Causal effect vector and multiple correlation

Ait-taleb Nabil *

Abstract

In this article, we will describe the mechanism that links the notion of causality to correlations. This article answers yes to the following question: Can we deduce a causal relationship from correlations?

^{*}Corresponding author: nabiltravail1982@gmail.com

1 Introduction

In this paper, we will understand from a proof how to relate the notion of causality to the correlation. For this, we will have to introduce the causal effect vector $X - E[X|\Omega]$ which corresponds to the signal obtained when Ω acts on *X*.

2 Correlation and causality

The relationship which links the causality to the correlations can be written as follows:

where $0 \leq$ √ where $0 \le \sqrt{1 - K_{X,\Omega} \cdot K_{\Omega^2}^{-1} \cdot K_{\Omega,X}} \le 1$ and $E(.|.)$ is the conditional average and $Var(.)$ is the variance.

Where $X - E[X|\Omega]$ is the causal effect vector corresponding to the signal obtained when the causes $Ω$ act on *X*.

 $K_{X,\Omega}$ *,* $K_{\Omega^2}^{-1}$ *,* $K_{\Omega,X}$ corresponds to the square multiple correlation.

Proof:

.

In what follows, we will factorize the variance Σ_{X^2} of the conditional variance $\Sigma_{X^2|\Omega}$ to show the correlations *K*:

$$
\Sigma_{X^2|\Omega} = \Sigma_{X^2} - \Sigma_{X,\Omega} \cdot \Sigma_{\Omega^2}^{-1} \cdot \Sigma_{X,\Omega}
$$

\n
$$
\Sigma_{X^2|\Omega} = \Sigma_{X^2} - \Sigma_{X,\Omega} \cdot (diag^{-1}(\Sigma_{\Omega^2}))^{\frac{1}{2}} \cdot K_{\Omega^2}^{-1} \cdot (diag^{-1}(\Sigma_{\Omega^2}))^{\frac{1}{2}} \cdot \Sigma_{\Omega,X}
$$

\n
$$
\Sigma_{X^2|\Omega} = \Sigma_{X^2} - \Sigma_{X^2}^{\frac{1}{2}} \cdot K_{X,\Omega} \cdot K_{\Omega^2}^{-1} \cdot \Sigma_{X^2}^{\frac{1}{2}} \cdot K_{\Omega,X}
$$

\n
$$
\Sigma_{X^2|\Omega} = \Sigma_{X^2} \cdot (1 - K_{X,\Omega} \cdot K_{\Omega^2}^{-1} \cdot K_{\Omega,X})
$$

The relationship can also be written:

$$
\frac{\Sigma_{X^2|\Omega}}{\Sigma_{X^2}} = 1 - K_{X,\Omega}.K_{\Omega^2}^{-1}.K_{\Omega,X} = \frac{||X - E(X|\Omega)||^2}{||X - E(X)||^2} = \frac{\frac{||X - E(X|\Omega)||^2}{N}}{\frac{||X - E(X)||^2}{N}}
$$

As we have: $E_{\Omega}(E(X|\Omega)) = \frac{1}{N} \sum_{\Omega}$ $E(X|\Omega) = E(X)$, we obtain:

$$
1 - K_{X,\Omega} \cdot K_{\Omega^2}^{-1} \cdot K_{\Omega,X} = \frac{Var(X - E[X|\Omega])}{Var(X)}
$$

By taking the square root we obtain the relationship.

Note that the entropy of *X* gives $h(X)$ and that the entropy of the impacted signal $X - E[X|\Omega]$ gives the following conditional entropy:

$$
h(X - E[X|\Omega]) = \frac{1}{2}\ln(2\pi.e.\text{Var}(X - E[X|\Omega])) = \frac{1}{2}\ln(2\pi.e.\Sigma_{X^2|\Omega}) = h(X|\Omega)
$$

The signal *X* therefore becomes the signal $X - E[X|\Omega]$ when the causes Ω have acted on the variable *X*.

3 Conclusion

In this paper, we have shown mathematically the steps to follow to obtain a relationship relating the notion of causality and correlation.

[1]Optimal stastical decisions. Author: Morris H.DeGroot. Copyright 1970-2004 John Wiley and sons.

[2]Matrix Analysis. Author: Roger A.Horn and Charles R.Johnson. Copyright 2012, Cambridge university press.