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Abstract

This paper presents a comprehensive approach to generating synthetic
gravitational wave (GW) data using Generative Adversarial Networks
(GANs) and WaveNet models. The methodology comprises data prepa-
ration, augmentation, model construction, training processes, and plot
visualization. Detailed explanations of each step and the underlying con-
cepts are provided to demonstrate the mechanics and effectiveness of these
generative models in creating realistic gravitational waveforms. These
advancements not only enhance GW detection algorithms but also hold
significant implications for the broader field of astrophysics by facilitating
more accurate simulations of cosmic events and improving the robustness
of astrophysical models by providing augmented GW data.
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1 Introduction

Gravitational wave (GW) detection has opened a transformative research av-
enue in astrophysics, enabling the observation of cosmic events through GWs.
These observations provide a new method for studying astrophysical phenom-
ena, such as black hole mergers, neutron star collisions, and other high-energy
cosmic events. The procedure for GW data preprocessing, as detailed in [30],
and the data preparation steps outlined in [31], are critical for ensuring the
data is suitable for advanced techniques and model training. While this pa-
per touches on the results from the data preparation steps, it emphasizes the
methodologies for generating synthetic GW data used in enhancing detection
algorithms and training machine learning (ML) models. By exploring the use of
advanced generative models like GANs and WaveNet, this research contributes
to the development of more sophisticated tools for astrophysical analysis. This
synthesis of GW data is vital for not only improving detection capabilities but
also for expanding our understanding of the universe by simulating scenarios
that are challenging to observe directly.

2 Data Preparation

2.1 Importing Necessary Libraries

The following code imports necessary libraries and modules for data preprocess-
ing, data preparation, and building ML models, specifically using TensorFlow
for neural network (NN) creation and training. We also import warning sup-
pression libraries to ensure a smooth execution of the codes.
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Figure 1: Visualization of all the libraries imported.

• numpy: numerical manipulation in Python.

• pandas: data manipulation.

• requests: making requests to web.

• os: operating system interfaces.

• matplotlib.pyplot: plotting library.

• scipy.signal: contains functions for signal processing.

• sklearn.preprocessing: has scaling features.

• tensorflow: library for ML, particularly deep learning (DL).

– layers: building blocks for NN layers.

– models.Sequential: a linear stack of layers in Keras.

– layers: contains various NN layers.

• sklearn.model selection: contains the train test split function for splitting
datasets into training and testing sets.

• warnings: manages warnings in Python, suppressing them for clean out-
put.

2.2 Segment and Label Creation

To prepare the data for model training, the GW strain data is segmented. The
function create segments and labels is created for segmenting the GW strain
data into smaller chunks for analysis.
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Figure 2: The shape of the segmented and labeled GW data.

Inputs:

• strain: the time-series data of GW strain.

• t start: the start of the GW event selected.

• segment length: segment lengths in seconds.

• sampling rate: sampling rate in Hz.

Outputs:

• segments: array of segmented GW data

• labels: labels for each corresponding segment classifying the presence of
an event.

2.3 Reshape Segments

The segments are reshaped to be compatible with Conv1D layers used in deep
learning (DL) models. We add an extra dimension of 1 to represent a sin-
gle channel since Conv1D expects a 3D input in this particular order: data,
timesteps, and channels.

Figure 3: The shape of the reshaped GW data.

2.4 Split Data

The data is split into training and testing datasets for the WaveNet model only,
as the GAN model doesn’t need this step due to its unsupervised nature. We
use the function train test split from sklearn.model selection to split
the data into training (80%) and testing (20%) sets for the WaveNet model.

2.5 Data Augmentation

Training data is augmented to increase dataset size and variability. We created
the function augment data to augment the segmented data for the GAN model
and the training data for the WaveNet model.
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Figure 4: The shape of the augmented GW data for GAN.

Figure 5: The shape of the augmented training set for WaveNet before and
after augmentation. Note that the GW data is purposefully downsampled for a
quicker training process.

3 Model Training

3.1 GAN

3.1.1 Hyperparameters

Figure 6: The hyperparameters for implementing GAN.

• latent dim: dimensionality of the latent space (input vector)).

• num gw data to generate: number of synthetic gravitational wave data
samples to generate after training.

3.1.2 Define Generator

The build generator function creates the generator model to synthesize GW
data.
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Figure 7: The construction of the build generator.

• Dense Layer: initial dense layer with latent dim input.

• LeakyReLU: LeakyReLU activation function.

• BatchNormalization: normalizes the output.

• Reshape: reshapes the output into a suitable shape for Conv1D layers.

• UpSampling1D: upsamples the input.

• Conv1D Layers: convolutional layers to extract features.

• Activation: tanh activation to output values between -1 and 1.

3.1.3 Define Discriminator

The build discriminator function creates the discriminator model to distin-
guish real versus generated data.
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Figure 8: The construction of the build generator.

• Conv1D Layers: convolutional layers to extract features.

• LeakyReLU: LeakyReLU activation function.

• Flatten: Flattens the 3D tensor into 1D.

• Dense Layer: final dense layer to output a single probability (of it being
real and not generated data) with sigmoid activation.

3.1.4 Define GAN

The build gan function combines the generator and discriminator into a GAN
model.

Figure 9: The construction of the GAN.

• Compile Discriminator: compile the discriminator.

• Freeze Discriminator: ensure only the generator is trained.

• GAN Input: create input layer for the GAN model.

• Generated Data: pass input through the generator to get synthetic data.

• GAN Output: pass generated data through the discriminator to get the
probability (of it being real and not generated data).

• Compile GAN: compile the GAN model.
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3.1.5 Train GAN

The train gan function trains the GAN by alternating between training the
discriminator and the generator. The steps are as follows:

Figure 10: Visualization of the GAN training loop.

Training Loop:

• Train Discriminator:

– Sample real data.

– Generate synthetic data.

– Train on real data (labeled 1) and synthetic data (labeled 0).

– Compute the discriminator loss.

• Train Generator:

– Generate random noise.

– Create an array with every element labeled 1 for the noise.
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– Train on the random noise and array.

– Compute the generator loss.

3.2 WaveNet

3.2.1 Define Causal Convolutional Layer

The causal convolutional layers are used to maintain causality in time series
data.

Figure 11: The causal Conv1D class.

CausalConv1D Class:

• init function:

– Inherits from layers.Layer.

– Creates a Conv1D layer.

• Call function:

– Defines the forward pass by returning the convolutional layer that’s
applied to the input tensor.

3.2.2 Define Residual Block

The residual block is added to build complex feature representations while main-
taining gradient flow through skip connections.
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Figure 12: The residual block class.

ResidualBlock Class:

• init function:

– Inherits from layers.Layer.

– Creates a CausalConv1D layer.

– Creates two Dense layers with tanh and sigmoid activations, respec-
tively.

– Creates two Conv1D layers for skip and residual connections.

• Call function:

– Defines the forward pass:

∗ Applying the CausalConv1D layer to the input.

∗ Applying the Dense layers with tanh and sigmoid activations to
the output of the previous layer.

∗ Multiplying the outputs of the tanh and sigmoid layers to create
a gated activation.

∗ Applying the skip conv layer to the gated activation for the skip
connection.

∗ Applying the residual conv layer to the gated activation and
adding it to the input to create the residual output.

– Returning the skip output and the residual output.
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3.2.3 Define and train WaveNet

The build wavenet function creates a WaveNet model for sequential data gen-
eration.

Figure 13: The construction of the WaveNet.

• Inputs: input layer with specified shape.

• Residual Blocks: apply multiple residual blocks with different dilation
rates.

• Skip Connections: collect and sum connections.

• Activations and Convolutions: layers to produce output.

We then train the WaveNet on augmented data and validate it on test data.

Figure 14: Training and saving its history for WaveNet
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4 Model Evaluation and Visualization

4.1 GAN

Figure 15: Visualization of the discriminator and generator losses over epochs
(G = Generator, D = Discriminator).

12



4.2 WaveNet

Figure 16: Visualization of the loss and accuracy over epochs.
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5 Generated Data Visualization

5.1 GAN

Figure 17: Example 1 of the GW segments generated.
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Figure 18: Example 2 of the GW segments generated.
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5.2 WaveNet

Figure 19: Example 1 of the GW segments generated.

16



Figure 20: Example 2 of the GW segments generated.

6 Conclusion

The application of GANs and WaveNet models for generating synthetic GW
data increases the potential of ML techniques in astrophysics. These models are
capable of creating realistic waveforms that augment existing datasets and en-
hance GW detection algorithms. By advancing the methodologies for synthetic
data generation, this research facilitates the development of more accurate and
efficient tools for astrophysical exploration. The broader implications of this
work include improved simulations of cosmic events and a deeper understand-
ing of the underlying physical processes, thereby contributing to the field of
astrophysics.
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