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Discussion of a possible approach for the
quantization of the gravitational field

Yandong Yang

Abstract—In this paper, the author first reviews the es-
sential contradictions of general relativity(GR) and quan-
tum mechanics(QM) from the perspective of background
manifolds,while pointing out a fundamental principle that
both must be satisfied. Schrodinger’s cat experiment,
Yang’s double slit interference experiment, and the ERP
paradox are discussed based on this principle. The author
proposes to unify GR and QM in a mathematical context
by introducing the concept of virtual potential field and
virtual mass. A model of black hole is given under the
inspiration of this discussion, and a possible explanation
for black hole information paradox is offered under this
scheme, which may also provide some hints for the mystery
of the antimatter. The author analyzes the possible applica-
tions of virtual particles to quantum field theory, including
the treatment of divergent terms in the quantization of
real scalar field and the physical implications of the Pauli-
Villars renormalization method, while giving an estimate
of the Lamb movement. Finally, the author suggests a
plausible approach for the quantization of the gravitational
field.

Index Terms—virtual particles, black hole information
paradox, antimatter,quantum gravity.

I. INTRODUCTION

The biggest conflict between general relativ-
ity(GR) and quantum mechanics(QM) may be that
the two describe the four basic forces of nature in a
different manner. The theory of quantum mechanics
holds that forces are generated by the exchange
of particles, i.e., exchange of photons produces
electromagnetic force, exchange of weak standard
bosons produces weak interaction force, exchange
of gluons generates strong interaction force, with
gravity has yet to be ”quantized” [1]; While the
theory of general relativity holds that gravity is
caused by the bending of time and space, but the
other three forces can not be ”geometricized”.

Y. D. Yang is with Economic and Technological Research Insti-
tute, Ningxia Electric Power Co., LTD. Yinchuan, Ningxia, 753000,
P.R.China e-mail: mermaidyy@126.com.

Manuscript received , 2024; revised , 2024.

According to general relativity, which states that
the metric, gab,and quantities derivable from it are
the only spacetime quantities that are allowed to
appear in the equations of physics. And that given
a point P on a manifold M and a vector V tangent
to M at point P , we determine the only geodesic
line on the manifold. For example, any meridian
starting from the north pole of a sphere is part of a
geodesic line. However, according to the uncertainty
principle of quantum mechanics, if a free particle
is precisely located at the north pole at the initial
moment, we can not determine which direction it
moves. We can only infer the rate and direction of
its motion at the initial moment by the particle’s
trajectory, that is, as long as the particle’s movement
draws an ”observable” arc length, we can infer the
initial velocity of the particle.

Although the principle of uncertainty does not vi-
olate the physical laws of the macroscopic motion of
particles (the motion of free particles along geodesic
lines),it is not easy to introduce the uncertainty
principle of quantum mechanics into the curved
space-time [2]. Still, we can find a basic principle
that both theories have to follow.

II. A GENERAL PRICIPLE

As we know, the essence of the principle of
general covariance is to exclude all human factors
unrelated to the intrinsic geometry of space and time
in the expression of physical laws. It’s a natural idea
that the uncertainty principle of quantum mechanics
should also abide by this principle. It seems that if
a physical process must be described by introducing
a ’measurable set’ independent of the intrinsic ge-
ometry of the background space, then the quantum
effects of the process will disappear (or no longer
apparent), which I will call principle No.1 in later
text. Let’s discuss a few examples first:

Example 1: In the Schrodinger’s Cat experiment
[3] [4], the whole physical process should be re-
garded as the interaction between two systems: one
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is the system of radium, the decay of which can be
described without the need to introduce any mea-
surable set (length, volume, etc.) and is therefore
purely quantum mechanical; the other is a macro-
scopic system consisting of the box, the cat and the
bottle containing cyanide. For the two systems to
interact with each other, it is necessary to break the
bottle or open a small hole in the side wall of it
to release cyanide into the air, thus a measurable
set (the diameter of the hole) must be introduced.
According to principle No.1, the physical process
will no longer have obvious quantum mechanical
effects, the results are conclusive, and there is no
superposition states of live and dead cats. If there
is no intermediate (the cyanide-filled bottle), but
rather direct interaction between the decay system
and the cat, then there are also two cases: one is
that the radiation produced by decay hits the cat
for enough time to kill it, then a measurable set
of ”time interval” is introduced and the conclusion
is definitive. The other case is that the radiation
produced by decay acts immediately with the cat,
without observable time interval, then the cat is no
different from a microscopic particle, the states of
cat and radium atoms are indeed entangled [5].

Example 2: In Young’s double-slit interference
experiment [6], let the photon pass through the slits
one by one without making any measurements of
its path, the physical background can be considered
as pure quantum mechanical. Once we make mea-
surements (in any way) and try to determine which
slit the photon passes [7], the interference pattern
disappears. The reason is that to determine which
slit the photon passes through, a measurable set of
”resolution” must be introduced to distinguish the
two slits, then the quantum effect disappears.

Example 3: For the interpretation of ERP paradox
[8] [9], the description of two entangled particles
does not require the introduction of any measurable
set, so it is a pure quantum mechanical effect.
According to Einstein, the spins of two particles are
determined at the time of separation (but we do not
know which particle takes which spin direction be-
fore the measurement). From a macroscopic point of
view, in order to measure the spin of two particles,
we have to wait for them to separate for a distance
(a measurable set), while a quantum mechanical
description of the process require no concept of
measurable sets, which is self-evident in the wave

functions of entangled states:

|0〉C →
1√
2

[| ↑ 〉A| ↓ 〉B ± | ↑ 〉B| ↓ 〉A] (1)

so we have to consider them as a whole. If we
consider this problem in the framwork of field the-
ory, we may have to acknowledge the existence of
superluminal particles which are used to exchange
information between the entangled particles.

III. INTRODUCTION OF VIRTUAL POTENTIAL
FIELDS AND VIRTUAL PARTICLES

Acorrding to the discussion above, if we want
to explore the root causes of the contradictions
between general relativity and quantum mechanics,
we should first focus on those constants independent
of human factors, to see what the effect is when
those constants were changed. As we all know, the
speed of light is an invariant constant regardless
of the state of its observer. But no one has ever
answered the questions: Why is it right for being
so? What happens if one exceeds the speed of
light? Now let’s take the wildest guess and look for
some clues.Take Einstein’s mass velocity relation
mR = m0/

√
1− v2/c2 ≡ γm0 for example, the

mass becomes imaginary mR = ±im0/
√
v2/c2 − 1

when the particle velocity exceeds the speed of light
(mathematically of course!). According to the law of
gravitation F = GMm

r2
, a particle with an imaginary

mass will feel a virtual potential field.
Does the virtual potential field introduced in this

way have any physical significance? For simplicity,
a one-dimensional constant virtual potential field is
introduced:

V (x) =

{
0, x < 0
−iV, x > 0

, V > 0 (2)

Let a particle with energy E enter the virtual
potential field from x = −∞ along the x direction,
when x < 0 the wave function writes:

ψ1(x) = eik0x +Be−ik0x, x < 0, k0 =

√
2µE

h̄2 (3)

Where Be−ik0x is the reflected wave function
generated by the virtual potential field, and the wave
function in x > 0 region satisfies:

d2ψ(x)

dx2
+ k2ψ(x) = 0, x > 0, k =

√
2µ(E + iV )

h̄2

(4)



3

The general solution is:

ψ2(x) = Aeikx, , x > 0 (5)

By continuity condition ψ1(0) = ψ2(0), ψ1
′(0) =

ψ2
′(0), and suppose V � E, then B2 ≈ 1

16

(
V
E

)2 ≈
0. Take approximate value B = 0, A = 1, I get

ψ1(x) = eik0x (6)

ψ2(x) = eikx = eik0xe−( k0V
2E )x (7)

Substituted into the probability flow density for-
mula, I arrive:

j1 =
h̄k0

µ
, , x < 0 (8)

j2 =
h̄k0

µ
e−( k0V

E )x, , x > 0 (9)

When a particle with E > 0 enters the virtual
potential field, the probabilistic flow density of the
particle decreases with the increase of the injection
depth, indicating that the particle is absorbed by the
virtual potential field. However, if I write V (x) =
±iV, x > 0, V > 0 in the initial condition (5),
then

j2 =
h̄k0

µ
e±( k0V

E )x, x > 0 (10)

so the physical process corresponding to the absorp-
tion/generation of matters in the virtual potential
field. This may explain why the velocity of a
particle can not exceeds the speed of light: a particle
with imaginary mass feels a virtual potential field
according to the law of gravitation, thus a tachyon
will be absorbed or give rise to a Big Bang instantly
according to formula (10).

This can also be used as a simplified black hole
model. The formation of black holes can be consid-
ered as the result of a special space-time coordinate
transformation. I first write down the inertial system
metric:

ds2 = c2dT 2 − dX2 − dY 2 − dZ2 (11)

Now if I want to change the upper metric to the
following form through a coordinate transformation:

ds2 = −c2

[
1 +

ωzµ(t)

c2

]2

dt2 − dx2 − dy2 + ω2dz2

(12)
Suppose the transformation I look for can be

written as:
Zν = Zν(zµ, zν), µ, ν = 0, 3
X = x, Y = y

(13)

substitute (13) into (11)and (12), I arrive:

−c2
[
1 + ωzµ(t)

c2

]2

dt2 + ω2dz2

= −
[
∂Z(z,t)
∂z

dz + ∂Z(z,t)
∂t

dt
]2

+c2
[
∂T (z,t)
∂z

dz + ∂T (z,t)
∂t

dt
]2

(14)

Compare the coefficients at both ends of the
formula, I obtain:

c2

[
∂T (z, t)

∂z

]2

−
[
∂Z(z, t)

∂z

]2

= ω2 (15)

c2

[
∂T (z, t)

∂t

]2

−
[
∂Z(z, t)

∂t

]2

= −c2

[
1 +

ωzµ(t)

c2

]2

(16)

∂Z(z, t)

∂z
· ∂Z(z, t)

∂t
= c2∂T (z, t)

∂z
· ∂T (z, t)

∂t
(17)

Solving equation (15)-(17):

Z(z, t) = c

∫ t

t0′
ch

[∫ t

t0

µ(t)

c
dt

]
dt+ωzsh

∫ t

t0

µ(t)

c
dt

(18)

T (z, t) = c

∫ t

t0′′
sh

[∫ t

t0

µ(t)

c
dt

]
dt+

ωz

c
ch

∫ t

t0

µ(t)

c
dt

(19)
looking back at (12), compared with:

g00 = 1 +
ωzµ(t)

c2
= 1 +

2U

c2
(20)

I get:

U =
1

2
ωzµ(t) (21)

if ω = ±i, then

ds2 = −c2

[
1 +
±izµ(t)

c2

]2

dt2 − dx2 − dy2 − dz2

(22)
this is equivalent to introducing a virtual potential

field:
U = ± i

2
zµ(t) (23)

If the probability flow density represents the infor-
mation of matter, according to formula (9), as matter
falls into the black hole and gets closer and closer
to the center, the outside world (infinity viewer)
will get less and less information about the matter.
So a large amount of information is essentially left
outside the black hole or on its route dropping to the
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center of the black hole, which provides a possible
explanation for the black hole information paradox
[10] [11] [12].

Besides, according to formula (10) and (23),
the black hole not only consumes matter, but also
produces matter, providing a possible explanation
for the antimatter jet of the black hole. If it can
be proved that this coordinate transformation leads
to the transformation of matter/ antimatter, it will
provide a new clue to the mystery of antimatter,
which is also a subject worth further study.

As for the ERP parodox, we can assume that two
entangled particles transmit information through su-
perluminal virtual particles. When we measure one
of the entangled particles, the superluminal virtual
particles are absorbed by the potential field provided
by the measurement instrument, so they can no
longer transfer information between the two entan-
gled particles, and the states of the two particles are
subsequently determined.

A similar discussion can be made for the double-
slit interference experiment. First, how does the
photon know whether the travel path ahead is double
slit or single slit? We can assume that the photon
flash superluminal virtual particles to detect the path
ahead, When the photon detect a double-slit, it will
send a virtual photon through one of the slit, and
itself go through the other, and then they interact
with each other to produce interference fringes on
the screen. Once we want to observe which slit
the photon passes, whether by instant observation
or delayed observation, the virtual photon will be
absorbed by the potential field provided by the
detector, and only one photon is left, which cannot
produce interference fringes by itself. This expres-
sion can at least provide a self-consistent expla-
nation for the delayed selection experiment. It
should be particularly noted that:(1) The concept
of ”virtual photon” is only an equivalent descrip-
tion of the interaction between the particle and
the background space in which it is located, and
actually no ”virtual photon” is emitted (otherwise
it is a real photon). (2) When I say ”observable”
and ”measurable” I mean the measurement process,
in which the influence of the uncertainty principle
of quantum mechanics should be considered. (3)
The introduction of ”superluminal virtual particles”
and ”virtual mass” are mathematical concepts. In
fact, this paper does not support any superluminal
phenomenon, but aims to discuss why the motion

of macroscopic matter cannot exceeds the speed of
light (a very simple reason is that the superluminal
phenomenon violates the law of causality). But for
microscopic particles, we can find a clever way that
allows superluminal phenomenon without violating
the law of causality, considering the amplitude of a
free particle propagating from x0 to x:

[U(t) =< x|e−iHt|x0 > (24)

for relativistic particles:

U(t) =< x|e−it
√
p2+m2|x0 >∼ e−m

√
x2−t2 (25)

the propagation amplitude outside the light cone is
not zero, but we can argue that beyond the light
cone, the probability of finding a particle is getting
smaller and smaller. That is, it is possible to find
particles in a thin layer outside the light cone, but
according to the above discussion, such particles are
quickly absorbed by vacuum, ensuring that there is
no violation of causality at the macroscopic scale.

IV. VIRTUAL PARTICLES AND FIELD THEORY

The introduction of the virtual potential field
may also provide a completely new renormalization
method for the quantization of the gravitational
field. Let’s start with the quantization of the real
scalar field. When there is only one real scalar field,
I introduce a virtual potential in the Lagrangian:

L =
1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 + iλ∂0ϕ (26)

where λ is a real constant, µ = 0, 1, 2, 3, It’s easy
to see that ϕ(x) obeys K-G equation:

(∂0
2 −∇2 +m2)ϕ(x) = 0 (27)

and conjugate momentum:

π(x) =
∂L
∂ϕ̇

= ϕ̇(x) + iλ (28)

Hamiltonian should be written as:
H (π, ϕ) = πϕ̇− L
= 1

2
{ϕ̇(~x, t)2 + [∇ϕ(~x, t)]2 +m2ϕ(~x, t)2} (29)

integral by parts and throw away the surface item,
I arrive:

H =
1

2

∫
d3x

[
ϕ̇2 + ϕ(−∇2 +m2)ϕ

]
(30)

The plane-wave expansion of ϕ(~x, t) writes:

ϕ(~x, t) =
∫
d̃k{[a(k) + ib(k)]e−ikx

+ [a+(k) + ib+(k)]eikx} (31)
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where, the integral measure is:

d̃k =
d3k

(2π)32ωk
=

d4k

(2π)4 δ(k
2 −m2)θ(k0)2π (32)

and ωk =
√
~k2 +m2. substitute (31) into equa-

tion(29) and after a lenthy calculation I get:

H = 1
2

∫
d̃kωk{[a(k)a+(k) + a+(k)a(k)]

− [b(k)b+(k) + b+(k)b(k)]}+ iO(~x, t)
(33)

abandon the virtual item (considered as unphysical
terms arising from the virtual process) , and consider
[a, a+] = 1, if we introduce {b, b+} = 1, then

H =

∫
d̃kωka

+(k)a(k) (34)

divergent term no longer exists. But this does not
mean that particle b is real, it is just an equiv-
alent method to deal with the zero point energy.

Incidentally, when we evaluate the one-loop con-
tribution to the electron vertex function in QED:

Fig. 1: vertex correction

in order to keep the Feynman integrals finite,
we may introduce a fictitious heavy photon through
Pauli-Villars regularization:

1

(k − p)2 + iε
→ 1

(k − p)2 + iε
− 1

(k − p)2 − Λ2 + iε
(35)

but the physical significance of this practice is
not clear, in order to explain the origin of the
divergence term, we have to consider the following
diagrams: when R→∞, diagram (a) can be divided
into sub-diagrams (b)+(c): and diagram (c) will be
cancelled by diagram (d), so we just need to subtract
diagram (b), and consider it as the contribution of
a superluminal virtual particle (emitted by infinite

Fig. 2: corrections containing virtual particles

past electron and then absorbed by infinite future
electron), we should write:

1

(p− iΛ)2 →
1

p2 − Λ2 − i2pΛ
→ 1

(p− k)2 − Λ2 + iε
(36)

for k → 0, this justified the Pauli-Villars regu-
larization and provide the physical origin of the
divergent term. To see this more clearly, consider
the second-order Feynman diagram of the electronic
self-energy:

Fig. 3: electron self-energyn

the corresponding S matrix element can be writ-
ten directly with Feynman rules, and the result is:〈
f |S(2)

e.m.|i
〉

= (2π)4δ4(p′ − p)ū(α′)(p′)Σ(p)u(α)(p)
(37)

where

Σ(p) = (−ie)2

∫
d4k

(2π)4γ
µ i

/p− /k −m+ iε
γν
−igµν
k2 + iε

(38)
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the Hamiltonian of positronium can be written as:

H = H0 +Hi (39)

Where

H0 =

∫
d3x(He.m. +HDirac) (40)

He.m. =: −1

2
ȦµȦµ +∇Aµ · ∇Aµ : (41)

HDirac =: ψ̄(−i~γ · ∇+m)ψ : (42)

Hi(x) = e : ψ̄(x) /Aψ(x)− δmψ̄(x)ψ(x) : (43)

where m is the physical mass of the particle, m0

is the bare mass, A is the electromagnetic vector,
δm = m − m0. The first-order transition matrix
element produced by the additional term −δm :
ψ̄(x)ψ(x) : is:〈

f |bα′(p′)S
(1)
δmb

+
α (p)|i

〉
= iδm(2π)4δ4(p′ − p)ū(α′)(p′)u(α)(p)

(44)

compare equation (37) and (44), in order to cancel
the infinity in Σ(p), we should haveΣ(p) ∼ iδm,
thus, the virtual mass corresponds to the pole of the
integral in the one-circle diagram.

Fig. 4: corrections by absorptions of virtual
particles

As an example of the application of virtual parti-
cles, here I present an estimate of Lamb movement.
Suppose the interaction between the electron and the
proton is an elastic collision, and the electron mass
is me, the proton mass is mp, initial velocity of the
electron is ve, initial kinetic energy of the electron
is Ee, velocity of the electron after collision is v′e,
kinetic energy of the electron after collision is E ′e
, initial velocity of the proton is 0, velocity of the
proton after collision velocity is vp, kinetic energy
of the proton after collision is Ep. According to the
conservation law of energy and momentum:

v′e =
1− k

2
vp (45)

E ′e =
(1− k)2

4k
Ep (46)

where
k =

mp

me

(47)

The energy loss of electrons after interaction, that is,
the energy transfer efficiency (reflecting the energy
change caused by electron emission or absorption
of virtual photons) is:

η =
Ep
Ee

=
4k

(1− k)2+4
(48)

Now I equivalent the one-circle graph to the con-
tribution of the virtual photon which is absorbed
at one wavelength, the double-circle diagram to the
contribution of the virtual photon absorbed at two
wavelengths and so on, the contribution of the total
energy of each circle is related to the coupling co-
efficient of the field, which for the electromagnetic
field is α = h̄

mecr0
≈ 1

137
.

In Fig.4, the effect on the electron kinetic energy
is shown as follow:

1− (αη+α2η2+α3η3+...) = 1− αη

1− αη
≈ 1− αη

(49)
The total 2S orbital energy is corrected to:

E2S = − e2

4πεr
+µc2+

1

2µ
(

2h

2πr
)2(1−αη) =−1

8
α2µc2(1 + αη)

(50)
Same argument:

E2P = −1

8
α2µc2(1 + αη′) (51)

∆E =E2S − E2P =
1

8
α2µc2α(η′ − η) (52)

Since 2P and 2S orbital electron clouds are signifi-
cantly different, we can actually propose a formula
for the energy transfer efficiency and then adopt
a numerical integration method to calculate ∆E
exactly. For example, we can assume that the energy
transfer efficiency is proportional to cloud density,
inversely proportional to r, and after a reasonable
choice of the integral limit, we can get results sim-
ilar to the lamb movement. However, in this paper
I take a roughly estimation, and consider that the
difference between the energy transfer efficiency of
2P orbital and 2S orbital is a higher order correction
of α, and is related to the square of the orbital
quantum number, i.e.

η′ − η = n2αη (53)

Substitute the relevant data, I get:

∆E ≈ 0.0382cm−1 (54)
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consistent in order of magnitude with the observed
spectral data.

The last consideration is the quantum theory of
gravity, I first write out the Einstein-Hilbert action:

S =
1

16πG

∫
d4x
√
−gR (55)

and when I write gµν = ηµν+hµν , where ηµν denotes
the flat Minkowski metric and hµν the deviation
from the flat metric, then the expasion of the action
in powers of hµν should take the schematic form:

S ′ =
1

16πG

∫
d4x(∂h∂h+ h∂h∂h+ h2∂h∂h+ ...)

(56)
after dropping total divergences. In order to cancel
the various divergent terms, I have to introduce
various virtual fields:

gµν = ηµν + hµν + iκµν + i∂µεν + i∂νεµ + ... (57)

where ε denotes an infinitesimal coordinate trans-
formation, in fact,

gµν = ηµν + hµν + iκµν (58)

is enough, consider the self energy correction to the
graviton propagator as shown in Fig.4 and Fig.5:

Fig. 5: 1-loop correction

Fig. 6: 2-loop correction

we should write the 1-loop propagator corrections
schematically as:

1

Mp
2

1

p2
[

∫
d4k

kkkk

k2k2
]

1

p2
(59)

so the overall tree+1-loop propagator is:

1

p2
(1 +

1

Mp
2 [

∫
d4k

kkkk

k2k2
]

1

p2
) (60)

so the correction to 1/G is quadratically divergent
∼ k2. In order to eliminate the divergent term, I
introduce an overall counter term shown in Fig.5:

Fig. 7: counter term for loop correction

which is equavalent to offer an overall virtual
momentum, so we get: ∼ (k + ik)2 ∼ i2k2, and
abandon the virtual items, the 1-loop divergent term
disappear. Or we can consider it another way, take
the tranformation:

∂h∂h→ ∂(hµν + iκµν)∂(hµν + iκµν) (61)

and dictate the commutation relations:

hµν
2 − κµν2 = 0 (62)

hµνκµν + κµνhµν = 0 (63)

we can get the same conclution. For 2-loop correc-
tions, 4-vertices contribute k8

Mp4
, 5 internal propa-

gators contribute 1
k10

, two loop integrals contribute
d4kd4l ∼ k8, plus an outside propagtor k2, the
overall contribution of 2-loop correction is k4

Mp4
.

One can easily check that by introducing proper
anti/commutation relations for hµνand κµν , and just
abandon the virtual items, we can get S ′=0. That’s
mean when we eliminate the effects of the vacuum
background energy, the total energy of the system is
only related to some formal integral of the curvature
of the spacetime. From this point of view, it’s no
surprise to identify gravitation as the bend of space-
time. The method above also applies to the presence
of a matter field, we can quantize the field by impos-
ing appropriate anti/commutation rules according to
the specific form of the expression, and abandon the
virtual items and surface items when evaluating the
integration.

V. CONCLUSIONS

In this paper I propose for the first time that
imposing a spacetime coordinate transformation in
the inertial system metric may introduce a virtual
potential field, which corresponds to the absorption
or generation of matters, thus providing a plausible



8

explanation for the black hole antimatter jet and the
imbalance of matter and antimatter in the universe.
And I suggest a common approach for the renor-
malization of various quantum fields. The essence
of this approach is that by introducing appropri-
ate virtual potential field (and specify the required
anti/commutation relation for the virtual particles),
we can manage to eliminate some divergent terms
and unecessary constants in the expression of the
Hamiltonian. And I obtain some preliminary results
on the quantization of the gravitational field.
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