details

1. Stochastic Neuron Deactivation: During training, each neuron in a layer is

deactivated with a certain probability p, typically set between 0.2 and 0.5.

This stochastic deactivation process is applied independently to each training

example and each neuron, effectively creating a different dropout mask for

each forward pass.

2. Scaling During Inference: To ensure consistent behavior during inference,

the outputs of the neurons are scaled by a factor of 1

1−p during training. This

scaling compensates for the fact that more neurons are active during inference

compared to training.

3. Deep Learning Frameworks: Dropout is seamlessly integrated into deep learn-

ing frameworks like TensorFlow and PyTorch through dedicated dropout layers.

These layers automatically handle the dropout masking during training and

scale the outputs during inference. Section 4.3 details the implementation of a

dropout layer for the intent classification network.

5.6.3 Practical Considerations

1. Dropout Rate Selection: The choice of dropout rate p is critical and depends

on factors such as the network architecture, dataset size, and complexity.

2. Impact on Training Time: While dropout effectively prevents overfitting, it

may increase the training time, since each training iteration involves the for-

ward and backward passes with a different dropout mask. Typically, the ad-

ditional computational cost is justified by the improved generalization perfor-

mance.

5.7 Class Weight Balancing

Class weight balancing is a crucial technique used to handle imbalanced datasets,

where certain classes are disproportionately represented. By assigning higher

weights to minority classes during training, class weight balancing ensures that

the model effectively learns to distinguish between all classes, regardless of their

prevalence in the dataset.

26

5.7.1 Theoretical Foundations

1. Addressing Class Imbalance: In imbalanced datasets, standard loss functions

may inadvertently prioritize majority classes over minority ones, leading to

biased models with poor performance on minority classes. Class weight bal-

ancing addresses this imbalance by adjusting the contribution of each class to

the overall loss function based on its frequency in the dataset.

2. Weighted Loss Formulations: Class weight balancing entails augmenting the

standard loss function with class-specific weights, where the weights are in-

versely proportional to the class frequencies. This formulation ensures that

misclassifications in minority classes contribute more to the overall loss than

those in majority classes, effectively mitigating bias towards the dominant

classes.

3. Impact on Training Dynamics: By assigning elevated weights to minority

classes, class weight balancing incentivizes the model to prioritize learning

discriminative features for these classes. This equitable distribution of atten-

tion across all classes bolsters the model’s capacity to generalize effectively to

unseen data.

5.8 Early Stopping

Early stopping emerges as a pragmatic strategy to avert overfitting in neural net-

works by scrutinizing the model’s performance on a validation dataset through-

out the data regimen. By terminating training when the model’s performance

plateaus or deteriorates, early stopping early stopping navigates the intricate

balance between model complexity and generalization performance.

5.8.1 Theoretical Foundations

1. Minimization of Generalization Error: The central tenet of early stopping re-

volves around minimizing the generalization error, quantified as the disparity

between the model’s performance on the training data and its performance on

unseen data. Let’s denote the training loss as Ltrain and the validation loss

as Lval . The goal is to minimize the discrepancy |Ltrain − Lval | to ensure

effective generalization.

2. Complexity-Generalization Trade-off: Neural network models often grapple

27

with the complexity-generalization trade-off - an inherent tension between

model complexity and generalization performance. Model complexity can be

represented using a regularization term R (θ), where θ denotes the model

parameters. The objective is to minimize the combined loss function:

T otalLoss = Ltrain + λR (θ)

Here, λ controls the trade-off between minimizing the training loss and reduc-

ing model complexity.

3. Monitoring Metric Selection: Central to the efficacy of early stopping is the

selection of a monitoring metric - typically validation loss Lval or accuracy -

that aptly captures the model’s performance throughout the training process.

The choice of monitoring metric hinges on the specific task requirements and

the desired properties of the trained model.

5.8.2 Implementation Details

1. Patience Parameter: A critical hyperparameter in the early stopping regimen,

the patience parameter p dictates the duration of monitoring before halting

training if the monitored metric exhibits no discernible improvement. The

model continues training for p epochs even afte the validation loss ceases to

decrease. This ensures stability in model convergence and avoids premature

termination.

2. Model Checkpointing: To safeguard against inadvertent loss of the best-

performing model, checkpoints are employed to periodically archive the model’s

parameters during training. Let θ∗ represent the parameters corresponding

to the model with the lowest validation loss. The checkpointing mechanism

ensures that θ∗ is retained for further evaluation or deployment.

3. Integration with Training Loop: Early stopping is seamlessly integrated into

the training loop, typically manifesting as a callback function invoked at the

end of each training epoch. The callback meticulously monitors the designated

metric, terminating training if the metric fails to exhibit improvement over the

predefined window.

28

6 INTENT CLASSIFICATION TRAINING PROCEDURES

Key components of the training procedures for the Intent Classification neural

network include K-Fold Cross Validation for rigorous evaluation, Sparse Categorical
Cross Entropy loss function for effective optimization, the Adam optimizer for

efficient parameter updates, class weight balancing to address class imbalance in

the dataset, and early stopping to mitigate overfitting risks.

6.1 KFold Implementation

K-Fold Cross Validation is employed to evaluate the performance of the feedfor-

ward neural network. This code partitions the dataset into k non-overlapping

folds, facilitating thorough assessment by training the model k times, each time

utilizing a different fold as the validation set.

kf = KFold(n_splits=5, shuffle=True)

oof_preds = []

oof_vals = []

val_acc_list = []

train_acc_list = []

Listing 9—KFold Implementation

• KFold is initialized with 5 splits (n_splits=5), indicating that the dataset will

be divided into 5 equal parts for cross-validation. The shuffle=True parameter

ensures that the data is shuffled before splitting to introduce randomness in

fold creation.

• The empty lists of oof_preds, oof_vals, val_acc_list, train_acc_list are initial-

ized to store various metrics and predictions during the cross-validation pro-

cess. Here, oof stands for out-of-fold predictions and val_acc_list and train_acc_list

store validation and training accuracies respectively.

6.2 Concatenation of Embeddings

Embeddings from input prompts and responses are concatenated to create a

combined feature matrix. The concatenation, performed along the horizontal

axis, ensures that each row represents a sample, with features derived from both

prompt and response embeddings.

29

embeddings_combined = np.concatenate((np.array(prompt_embeddings), np.array(

response_embeddings)), axis=1)

Listing 10—Embeddings Concatenation

• The functions np.array(prompt_embeddings) and np.array(response_embeddings)

represent the embeddings for input prompts and responses, respectively, con-

verted into numpy arrays. Numpy arrays are multi-dimension, allowing for the

representation of data in matrices or higher-dimensional tensors.

• The function np.concatenate concatenates the arrays along axis=1, meaning

that the embeddings for each sample are combined horizontally. This results

in a combined feature matrix where each row represents a sample and each

column represents a feature.

6.3 Class Weight Balancing

Class weights are computed to address class imbalance in the dataset, ensuring

fair treatment during model training. Incentivizing the model to learn from all

classes effectively, irrespective of their representation in the dataset, is imperative

to generate a neural network that performs with high generalization accuracy.

class_weights = compute_class_weight(class_weight=’balanced’, classes=np.unique(y_train)

, y=y_train)

class_weights_dict = dict(enumerate(class_weights))

Listing 11—Class Weights

• The function compute_class_weight calculates the class weights based on the

inverse class frequencies, aiming to address class imbalance in the dataset.

This calculation involves computing the ratio of total samples to the number

of samples in each class, resulting in a weigh vector that reflects the relative

importance of each class during training.

• classes=np.unique(y_train) extracts unique class labels from the training set

y_train. This generates an array containing all distinct class labels present in

the training data, serving as the basis for determining distribution of samples

across different classes.

• dict(enumerate(class_weights)) creates a dictionary where class indices are

30

mapped to their corresponding weights, facilitating easy access during model

training. The enumerate function pairs each weight with its corresponding

class index, generating an iterable of (index, weight) tuples.

6.4 Model Compilation

The model is compiled using the Adam optimizer and sparse categorical cross-
entropy loss. The Adam optimizer adapts learning rates for individual parameters,

while sparse categorical cross-entropy loss is employed for integer-encoded target

labels eliminating the need for one-hot encoding17.

model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

Listing 12—Model Compilation

• Setting the choice of optimizer as optimizer=’adam’, the learning rates are

dynamically adjusted for individual parameters based on estimates of both the

first and second moments of the gradients.

• By leveraging adaptive learning rates and momentum, Adam mitigates issues

such as vanishing or exploding gradients commonly encountered in training

deep neural networks, facilitating smoother and more stable optimization tra-

jectories.

• The specification of loss=’sparse_categorical_crossentropy’ designates the us-

age of a loss function tailored for multi-class classification tasks with integer-

encoded target labels.

• This loss function choice is scientifically motivated by its ability to effectively

capture the uncertainty inherent in multi-class classification tasks, enabling the

model to learn discriminative features and make informed class predictions.

• The specification of metrics=[’accuracy’] dictates accuracy as the primary eval-

uation metric for assessing model performance during training and validation.

17 One-hot encoding is a technique used to represent categorical variables as binary vectors. Each cate-

gory is represented by a binary vector where all elements are zero except for the element corresponding

to the category index, which is set to one.

31

• Accuracy, a fundamental metric in classification tasks, quantifies the proportion

of correctly classified samples relative to the total number of samples in the

dataset.

6.5 Early Stopping Callback

An Early Stopping callback is instantiated to prevent overfitting by monitoring

validation accuracy during training. Training is halted if validation accuracy fails

to improve for a predefined number of epochs, thereby ensuring the selection of

a well-generalized model.

callback = tf.keras.callbacks.EarlyStopping(monitor=’val_accuracy’, patience=5)

Listing 13—Early Stopping

• The callback function, tf.keras.callbacks.EarlyStopping provided by the Ten-
sorFlow Keras API, is specifically designed to facilitate early stopping during

model training based on provided criteria.

• This callback monitors the validation performance of the model at the end

of each epoch, allowing for dynamic intervention to prevent overfitting and

optimize generalization performance. The callback operates seamlessly within

the training loop, enabling real-time evaluation of the model’s performance on

a separate validation dataset.

• Looking at monitor=’val_accuracy’, the monitor parameter specifies the metric

to be monitored during training for the purpose of early stopping. In this case,

the validation accuracy will be tracked throughout the training process.

• Validation accuracy is inherently different from accuracy, in that it reflects the

model’s ability to correctly classify instances in the validation dataset, provid-

ing insights into its generalization performance on unseen data. The accuracy
metric demonstrates the model’s ability to interpret the data within the training

set.

• The patience parameter determines the number of epochs with no improve-

ment in the monitored metric(validation accuracy, in this case) before training

is halted.

32

• Setting patience=5 implies that training will continue until there has been no

improvement in validation accuracy for 5 consecutive epochs.

7 EVALUATION PROCEDURES

This section outlines the methodologies and logic for the evaluation of the intent

classification neural network.

7.1 Model Fitting

The model.fit() method is instrumental in the training process of the neural

network. It facilitates the iterative adjustment of the model’s parameters to min-

imize the loss function over the training dataset, incorporates the computed

class weight distribution, as well as the early stopping callback, and specifies the

training and validation datasets.

history = model.fit(X_train, y_train_n, epochs=20, batch_size=32, class_weight=

class_weights_dict, verbose=1, callbacks=[callback], validation_data=(X_val,

y_val_n))

Listing 14—Model Fitting

Mathematically, this process aims to minimize the empirical risk Remp (θ),

which quantifies the disparity between the model’s predictions f (Xi ; θ) and

the true labels yi . For dataset D with input features X and target labels y, the

empirical risk is expressed as:

Remp (θ) =
1

Ntrain

Ntrain∑
i=1

l (f (Xi ; θ) , yi)

• Ntrain denotes the number of trainings samples.
• l represents the loss function.
• f (Xi ; θ) is the model’s prediction for input Xi with parameters θ.

7.1.1 Batch Size

The batch_size parameter determines the number of samples processed by the

model before the parameters are updated during each iteration of the optimiza-

tion algorithm. It essentially controls the granularity of parameter updates and

influences the speed and efficiency of the training process.

Larger batch sizes can lead to faster convergence and more stable updates but

33

may require more memory, while smaller batch sizes introduce more stochasticity

into the optimization process but may result in noisy gradients.

Mathematically, given a dataset of size N, the dataset is divided into mini-batches

of size B, where B ⩽ N. Each mini-batch consists of a subset of the dataset, and

the model’s parameters are updated based on the average gradient computed

over the samples in the mini-batch.

7.1.2 Epochs

The epochs parameter specifies the number of times the entire dataset is tra-

versed during the training process. In other words, one epoch represents one

complete pass through the entire dataset, including multiple iterations over mini-

batches.

Training for T epochs involves updating the model’s parameters for T iterations,

with each iteration comprising multiple mini-batch updates. Following each

epoch, the model’s performance metrics, such as loss and accuracy, are evaluated

on the validation dataset.

The selection of the appropriate number of epochs is contingent upon several

factors, including the intricacy of the dataset and the convergence characteristics

of the optimization algorithm. Insufficient training epochs may culminate in

underfitting, where the model inadequately captures the underlying patterns in

the data. Conversely, an excessive number of epochs leads to overfitting, because

the model essentially memorizes the training data.

7.2 Prediction and Evaluation

Upon completion of training, the model’s performance is evaluated using the

validation dataset to estimate its generalization capacity on unseen data.

val_preds = model.predict(X_val)

oof_preds.extend(val_preds)

oof_vals.extend(y_val)

Listing 15—Model Prediction

The model.predict() method computes predictions for the validation set Xval ,

generating class probabilities or scores for each sample. These predictions are

then compared against the true labels yval to compute evaluation metrics such

34

as accuracy.

Let Xtrain and ytrain represent the input features and target labels of the

training set, respectively. Similarly, Xval and yval denote the validation set.

The training process aims to minimize the empirical risk Remp (θ), which is the

average loss over the training samples. During evaluation, the accuracy Accval

on the validation set measures the model’s performance on unseen data.

In the below code, the training accuracy (’accuracy’) and validation accuracy

(’val_accuracy’) for the last epoch are extracted from the ’history’ object, allow-

ing for a detailed analysis of the model’s performance throughout the training

process.

train_acc_last_epoch = history.history[’accuracy’][-1]

val_acc_last_epoch = history.history[’val_accuracy’][-1]

Listing 16—Model Evaluation

7.3 Saving the Model

The model.save function, intrinsic to TensorFlow and Keras, enable practitioners

to persist trained models to disk in a format conducive to future inference and

deployment after the conclusion of training.

model.save(’intent_classification_model’)

Listing 17—Model Saving

7.3.1 Serialization and Persistence

At its core, the model.save function employs serialization techniques to encode

the architecture, parameters, and configuration of the trained neural network

model into a file format that can be stored persistently.

Serialization involves converting the complex data structures of the model, in-

cluding its layers, weights, and configuration settings, into a linear stream of

bytes that can be written to disk.

7.3.2 File Formats

While the default file format for model saving is commonly the Hierarchical Data
Format version 5 (HDF5), denoted by files with the .h5 extension, TensorFlow also

35

supports saving models in the Protocol Buffers (.pb) format.

Protocol Buffers is a platform-independent, language-neutral, and extensible mech-

anism for serializing structured data. Saving models in the .pb format offers

benefits such as reduced file size and compatibility with TensorFlow Serving for

deployment in production environments.

Saving models in the .pb format using the model.save() function offers advan-

tages in scenarios where compatibility with TensorFlow Serving or deployment in

resource-constrained environments is paramount. However, it is essential to note

that the .pb format may not support certain advanced features of custom layers

present in model architecture.

8 RESULTS

The performance evaluation of the feedforward neural network for intent classi-

fication demonstrated promising results across various evaluation metrics.

8.1 Training Accuracy

Through extensive experimentation, the model achieved an average accuracy of

98.98% on the test dataset, indicating the efficacy of the proposed feedforward

neural network architecture in accurately predicting user intents.

5
10

15

0.8

1

1.2
94

96

98

Epoch

A
cc

ur
ac

y
(%

)

Training Accuracy Result

94

95

96

97

98

A
cc

ur
ac

y
(%

)

Figure 4—Training accuracy results over 20 epochs

36

8.2 Training Loss

The model exhibited a 0.0369 loss on the training set, indicating the efficacy of

the optimization process in minimizing errors during model training.

5
10

15

0.8

1

1.2
0.1

0.2

Epoch

L
os

s
Training Loss Result

5 · 10
−2

0.1

0.15

0.2

L
os

s

Figure 5—Training loss results over 20 epochs

8.3 Validation Accuracy

The validation accuracy of 98.72% further underscores the neural network’s ro-

bustness in classifying intents accurately on unseen data. Validation accuracy, as

a complementary metric to training accuracy, evaluates the model’s performance

on data not used during training, reflecting its generalization capability.

37

5
10

15

0.8

1

1.2
98

99

Epoch
Value

V
al

id
at

io
n

A
cc

ur
ac

y
(%

)

Validation Accuracy Result

98

98.5

99

V
al

id
at

io
n

A
cc

ur
ac

y
(%

)

Figure 6—Validation accuracy results over 20 epochs

8.4 Validation Loss

The 0.0552 loss on the validation set showcases the model’s capacity to gen-

eralize well to unseen data while mitigating overfitting. Loss metrics provide

insights into the discrepancy between predicted and true values, guiding the

model towards optimal parameter adjustments during training.

5
10

15

0.8

1

1.25 · 10
−2

0.1

Epoch
Value

V
al

id
at

io
n

L
os

s

Validation Loss

4 · 10
−2

6 · 10
−2

8 · 10
−2

0.1
V

al
id

at
io

n
L

os
s

Figure 7—Validation loss results over 20 epochs

38

8.5 Combined Results

The model performance metrics table presents a detailed breakdown of the

model’s performance metrics across the different training epochs, highlighting

its progression in accuracy, loss, validation accuracy, and validation loss over the

course of training.

Table 2—Model Performance Metrics

Epoch Accuracy Loss Validation Accuracy Validation Loss

1 0.9381 0.2407 0.9751 0.0658

2 0.9677 0.1238 0.9776 0.0582

3 0.9738 0.0841 0.9820 0.0489

4 0.9778 0.0698 0.9822 0.0526

5 0.9809 0.0631 0.9826 0.0462

6 0.9824 0.0570 0.9791 0.0616

7 0.9797 0.0663 0.9808 0.0567

8 0.9842 0.0516 0.9852 0.0444

9 0.9838 0.0587 0.9853 0.0416

10 0.9877 0.0389 0.9779 0.0850

11 0.9861 0.0546 0.9765 0.1116

12 0.9868 0.0420 0.9897 0.0356

13 0.9878 0.0363 0.9886 0.0415

14 0.9875 0.0553 0.9905 0.0307

15 0.9896 0.0318 0.9809 0.1136

16 0.9881 0.0473 0.9865 0.0600

17 0.9888 0.0312 0.9893 0.0387

18 0.9878 0.0522 0.9902 0.0456

19 0.9898 0.0369 0.9872 0.0552

9 REFERENCES

[1] Liu, Yuxi and Maldonado, Pablo (n.d.). R deep learning projects. url: https:

//www.oreilly.com/library/view/r-deep-learning/9781788478403/

f852725a-e941-4c7c-9542-68f860a56763.xhtml.

[2] Pedregosa, et al. (2011). “Scikit-learn: Machine Learning in Python”. In:

Journal of Machine Learning Research 12.85, pp. 2825–2830. url: http://jmlr.

org/papers/v12/pedregosa11a.html.

39

https://www.oreilly.com/library/view/r-deep-learning/9781788478403/f852725a-e941-4c7c-9542-68f860a56763.xhtml
https://www.oreilly.com/library/view/r-deep-learning/9781788478403/f852725a-e941-4c7c-9542-68f860a56763.xhtml
https://www.oreilly.com/library/view/r-deep-learning/9781788478403/f852725a-e941-4c7c-9542-68f860a56763.xhtml
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html

[3] Phung, et al. (2019). “Using Machine-Learning Algorithms to Predict Soil

Organic Carbon Content from Combined Remote Sensing Imagery and Lab-

oratory Vis-NIR Spectral Datasets”. In: url: https://www.researchgate.

net/figure/Schematic-diagram-of-k-fold-cross-validation-principle-

adapted-from-Phung-and-Rhee_fig3_373540181.

[4] Wolf, et al. (2019). “HuggingFace’s Transformers: State-of-the-art Natural

Language Processing”. In: CoRR abs/1910.03771. arXiv: 1910.03771. url:

http://arxiv.org/abs/1910.03771.

[5] Xun, Ma (n.d.). “A feed-forward deep neural network with two hidden

layers”. In: (). url: https://www.researchgate.net/figure/a-A-feed-

forward-deep-neural-network-with-two-hidden-layers-each-layer-

consists-of_fig1_318163247.

40

https://www.researchgate.net/figure/Schematic-diagram-of-k-fold-cross-validation-principle-adapted-from-Phung-and-Rhee_fig3_373540181
https://www.researchgate.net/figure/Schematic-diagram-of-k-fold-cross-validation-principle-adapted-from-Phung-and-Rhee_fig3_373540181
https://www.researchgate.net/figure/Schematic-diagram-of-k-fold-cross-validation-principle-adapted-from-Phung-and-Rhee_fig3_373540181
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://www.researchgate.net/figure/a-A-feed-forward-deep-neural-network-with-two-hidden-layers-each-layer-consists-of_fig1_318163247
https://www.researchgate.net/figure/a-A-feed-forward-deep-neural-network-with-two-hidden-layers-each-layer-consists-of_fig1_318163247
https://www.researchgate.net/figure/a-A-feed-forward-deep-neural-network-with-two-hidden-layers-each-layer-consists-of_fig1_318163247

	Introduction
	Background and Motivation
	Problem Statement
	Methodology

	Data Preprocessing
	Handling Missing Values
	Text Tokenization
	Label Encoding
	Chunking
	Embedding
	Principal Component Analysis

	Model Architecture
	Overview of Feedforward Neural Networks
	Softmax Activation Function

	Impact of Neurons and Hidden Layers on Model Complexity
	Increasing Neurons per Layer
	Decreasing Neurons per Layer
	Increasing Hidden Layers
	Decreasing Hidden Layers
	Optimal Architecture Exploration

	Intent Classification Architecture
	Input Layer
	First Hidden Layer
	Dropout Layer
	Second Hidden Layer
	Output Layer

	Practical Analysis of Training Procedures
	Train-Test Split vs. K-Fold Cross Validation:
	Train-Test Split

	K-Fold Cross Validation
	Loss Functions
	Optimization Algorithms
	L1 and L2 Regularization
	Theoretical Foundations
	Implementation
	Practical Considerations

	Dropout: Stochastic Neuron Deactivation
	Theoretical Foundations
	Implementation Details
	Practical Considerations

	Class Weight Balancing
	Theoretical Foundations

	Early Stopping
	Theoretical Foundations
	Implementation Details

	Intent Classification Training Procedures
	KFold Implementation
	Concatenation of Embeddings
	Class Weight Balancing
	Model Compilation
	Early Stopping Callback

	Evaluation Procedures
	Model Fitting
	Batch Size
	Epochs

	Prediction and Evaluation
	Saving the Model
	Serialization and Persistence
	File Formats

	Results
	Training Accuracy
	Training Loss
	Validation Accuracy
	Validation Loss
	Combined Results

	References

