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Abstract

We study the propagation of a wave packet in a dispersive medium, showing the
existence of a cut-off in correspondence with the relative maximum/minimum points
and the horizontal tangent inflections of the dispersion curve.

1 The D’Alembert equation and the Schrödinger equa-

tion

The D’Alembert wave equation and the Schrödinger wave equation share a special class of
solutions, known as monochromatic plane waves.

Without loss of generality, we consider the one-dimensional case. The D’Alembert equa-
tion is written:

∂2ψ

∂x2
−

1

c2
∂2ψ

∂t2
= 0 (1)

Here c is a constant that is identified with the propagation speed of the wave described
by the solution ψ (x, t). The Schrödinger equation for a particle of mass m subjected to a
potential energy field V (x), is

−
ℏ2

2m

∂2ψ

∂x2
+ V (x)ψ (x, t) = iℏ

∂ψ

∂t
(2)

While in (1) is ψ : R2 → R, in (2) is ψ : R2 → C. Another important difference between the
aforementioned equations is that the first is a PDE of the second order in the time derivative,
while the second is a PDE of the first order with respect to the same derivative.

For (2) we are interested in the case V (x) = 0 which corresponds to the motion of a free
particle:

∂2ψ

∂x2
+

2mi

ℏ

∂ψ

∂t
= 0 (3)

Solutions of the monochromatic plane wave type are written (in complex notation):

ψ (x, t) = Aei(kx−ωt) (4)

where A > 0 is the amplitude, while k, ω ∈ R sare the wave number and the angular

frequency (or pulsation) respectively. Note that ω and k are not independent, but linked
by a relationship that depends on the PDE considered. Precisely by imposing that (4) is a
solution of (1), we find:

ω (k) = ck (5)

By imposing that (3) is a solution of (1)

ω (k) =
ℏk2

2m
(6)

From classical electrodynamics it is known that the solutions of (1) represent electromagnetic
waves in vacuum. From wave mechanics we know that the solutions of (2) describe the so-
called matter waves or De Broglie waves (also called De Broglie - Schrödinger systems). In
summary:

ω (k) =

{
ck, onde elettromagnetiche nel vuoto
ℏk2

2m
, onde di De Broglie

(7)
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In other words, the function ω (k) is linear for electromagnetic waves in vacuum, and is
quadratic for matter waves (even in the absence of forces). In the paradigm of old quantum
theory, (5) has a notable physical interpretation. In fact, the momentum of the free particle is
linked to the wave number of the De Broglie wave by p = ℏk, while from the Planck-Einstein
relation

E = ℏω =
ℏ2k2

2m
=

p2

2m

that is, the energy of the free particle in classical motion.

2 The motion of wave packets. The law of dispersion

Let’s rewrite (4)
ψ (x, t) = Aei(kx−ω(k)t) (8)

where ω (k) is given by (6). Remember that the number of waves is related to the wavelength
λ by

k =
2π

λ
(9)

so k is the number of complete oscillations in a length equal to 2π. Nella (9) is k > 0,
but we can consider values < 0 which describe regressive waves i.e. propagating along the
negative direction of the x axis. In this case the first member of (9) must be replaced with
the absolute value given that λ > 0. The pulsation is instead linked to the frequency ν from
ω = 2πν.

That said, a monochromatic plane wave is a useful idealization since any light source
exhibits inevitable frequency dispersion. In the case of radio waves, for example, no matter
how tuned a transmitter/receiver may be, there will still be frequency dispersion. Simply
put, the actual signal is a superposition of monochromatic waves. Assuming a linear super-
position, the resulting wave is described by a function ψ (x, t) which solves the D’Alembert
equation, thanks to the linearity of the latter. We have thus constructed a wave packet. For
the above, it is preferable to label the individual waves of the packet with the wave num-
ber k, rather than with the frequency. Then we write the wave function of the individual
monochromatic components:

f (x, t; k) = A (k) ei(kx−ω(k)t) (10)

where is the ; warns us that k is a parametric variable. The function A(k) i.e. the amplitude
of a single component. By virtue of the linearity of (1)-(3), the function

ψ (x, t) =

∫ +∞

−∞

A (k) ei(kx−ω(k)t)dk (11)

it is still a solution of the aforementioned equations, with ω (k) given by (7). In cases of
physical interest, A(k) is extremely peaked around an assigned value k0. It follows that
denoting the width of the distribution with 2∆k, we have

ψ (x, t) ≃

∫ k0−∆k

k0−∆k

A (k) ei(kx−ω(k)t)dk (12)

which has a simple physical interpretation: the dominant contribution to the resulting wave
comes from the monochromatic components of wave number k ∈ [k0 −∆k, k0 +∆k].
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Assuming ω (k) analytical function:

ω (k) =
+∞∑

n=0

1

n!

dnω (k)

dkn

∣
∣
∣
∣
k=k0

(k − k0)
n (13)

If ω (k) varies slowly around k0, we can truncate the Taylor expansion (13) to first order:

ω (k) ≃ ω0 +
dω (k)

dk

∣
∣
∣
∣
k=k0

(k − k0)
n , (ω0 = ω (k0)) (14)

Substituting in (11):

ψ (x, t) ≃ e
i

(

k0
dω(k)
dk |

k=k0
−ω0

)

t
∫ k0−∆k

k0−∆k

A (k) e
ik

(

x−
dω(k)
dk |

k=k0
t

)

dk (15)

If x′ = x− dω(k)
dk

∣
∣
∣
k=k0

t

∫ k0−∆k

k0−∆k

A (k) eikx
′

dk = ψ (x′, 0) ≡ ψ (x− vgt)

having defined the quantity (with the dimensions of a velocity):

vg
def
=

dω (k)

dk

∣
∣
∣
∣
k=k0

(16)

so

ψ (x, t) ≃ e
i

(

k0
dω(k)
dk |

k=k0
−ω0

)

t
ψ (x− vgt)

where the exponential is an inessential phase factor. Definitely:

ψ (x, t) ≃ ψ (x− vgt) (17)

We conclude that in linear approximation (14) the packet profile translates rigidly and
uniformly with speed (16) which we call the group velocity. Note that (17) is exactly verified
if ω (k) è lineare is linear (and not a first-order truncated Taylor expansion), as in the case of
a propagating electromagnetic packet in the void. For De Broglie waves, however, the ω (k)
is quadratic and the translation of the packet is no longer rigid, in the sense that its profile
deforms. Precisely, it tends to expand resulting in the so-called scattering of the packet. In
Fig. 1 illustrates the propagation of a Gaussian De Broglie wave packet (i.e. for which A(k)
is a Gaussian centered in an assigned k0).

Result:

vg =
d2ω (k)

dk
=

ℏk

m
=

p

m

that is, the group velocity of the De Broglie packet is identified with the classical velocity of
the particle.

In general, the function ω (k) defines the dispersion law of the medium in which the
packet propagates. We have seen that in the case of a single monochromatic wave solving
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Figure 1: Gaussian wave packet in a dispersive medium with quadratic ω (k).

the D’Alembert equation is c = ω/k. If such a wave composes a packet, then the previous
quantity can be redefined as:

vf =
ω (k)

k
(18)

and is the phase velocity of the packet. For a packet of electromagnetic waves propagating
in a vacuum, the two speeds coincide: vg = vf . For a De Broglie package:

vf =
ℏk

2m
, vg =

ℏk

m
(19)

That is, the group velocity is greater than the phase velocity. It is important to highlight
that the transport of energy occurs at the group speed, so this is the physically significant
quantity.

3 Standing waves

In (11) is ω = ω (k). Otherwise, if ω (k) ≡ ω0:

ψ (x, t) = e−iω0t

∫ +∞

−∞

A (k) eikxdk

︸ ︷︷ ︸

=φ(x)

(20)

so the wave function is factorized into a spatial part φ (x) and into a sinusoidal oscillation
of frequency ω0. As is known from the theory of wave propagation, the (20) describes a
standing wave. In this case, the group velocity is identically zero.

4 A differential equation for phase velocity

We prove an interesting theorem, expressing the various quantities as a function of the
wavelength.

Theorem 1 For a given group velocity vg (λ) of a wave packet, the phase velocity is an

integral of the differential equation:

λ
dvf
dλ

− vf = vg (21)
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Proof. From λ = 2π
k

we have the composite function ω = ω (λ (k)), so

vg =
dω

dk
=
dω

dλ

dλ

dk
= −λ2

dω

dλ

But ω = 2πν

vg (λ) = −λ2
dν

dλ
(22)

Phase velocity

vf =
ω (k)

k
= λν (λ) (23)

It follows
dvf
dλ

= ν (λ) + λ
dν

dλ
=⇒

dν

dλ
=

1

λ

dvf
dλ

−
1

λ
ν (λ)

which replaced in (22):

vg (λ) = −λ
dvf
dλ

+ λν (λ)
︸ ︷︷ ︸

=vf

(21) is a linear and non-homogeneous first-order differential equation1. Note that λ = 0
is a singular point. The general integral is

vf (λ) =
C

λ
+

∫
vg (λ)

λ
dλ (24)

C is a constant of integration. From (24) it follows that vf (λ) cannot be identically zero if
is not vg (λ). But the opposite is not true:

vg (λ) ≡ 0 ; vf (λ) ≡ 0

Infact from (24):

vg (λ) ≡ 0 =⇒ vf (λ) =
C

λ

remembering that as seen in § 3 for vg (λ) ≡ 0 have a standing wave.

***

Alternatively, the (21) can be interpreted as a relation linking the group velocity to the
phase velocity. Incidentally

dvf
dλ

= 0 =⇒ vg = vf

confirming the conclusions obtained previously. Note that for De Broglie waves it is
dvf
dλ

< 0;
to be convinced of this, simply apply the rule of derivation of composite functions to the
function vf (k (λ)).

1Linearity is a consequence of the linearity of the wave equation considered.
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5 Cut-off of a wave packet. Bloch package

Another important class of solutions is given by amplitude-modulated plane waves. Precisely,
if the potential energy field in which the particle moves is a periodic function V (x) of period
a, the energy eigenfunctions are plane waves modulated in amplitude and the modulation
envelope is in turn a function periodic of period a [1]. It follows that if the particle is initially
prepared in an energy eigenstate, the wavefunction at all times is

φk (x, t) = ϕk (x) e
i(kx−ω(k)t) (25)

Here k is a ”good quantum number” and has the dimensions of a pulse. Obviously it is not
the momentum of the particle since this is not a constant of motion. Please note that ω (k)
does not follow a quadratic law as in the case of De Broglie waves for a free particle. It is
easy to persuade oneself that ω (k) is periodic with period 2π

a
.

In the general case, the particle is prepared in a Bloch wave superposition (25), i.e. its
wavefunction at all times is a Bloch package

ψ (x, t) =

∫ k0−∆k

k0−∆k

A (k)ϕk (x) e
i(kx−ω(k)t)dk (26)

As stated, the function ω (k) which expresses the dispersion law, is a periodic function of
period 2π

a
, and is non-negative and limited:

0 < ω (k) ≤ Ω

We expect a symmetry in the propagation, hence the parity (+1): ω (−k) ≡ ω (k). Pe-
riodicity implies the existence of a countable infinity of critical points i.e. points where
the first derivative ω′ (k) = dω(k)

dk
. Remember that these points are points of relative maxi-

mum/minimum or points of inflection at a horizontal tangent. In the fundamental interval
[
−π

2
, π
2

]
let k∗ a critical point. It follows

ω′ (k∗) = 0 =⇒ ω′

(

k∗ +
2πn

a

)

= 0, ∀n ∈ Z

So

vg

(

k∗ +
2πn

a

)

= 0, ∀n ∈ Z (27)

Definition 2 The values of the number of waves k for which the group velocity vanishes are

called wave packet cut-off.

As seen in § 3, it follows the existence of a countable infinity of cut-offs of a Bloch package.
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