Advancements in Gravitational Wave Detection
with Machine Learning: Autoencoders with
Convolutional and Recurrent Layers

Shufan Dong!

lemail: shufandong6011@gmail.com

Abstract

This research paper provides a detailed analysis of the advancements
in gravitational wave (GW) detection, the history and importance of GWs
in astrophysics, and the application of machine learning (ML) techniques
in analyzing GW data. We endeavor to describe various ML models, in-
cluding autoencoders of 1D CNN, 2D CNN, LSTM, and GRU for GW
data analysis, with the GW data that were already preprocessed, seg-
mented, labeled, reshaped, augmented, and prepared into training and
testing datasets beforehand.

Contents

[1I__Introductionl

|2

GW data Preparation|

[2.1 Import Libraries|,

2.2 Segment Labeling|.
[2.3_Data Preparation| 0000000
3.1 1D CNN, LSTM, and GRU Autoencoders|
232 2D CNN Autoencoder|
2.4 Data Augmentation|
[2.4.1 1D CNN, LSTM, and GRU Autoencoders|

13

w N

T o W W

[4 Plot Model Training History| 10

M1 1D CNN Autoencoderl 10
M2 2D CNN Autoencoder] 10
B3 LSTM Autoencoded 11
M4 _GRU Autoencoder] 11
[5_Conclusionl 12

1 Introduction

GWs have revolutionized our understanding of the universe since their first de-
tection in 2015 by LIGO. This paper reveals the application of autoencoder ML
models to GW data analysis and its significance in astrophysics, which has en-
hanced our ability to detect and analyze these waves. Before implementing the
ML models, the GW data needs to be preprocessed before it can be accurately
analyzed, and you can refer to for details about GW data preprocessing.
This paper will focus on explaining the autoencoder ML models (with layers
of 1D CNN, 2D CNN, LSTM, and GRU) and briefly discuss the methodolo-
gies of GW data preparation, displaying the outcomes of each step of the GW
data preparation before the implementation of ML techniques, and any detailed
illustration of the methods for GW data segmenting, labeling, reshaping, and
preparing can be found in [46] instead.

2 GW data Preparation

ML techniques have become indispensable in analyzing the massive amounts of
data generated by GW detectors. This section outlines the steps involved in
preparing GW data before it is input into the ML models.

2.1 Import Libraries

Importing these libraries is essential as they provide the necessary tools for
advanced data preparation and ML model implementation. Suppressing warn-
ings and TensorFlow info messages ensures a clean and smooth execution of the
codes, providing an emphasis on the outputs that help us evaluate the perfor-
mance of each ML model.

t matplotlib.
cipy.signal butter, filtfilt, spectrogram
import StandardScaler

-1

Sequential, load model
ConvlD, MaxPoolinglD, Conv2D, MaxPooling2D, UpSamplinglD, UpSampling2D, LSTM, GRU, Flatten

t Dense, Dropout, Reshape, RepeatVector, TimeDistributed
klearn.model selection train_test split

import warnings
warnings.filterwarnings(

os.environ['TF_CPP_MIM

tf.get logger().setlevel(

Figure 1: Libraries imported for data manipulation (numpy, pandas), web re-
quests (requests), plotting (matplotlib), signal processing (scipy.signal), data
preprocessing (sklearn.preprocessing), machine learning model building and
training (TensorFlow), splitting datasets (sklearn.model selection), and sup-
pressing warnings (warnings). These libraries are fundamental for data prepa-
ration, ML model training, and ML model evaluation.

2.2 Segment Labeling

Segmenting the data and labeling each segment is crucial for supervised learning.
It helps in breaking down the continuous data into consistent pieces, each with
an associated label. This step is foundational for training models that can learn
from labeled examples.

Segments shape: (2847, 8192)

Labels shape: (2847,)

Figure 2: The shape of the segments and labels.

2.3 Data Preparation
2.3.1 1D CNN, LSTM, and GRU Autoencoders

We directly use the time-series data, as 1D convolutional and recurrent layers
don’t require any other complicated preparation steps before they can be input
into the autoencoders. A dimension of 1 is added to the time-series data for the
compatibility of the autoencoders with 1D convolutional and recurrent layers.
We then split the data into training and test sets to validate and examine the
performance of the autoencoders.

(2847, 512, 1)

Figure 3: The shape of the time-series data after it’s being prepared. Be aware
that we purposefully downsample the data to improve the speed of the model
training process

2.3.2 2D CNN Autoencoder

We convert time-series data into spectrograms to exploit spatial hierarchies nec-
essary for implementing 2D convolutional layers since spectrograms provide a
visual representation of the frequency content of signals over time. We reshape
spectrograms to include a channel dimension for the compatibility of 2D convo-
lutional layers. We then split the data into training and test sets for evaluation
and validation purposes after training the autoencoder.

Figure 4: Shape of the spectrogram data after it’s being prepared. Here, the
data is kept original and not downsampled.

2.4 Data Augmentation

Data augmentation increases the diversity and reliability of the training data
without actually adding in new data. It helps improve the generalization ability
of the ML models by generating varied versions of the existing training data.

2.4.1 1D CNN, LSTM, and GRU Autoencoders

Figure 5: The shape of the time-series data before and after data augmentation.

2.4.2 2D CNN Autoencoder

Figure 6: The shape of the spectrogram data before and after data augmenta-
tion.

3 Autoencoder Training and Evaluation

The purpose of the autoencoders is to first compress the dimensions of the data
in the encoder section and then expand the dimensions back in the decoder
section, with the bottleneck section in the middle to mark the end of data di-
mensionality reduction and the start of data dimensionality expansion, and this
is similar to as if you are to visualize the Big Bounce hypothesis on the contrac-
tion and expansion of the universe. Because of the unique training process of
these autoencoders, ReLLU activation is chosen for its non-linearity. Addition-
ally, this method attempts to reconstruct the original input at the end of the
training process, and then we can visualize how well the autoencoder performs
at this reconstruction step to determine its ability in GW event detection.

3.1 1D CNN Autoencoder

1D CNN Autoencoder is efficient in extracting temporal features from time-
series data.

encoder = Sequential(]
1D(16, 3, activation="relu’, input_shape=(segments.s
oolinglD(2),
3, activation="relu"),
oolinglD(2),
1D(64, 3, activation='relu'),
(PoolinglD(2

1

bottleneck = Sequential(]
Flatten(},
Dense(32, activation="relu’

1

decoder = Sequential(]
64 * (segments.shape[1l] // 8), activation="relu’, input shape=
shape((segm / 8, 64)},

samplinglD(2),
activation="relu’, padding="
UpSamplinglD(2),

Figure 7: The 1D CNN autoencoder contains an encoder section (with 1D
convolutional layers for feature extraction and 1D pooling layers for spatial di-
mensionality reduction), a bottleneck section (with a flatten layer to convert
the data from 1D feature maps into a 1D vector and a dense layer for dimen-
sionality reduction), and a decoder section (with a dense layer to expands the
compressed data into higher dimensional space, a reshape layer to map the data
from 1D vector to 2D tensor, 1D convolutional layers to feature refining, and
1D upsampling layers for dimensionality expansion).

3.2 2D CNN Autoencoder

2D CNN autoencoder is effective in capturing spatial hierarchies from spectro-
grams.

activation="re padding= » input_shape=(spectrograms.shape[1], spectrogram:
paddin
activation padding=
paddin
ctivation 1*, padding=
padding="

bottleneck = Sequential(]
Flatten(),

56, activation="r

Sequential([
* (spectrogra [2] // 8), activation
ctrograms. / 8), 64)),

u', padding=

u', padding="

» padding

Figure 8: The 2D CNN autoencoder contains an encoder section (with 2D
convolutional layers for feature extraction and 2D pooling layers for spatial di-
mensionality reduction), a bottleneck section (with a flatten layer to map the
data from 2D feature maps into a 1D vector and a dense layer for dimensionality
reduction), and a decoder section (with a dense layer to expands the compressed
data into higher dimensional space, a reshape layer to map the data from 1D
vector to 3D vector, 2D convolutional layers to feature refining, and 2D upsam-
pling layers for dimensionality expansion).

3.3 LSTM Autoencoder

LSTM Autoencoder captures and learns long-term dependencies in sequential
data.

encoder = Sequential(]
LSTM{84, activation="relu’, return_sequen » input_shape=(segments.shape[1], 1)),

LSTM(32, activation= u', return_sequen

Sequential([
activation="relu’

RepeatWVector
L5TM(32, act
LSTM(64, activ

TimeDistributed(Dense(

Figure 9: The LSTM autoencoder contains an encoder section (with LSTM lay-
ers for data processing and timesteps returning), a bottleneck section (with a
dense layer for dimensionality reduction), and a decoder section (with a Repeat-
eVector layer to simply repeat the compressed data for it to match the input
sequence length, LSTM layers to preprocess the data for the repeated vector
and return its timesteps, a TimeDistributed layer to apply a dense layer to each
timestep to reconstruct the original input data).

3.4 GRU Autoencoder

GRU Autoencoder is efficient memory usage and effective for sequential depen-
dencies.

encoder = Sequential(]
GRU(64, activation lu", return_sequence s input_shape=(segments.shape[1], 1)),

GRU(32, activation="relu’, return_sequences=

Sequential([
activation="relu’

RepeatVector(s

GRU(32, acti

GRU(64, activation
TimeDistributed(Dense(

Figure 10: The GRU autoencoder contains an encoder section (with GRU layers
for data processing and timesteps returning), a bottleneck section (with a dense
layer for dimensionality reduction), and a decoder section (with a RepeateVector
layer to simply repeat the compressed data for it to match the input sequence
length, GRU layers to preprocess the data for the repeated vector and return
its timesteps, a TimeDistributed layer to apply a dense layer to each timestep
to reconstruct the original input data).

4 Plot Model Training History
4.1 1D CNN Autoencoder

Test Loss: 1.4639370183439242e-21, Test Accuracy: 1.8

Training and Validation Loss Training and Validation Accuracy
0.06- = loss || 10001
m Val Loss
0.05-
0.998 -
0.04- >
0 ©
2 0.03- g 0.996
= 5
<
0.02 | 0_994 -
0.011 0.992 = Accuracy
0.00- ' = Val Accuracy
0 2 4 6 8 0 2 4 6 8
Epoch Epoch

Figure 11: These plots show the training history of the 1D CNN autoencoder,
including the test loss and accuracy evaluation.

4.2 2D CNN Autoencoder

Test Loss: 2.441269451551284e-36, Test Accuracy: 1.8

Training and Validation Loss Training and Validation Accuracy
0.06- | = loss | L.000-
w Val Loss J
0.05- || 0.998
0.996 -
0.04 - -
u E 0.994 -
2 0.03- k=
3 o 0.992
- <<
0.02 0.990 -
ooh 0.988 1 = Accuracy
0.00- 0.986 - w Val Accuracy
0 2 4 6 8 0 2 4 6 8
Epoch Epoch

Figure 12: These plots show the training history of the 2D CNN autoencoder,
including the test loss and accuracy evaluation.

10

4.3 LSTM Autoencoder

: 5.586931878513654e-87, Test Accuracy: 1.8
x10-4 Training and Validation Loss
6- 1.0000+
5. 0.9999
4- 3\03998—
I m Loss ®©
v e <4
9 37 = Val Loss é 0.9997
2. <L 0.9996
1- 0.9995-
0- 0.9994 -
0 1 2 3 4

Epoch

Training and Validation Accuracy

m Accuracy
w Val Accuracy

0 1 2 3 4

Epoch

Figure 13: These plots show the training history of the LSTM autoencoder,
including the test loss and accuracy evaluation.

4.4 GRU Autoencoder

est Loss:

1.9116876509802951e-86, Test Accuracy: 1.8

x10-¢ Training and Validation Loss
1.0000 4
6 -
5 0.9999 +
a4l > 0.9998-
0 m |Loss ©
wv — <4
S 3 = Val Lussg 09997
2 < 09996+
14 0.9995-
0 0.9994 -
0 1 2 3 4

Epoch

Training and Validation Accuracy

m Accuracy
W Val Accuracy

0 1 2 3 4
Epoch

Figure 14: These plots show the training history of the GRU autoencoder,
including the test loss and accuracy evaluation.

11

5 Conclusion

The advancements in GW detection technologies and the integration of ML
techniques have significantly enhanced our understanding of the universe. This
paper illustrates the effect of implementing the autoencoder ML models with
convolutional and recurrent layers for GW data analysis, and the models all
show excellent abilities to learn and classify GW event presence. With the
continuing efforts of LIGO, Virgo, KARGO, and researchers in analyzing GW,
the improved sensitivity of GW detectors and the robust ML models designed
for the means of GW data analysis promise future satisfactory discoveries in the
field of astrophysics.

References

[1] Abbott, B.P., et al. “Population Properties of Compact Objects from the
Second LIGO-Virgo Gravitational-Wave Transient Catalog.” Astrophysical
Journal Letters, vol. 913, 2021.

[2] Zheng, Y., et al. “Angular Power Spectrum of Gravitational-Wave Transient
Sources as a Probe of the Large-Scale Structure.” Physical Review Letters,
vol. 131, 171403, 2023.

[3] Ghosh, R., et al. “Does the Speed of Gravitational Waves Depend on the
Source Velocity?” arXiv preprint arXiv:2304.14820v3 [gr-qc], 2023.

[4] Abbott, R., et al. “Constraints on the Cosmic Expansion History from
GWTC-3.” Astrophysical Journal, vol. 949, no. 11, 2021.

[5] Clavin, W. “LIGO Surpasses the Quantum Limit.” Physical Review X, 2023.

[6] Reitze, D., et al. “LIGO Congratulates Pulsar Timing Array Teams for
New Gravitational Wave Discovery.” LIGO Laboratory News Release, June
28, 2023.

[7] Ossokine, S., et al. “Multipolar Effective-One-Body Waveforms for Precess-
ing Binary Black Holes: Construction and Validation.” Physical Review D,
vol. 102, 044055, 2020.

[8] Kapadia, S.J., et al. “A Self-Consistent Method to Estimate the Rate of
Compact Binary Coalescences with a Poisson Mixture Model.” Classical and
Quantum Gravity, vol. 37, 045007, 2020.

[9] Buikema, A., et al. “Sensitivity and Performance of the Advanced LIGO
Detectors in the Third Observing Run.” Physical Review D, vol. 102, 062003,
2020.

[10] Bertacca, D., et al. “Projection Effects on the Observed Angular Spectrum
of the Astrophysical Stochastic Gravitational Wave Background.” Physical
Review D, vol. 101, 103513, 2020.

12

[11] Nitz, A.H., et al. “2-OGC: Open Gravitational-Wave Catalog of Binary
Mergers from Analysis of Public Advanced LIGO and Virgo Data.” Astro-
physical Journal, vol. 891, 123, 2019.

[12] Abbott, B.P., et al. “Prospects for Observing and Localizing Gravitational-
Wave Transients with Advanced LIGO, Advanced Virgo, and KAGRA.” Liv-

ing Reviews in Relativity, vol. 21, 3, 2018.

[13] Talbot, C., et al. “Measuring the Binary Black Hole Mass Spectrum with
an Astrophysically Motivated Parameterization.” Astrophysical Journal, vol.
856, 173, 2018.

[14] Thrane, E., et al. “Determining the Population Properties of Spinning
Black Holes.” Physical Review D, vol. 96, 023012, 2017.

[15] Wysocki, D., et al. “Reconstructing Phenomenological Distributions of
Compact Binaries via Gravitational Wave Observations.” Physical Review
D, vol. 100, 043012, 2019.

[16] Fishbach, M., et al. “Does the Black Hole Merger Rate Evolve with Red-
shift?” Astrophysical Journal, vol. 863, 2018.

[17] Singer, L.P., et al. “Rapid Bayesian Position Reconstruction for
Gravitational-Wave Transients.” Physical Review D, vol. 93, 024013, 2016.

[18] Pan, Y., et al. “Inspiral-Merger-Ringdown Waveforms of Spinning Pre-
cessing Black-Hole Binaries in the Effective-One-Body Formalism.” Physical
Review D, vol. 89, 084006, 2014.

[19] Berry, C.P.L., et al. “Parameter Estimation for Binary Neutron-Star Coa-
lescences with Realistic Noise during the Advanced LIGO Era.” Astrophysical
Journal, vol. 804, 114, 2015.

[20] Husa, S., et al. “Frequency-Domain Gravitational Waves from Non-
Precessing Black-Hole Binaries. I. New Numerical Waveforms and Anatomy
of the Signal.” Physical Review D, vol. 93, 044006, 2016.

[21] Krizhevsky A, Sutskever I, Hinton GE. “Imagenet classification with deep
convolutional neural networks.” In: Advances in Neural Information Process-
ing Systems, vol. 25, pp. 1097-1105, 2012.

[22] Rawat W, Wang Z. “Deep convolutional neural networks for image clas-
sification: A comprehensive review.” Neural Comput., vol. 29, no. 9, pp.
2352-2449, 2017. doi:10.1162/neco_a_00990.

[23] Schmidhuber J. “Deep learning in neural networks: An overview.” Neural
Networks, vol. 61, pp. 85-117, 2015. doi:10.1016/j.neunet.2014.09.003.

[24] Gu J, Wang Z, Kuen J, et al. “Recent advances in convolu-
tional neural networks.” Pattern Recognit., vol. 77, pp. 354-377, 2018.
doi:10.1016/j.patcog.2017.10.013.

13

[25] Simonyan K, Zisserman A. “Very deep convolutional networks for large-
scale image recognition.” arXiv preprint arXiv:1409.1556, 2014.

[26] He K, Zhang X, Ren S, Sun J. “Deep residual learning for image recog-
nition.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770-778, 2016. doi:10.1109/CVPR.2016.90.

[27] Szegedy C, Liu W, Jia Y, et al. “Going deeper with convolutions.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1-9, 2015. doi:10.1109/CVPR.2015.7298594.

[28] O’Shea K, Nash R. “An introduction to convolutional neural networks.”
arXiv preprint arXiv:1511.08458, 2015.

[29] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press, 2016.
ISBN: 9780262035613.

[30] LeCun Y, Bengio Y, Hinton G. “Deep learning.” Nature, vol. 521, no. 7553,
pp. 436-444, 2015. doi:10.1038 /naturel4539.

[31] Lipton ZC, Kale DC, Elkan C, Wetzel R. “Learning to diagnose with LSTM
recurrent neural networks.” arXiv preprint arXiv:1511.03677, 2016.

[32] Mikolov T, Karafidt M, Burget L, Cernocky J, Khudanpur S. “Recurrent
neural network based language model.” In: Interspeech, pp. 1045-1048, 2010.

[33] Graves A, Mohamed A, Hinton G. “Speech recognition with deep
recurrent neural networks.” In: 20183 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6645-6649, 2013.
doi:10.1109/ICASSP.2013.6638947.

[34] Chung J, Gulcehre C, Cho K, Bengio Y. “Empirical evaluation of
gated recurrent neural networks on sequence modeling.” arXiv preprint
arXiv:1412.3555, 2014.

[35] Zaremba W, Sutskever I, Vinyals O. “Recurrent neural network regulariza-
tion.” arXiv preprint arXiv:1409.2329, 2014.

[36] Hochreiter S, Schmidhuber J. “Long short-term memory.” Neural Comput.,
vol. 9, no. 8, pp. 1735-1780, 1997. doi:10.1162/nec0.1997.9.8.1735.

[37] Bahdanau D, Cho K, Bengio Y. “Neural machine translation by jointly
learning to align and translate.” arXiv preprint arXiv:1409.0473, 2014.

[38] Sutskever I, Vinyals O, Le QV. “Sequence to sequence learning with neural
networks.” In: Advances in Neural Information Processing Systems, pp. 3104-
3112, 2014.

[39] Graves A. Supervised sequence labelling with recurrent neural networks.
Studies in Computational Intelligence, vol. 385, 2012. doi:10.1007/978-3-642-
24797-2.

14

[40] Chen S, Guo W. “Auto-Encoders in Deep Learning—A Review
with New Perspectives.” Mathematics, vol. 11, mno. 8, 1777, 2023.
do0i:10.3390 /math11081777.

[41] Zhou J, Wu Q, Zhang B. “A comprehensive survey on design and applica-
tion of autoencoders.” Artificial Intelligence Review, 2023.

[42] Deesamutara S, Maggiore F. “Image Inpainting with Variational Autoen-
coders.” AJTRE, vol. 1, no. 1, pp. 35-45, 2020. doi:10.5281 /zenodo.4383315.

[43] Wang Y, Tran TT, Li H. “Autoencoders: A Survey and Outlook.” Journal
of Machine Learning Research, vol. 24, no. 1, pp. 1-34, 2023.

[44] Chen X, Liu H, Zhang Y. “Applications of Autoencoders in Machine Learn-
ing: A Survey.” Journal of the American Medical Informatics Association,
vol. 30, no. 6, pp. 1001-1011, 2023. doi:10.1093/jamia/ocaa001.

[45] Dong, S. (2024). Astrophysical Insights Through Gravitational Wave Data
Analysis: Data Preprocessing. viXra preprint viXra:2407.0026.

[46] Dong, S. (2024). Gravitational Wave Event Detection: Developing Convo-
lutional Neural Networks and Recurrent Neural Networks for Gravitational
Wave Data Analysis. viXra preprint viXra:2407.0029.

15

	Introduction
	GW data Preparation
	Import Libraries
	Segment Labeling
	Data Preparation
	1D CNN, LSTM, and GRU Autoencoders
	2D CNN Autoencoder

	Data Augmentation
	1D CNN, LSTM, and GRU Autoencoders
	2D CNN Autoencoder

	Autoencoder Training and Evaluation
	1D CNN Autoencoder
	2D CNN Autoencoder
	LSTM Autoencoder
	GRU Autoencoder

	Plot Model Training History
	1D CNN Autoencoder
	2D CNN Autoencoder
	LSTM Autoencoder
	GRU Autoencoder

	Conclusion

