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Abstract

Gravitational wave (GW) data analysis has evolved significantly with
advancements in machine learning (ML) techniques, particularly convo-
lutional neural networks (CNNs) and Recurrent neural networks (RNNs).
This paper presents a comprehensive approach to developing both CNN
and RNN models for the analysis of GW data. We convert the time-series
strain data into spectrograms for the 2D CNN while retaining the time-
series format for the 1D CNN and RNNs (LSTM and GRU), allowing the
input of both data representations into the ML models. The overall pro-
cedure for training the 1D CNN and RNN models includes data segmenta-
tion, time-series data reshaping, data augmentation, model training, and
model evaluation and visualization. Then, a similar process is applied to
training the 2D CNN model, which includes data segmentation, spectro-
gram data generation and reshaping, data augmentation, model training,
and model evaluation and visualization. Our results demonstrate the use
of these methods in accurately classifying GW events, highlighting the
potential for further applications in astrophysical research.
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1 Introduction

The detection and analysis of gravitational waves (GWs) have opened a new
window into the universe, allowing us to observe astrophysical phenomena that
were previously inaccessible. The Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) and its international partners have made continuous efforts
in this field, detecting numerous GW events from merging black holes and col-
liding neutron stars. As the volume of GW data increases, there is a growing
need for efficient and accurate analysis techniques. This paper explores the use
of CNNs and RNNs for classification purposes, focusing on 1D CNN, 2D CNN,
LSTM, and GRU models. The preprocessing of GW data was done previously
already, and you can refer to for more details.

2 Importing Libraries

Necessary libraries are required for the CNN and RNN models in this paper,
utilizing the TensorFlow tool for modeling our CNNs and RNNs.



tensorfl
t Sequential, load_model
t ConvlD, PoolinglD, Conw2D, MaxPooling2D, Flatten, Dense, Dropout
train_test split

warnings

warnings.filterwarnings(

s.environ[ "TF_CPP_MIN_LO

.get_logger(

Figure 1: The packages imported are added in addition to the imported libraries
discussed in [49], which contains the basic libraries required to preprocess and
manipulate GW data.

3 Data Segmentation and Labeling
The continuous GW strain data is split into smaller, manageable segments and

labeled appropriately. This step is critical for preparing the dataset for super-
vised learning, allowing the model to learn based on discoverable patterns.



create_segments and labels(strain, event time, window size, sample rate):

strain = strain.resample(sample_rate)

int(window size * sample rate)

for 1 in range(®, len(strain) - segment length, segment_length):

segment = strain[i:i + segment_length]

segments. append(segment . value)
if segment.times.value[@] <= event_time <= segment.times.wvalue[-1]:
labels.append(1)
labels.append (@)
np.array(segments)
els = np.array(labels)
n segments, labels

segments, labels = create segments and labels(strain, t start, 2, fs)

Figure 2: The function create_segments_and_labels is used to split the strain
data into segments of 2 seconds each, starting at t_start (start of GW150914
event) and sampled at fs Hz (4096 Hz).

segments shape: (2847, 8192)

Labels shape: (2847,)

Figure 3: The shape of GW data’s segments and labels.



4 Data Preparation

4.1 Time-series Data Reshaping for 1D CNN and RNNs

To ensure the compatibility of the time-series data for 1D CNN and RNNs,
time-series data is reshaped to include an extra dimension.

segments = segments.reshape((segments.shape[8], segments.shape[1], 1))

X _train, X test, y train, y test = train_test_split(segments, labels, test_size=8.2, random state=42)

Figure 4: The segment data is reshaped with an additional dimension of 1.
Then, the data is split into the training set (80% of the data) and the testing
set (20% of the data).

Reshaped segments shape: (2847, 8192, 1)

Figure 5: The shape of the input data for 1D CNN and RNNs.

4.2 Spectrogram Generation for 2D CNN

To examine the spatial feature extraction capabilities of 2D CNN, time-series
data is converted into spectrograms, which provide a frequency domain repre-
sentation of the data.

generate_spectrogram(segment, sample_rate):
f, t, spectrogram(segment, sample_rate)

spectrograms = np.array([generate_spectrogram|segment, fs) for segment in segments])

=5

spectrograms = spectrograms[..., np.newaxis]

X_train, X test, y train, y_test = train_test_split(spectrograms, labels, test size=0.2, random state=42)

Figure 6: The generate_spectrogram function converts each time-series seg-
ment into a spectrogram, and the spectrograms are then reshaped to include
a channel dimension for compatibility with 2D CNN input. Then, the data is
split into the training set (80% of the data) and testing set (20% of the data).



Reshaped spectrograms shape: (2847, 129, 36, 1)

Figure 7: The shape of the input data for 2D CNN.

5 Data Augmentation

To prevent overfitting and improve generalization, data augmentation tech-
niques are applied to the training data.

augment data(data, labels):
augmented_data = []
augmented labels = []
for d, 1 in zip(data, labels):
augmented data.append(d)
augmented labels.append(1)
augmented data.append(np.flip(d, axis=8))
augmented labels.append(1)
noise = np.random.normal(®, 8.1, d.shape)
augmented data.append(d + noise)
augmented labels.append(1)
n np.array(augmented_data), np.array(augmented labels)

X train aug, y train aug = augment data(X train, y _train)

Figure 8: The augment_data function artificially increases the size of the train-
ing dataset by introducing variability.

Original training data shape: (1637, 81%2, 1)
Augmented training data shape: (4911, 8192, 1)

Figure 9: The shape of the data for 1D CNN and RNNs before and after aug-

mentation.

Original training data shape: (1637, 129,

Augmented training data shape: (4911,

Figure 10: The shape of the data for 2D CNN before and after augmentation.



6 Model Training
6.1 1D CNN

A 1D CNN model is constructed and trained on the augmented time-series data.

convld (Conv

max_poolingld (MaxPoolingl
D)

convld 1 ({Conv]

max_poolingld 1 (MaxPoolin

glD)
flatten 1 {Flatten)

dense_2 (Dense)

dropout 1 {Dropout)

dense 3 (Dense)

(None, 4895, 16)

(None, 4893, 32)

(None, 2846, 32)

(Mone, 65472)
(None, &4)
(Mone, &4)

(None, 1)

Param #

Figure 11: The 1D CNN model processes the time-series data directly, using
convolutional layers to extract temporal features, pooling layers to reduce di-
mensionality, dense layers to classify event presence, and a dropout layer to

prevent overfitting.

6.2 2D CNN

A 2D CNN model is built and trained on the augmented spectrogram data.



Layer (type)
conv2d I:C Oy

max_pooling2d (MaxPooling2
D)

convZd 1 (Conv2D)

max_pooling2d 1 (MaxPoolin

g20)
flatten (Flatten)
dense (Dense)

dropout (Dropout)

(Mone,

(Mone,

(Mone,

(Mone,
(Mone,

(Mone,

Param #

Figure 12: The 2D CNN model consists of convolutional layers for feature ex-
traction, pooling layers for dimensionality reduction, and dense layers for event
classification. A dropout layer is added to help prevent overfitting.

6.3 LSTM

An LSTM model is constructed and trained on the augmented time-series data.



Output Param #
lstm (LSTM)
dropout (Dropout)

lstm 1 {LSTM)

dropout 1 {Dropout)

dense (Dense)

Figure 13: The LSTM model processes the time-series data directly, using two
LSTM layers for feature extraction, two dropout layers to prevent overfitting,
and a dense layer to classify event presence. For quicker model training, the size
of the data for LSTM is resampled to four times less than the data for 1D and
2D CNN

6.4 GRU

A GRU model is constructed and trained on the augmented time-series data.



Output 5 Param #

gru (GRU) (Mone,

dropout 2 (Dropout) (None, 28

gru 1 (GRU) (None,

dropout_3 (Dropout) (None,

Figure 14: The GRU model processes the time-series data directly, using two
GRU layers for feature extraction, two dropout layers to prevent overfitting,
and a dense layer to classify event presence. For quicker model training, the
size of the data for LSTM is resampled to four times less than the data for 1D
and 2D CNN

7 Visualization and Evaluation
To examine the CNNs and RNNs more closely, The training and validation

loss and accuracy are plotted to visualize the training process over epochs and
determine the performance of each model.
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Figure 15: These plots show the training history of the 1D CNN, including the
test loss and accuracy evaluation.

7.2 2D CNN
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Figure 16: These plots show the training history of the 2D CNN; including the
test loss and accuracy evaluation.
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7.3 LSTM
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Figure 17: These plots show the training history of the LSTM, including the

test loss and accuracy evaluation.

7.4 GRU
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Figure 18: These plots show the training history of the GRU, including the test

loss and accuracy evaluation.
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8 Results and Discussion

Both CNN and RNN models showed promising results in classifying GW data
based on event presence. The 1D CNN and RNNs effectively captured temporal
patterns directly from the reshaped time-series data, while the 2D CNN used the
frequency domain data representation provided by spectrograms. The models
were evaluated based on test accuracy and loss, demonstrating their application
in real-time GW event detection.

9 Conclusion and Outlook

This study highlights the effectiveness of CNNs and RNNs in analyzing GW
data, with both 1D and 2D CNNs, LSTM, and GRU producing satisfactory
results. Future work will involve exploring more advanced ML models applicable
to the means of detecting GW event presence. The integration of these ML
techniques into the GW analysis will enhance our ability to detect and interpret
these cosmic events, contributing to our understanding of the universe and the
future outlook of astrophysical research.
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