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Abstract 

As of today, Quantum Field Theory (QFT) and General Relativity (GR) are broadly 

recognized paradigms of foundational physics. There are, however, growing suspicions 

that both paradigms fail to hold somewhere above the Standard Model (SM) scale and in 

the realm of primordial cosmology. Evidence collected on multiple fronts indicates that 

emergence and complexity are universal features of far-from-equilibrium systems with 

many degrees of freedom. In line with these findings, Part 1 of this report explores the 

complex dynamics of evolving dimensional fluctuations beyond the SM scale. Part 2 

outlines the role of complex dynamics in the nonintegrable sector of particle physics, 

Dark Matter condensation and the gravitational regime of the early Universe. 
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Cautionary remarks  

We caution from the outset that the sole intent of this report is to lay the groundwork 

for further exploration of the topic. Exclusively presented in a preliminary form, our 

analysis is far from completion and far from meeting the quality standards of a 

formal research project. The style and presentation do not comply with traditional 

academic standards. Independent work is needed to develop, validate, or reject the 

hypotheses presented here. Readers unfamiliar with the topic are encouraged to 

carefully review the enclosed references prior to drawing premature conclusions. 

1. Introduction and Motivation 

Extensive evidence exists nowadays that large systems of nonlinearly 

interacting components are prone to slide outside thermodynamic 

equilibrium and become nonintegrable in the long run. Reliable modeling of 

such systems requires new concepts and methods inspired by chaos theory, 

multifractal geometry, non-equilibrium critical phenomena, self-organized 

criticality (SOC), and fractional calculus. These non-conventional tools form 

the mathematical basis of complex dynamics [1, 6-7, 9-14, 16-17, 29]. 
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A fundamental assumption of QFT is that its vacuum state is a large many-

body system of quantum fluctuations whose dynamics follows the 

framework of equilibrium thermodynamics. There is no guarantee that this 

conjecture will continue to hold above the low-energy scale of the SM. On 

the contrary, many condensed matter studies consistently suggest the 

opposite: on high-energy scales, unbalanced vacuum fluctuations are likely 

to slide outside equilibrium and the perturbative treatment of conventional 

QFT is prone to break down. When driven far away from thermodynamic 

equilibrium, complex systems are known to exhibit emergent dynamics 

stemming from the interplay between nonlinear interaction of components 

and steady dissipation. As paradigm of this type of emergent behavior, SOC 

has a vast range of applications extending from astrophysics, natural 

hazards and magnetospheric physics, to complex networks, internet 

dynamics, biophysics, and social sciences [15, 24]. 

According to [1], there is a tentative path leading from Dimensional 

Regularization procedure of QFT to fractal spacetime, on the one hand, and to 

fractional dynamics, on the other. Both concepts require passage to a 
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spacetime endowed with continuous dimensions, which are conjectured to 

flow with the observation scale. This viewpoint offers unforeseen insights 

on the deep ultraviolet extension of Effective Field Theory (EFT). At the same 

time, they are manifestly at odds with most SM extensions, Quantum 

Gravity theories or field unification models.   

In a nutshell, fractals and multifractals define the underlying geometry of 

complex behavior for systems evolving in far-from-equilibrium conditions. 

To appreciate the alleged impact of fractal spacetime beyond the boundaries 

of EFT, we bring up two textbook examples: 

1) Perturbative QFT is an archetype of EFT which lies at the foundation 

of the SM for particle physics. Although astonishingly successful in 

matching results from collider data, QFT is confronted by many 

drawbacks. It is known, for instance, that amplitude computations are at 

best asymptotic expansions, meaning that Feynman diagrams fail to uncover 

the true dynamics of the theory.  Non-perturbative QFT methods have 

been partially successful, yet it is fair to say that, for the most part, the 
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underlying physics of QFT remains unknown. In addition, there are 

several caveats and patches needed to secure self-consistency demanded 

by the principles of QFT.  

2) Another often cited paradigm of an EFT is General Relativity (GR), 

whose validity rests on the principle of general (or diffeomorphism) 

covariance. This principle asserts that all physical laws must take the same 

mathematical form regardless of the coordinate system used by observers 

in arbitrary relative motion. Stated differently, general covariance means 

invariance of physical laws under all possible coordinate transformations. 

An implicit assumption of general covariance is that any coordinate 

transformation and its inverse are smooth/analytic functions that can be 

differentiated arbitrarily many times. However, it is known that there is a 

plethora of non-differentiable curves and surfaces in Nature, as abundantly 

discovered since the introduction of fractal geometry in 1983. The 

unavoidable conclusion is GR assigns a preferential status to differentiable 

transformations, which is at odds with the very spirit of general 

covariance. In addition, the singularity problem, the relentless instability 
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of the transient regime of GR, and the N-body problem are likely tied to 

the transition from deterministic to a self-sustained complex evolution in 

the primordial stages of Universe formation [28 - 30, 33-34].  

Experimental and numerical evidence of recent years indicates that 

emergence and complexity are universal features of far-from-equilibrium 

systems having many degrees of freedom. In line with these findings, several 

independent research works point to direct and indirect hints for a spacetime 

endowed with minimal fractality, likely to develop somewhere above the SM 

scale [5, 12-13, 17-22, 25-27].  

The report is divided into two parts. Part 1 explores the complex dynamics 

of evolving dimensional fluctuations above the SM scale. In support of this 

scenario, the Appendix section bridges the gap between universal route to 

chaos and the flavor composition of the SM. Part 2 outlines the role of 

complex dynamics in the nonintegrable sector of particle physics, the 

formation of Dark Matter as large-scale dimensional condensate and the 

gravitational regime of the primordial Universe. 
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2. From Dimensional Regularization to fractal spacetime 

There are several ways of introducing the concept of spacetime continuum 

whose nonintegral dimensions evolve with the observation scale [1, 20-21]. 

To make the paper self-contained and for the sake of clarity, we begin by 

iterating here the arguments for fractal spacetime inspired by Dimensional 

Regularization program of QFT [1]. 

It is known that Euclidean formulation of the Path Integral in QFT enables a 

useful analogy between QFT and critical phenomena. To this end, consider 

the two-point function of massive scalar field theory. The Euclidean 

propagator in momentum space is given by  
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in which 2p p p =  and px p x = . In the limit 1m x  , (2) is well 

approximated by, 

 
2

1
0( ) ( ) exp( )x m x

x
   −  (3) 

Let us assume that the field is placed on a four-dimensional lattice of points 

separated by a fixed spacing 1
UVa −= , in which UV is the cutoff scale. The 

spatial coordinate is then,  

 1

UV
x Na N −
= =  ,   1N   (4) 

and (3) can be written as, 

 0 exp[ ( )]N UVN m   −   (5) 

By analogy with statistical mechanics, (5) defines the dimensionless 

correlation length according to, 

 0 exp( / )N N   −  (6) 

where, 
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 UV

m



=  (7) 

Dimensional Regularization in momentum space sets up a relationship 

between the cutoff scale UV  and the dimensional deviation from four-space 

dimensions 4 1( ) ( )d  = −   as in  

 2 2 2exp(1 )UV    =   (8) 

where   is the running scale. The asymptotic limit ( ) UVm O =   leads to 

the raw estimate, 

 2 2( ) 4 ( ) [ ( ) ) 1UVd O m   = − =    (9) 

By (7) and (9), we arrive at the effective approximation, 

 1 2( ) [ ( )]    −  (10) 

As a diverging correlation length is a characteristic feature of critical 

phenomena, (10) indicates that removing the dimensional regulator in QFT 

(that is, taking the classical continuum limit 0 → ) is analogous to tuning the 

corresponding statistical system towards the critical point [8, 17, 20-21]. In this 
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sense, (10) underlies the idea of criticality in continuous dimension ( )d  , 

conjectured to play a key role in the ultraviolet regime of field theory and 

primordial cosmology.  Since, by definition, fractal structures are 

characterized by continuous dimensions and are the underlying geometry 

of both critical phenomena and chaotic behavior, (10) leads to the conclusion 

that taking the limit 0 →  in Dimensional Regularization turns the classical 

spacetime into a minimal fractal manifold (MFM).   

3. Complex dynamics of evolving spacetime dimensions  

Reaction-diffusion processes are a subset of complex phenomena defined 

within the framework of Non-equilibrium Statistical Physics [2–3, 16]. These 

models are typically formulated in 1d+  dimensions, where d  is the 

dimension of the Euclidean manifold representing the physical space and t  

is the time coordinate. Reaction-Diffusion models on discrete manifolds 

(called lattices) are characterized by the following features, 

a) local variables reside at lattice sites,  

b) reaction chains are driven by probabilistic transition rules among sites. 
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We consider below a toy Reaction-Diffusion model acting on a two-

dimensional lattice ( 2)d = , whose local variables are time-varying 

dimensional deviations [ ( )]t , referred herein to as “dimensional pixels”.  The 

model is built on four premises, namely,  

A1) At any given moment " "t , a pixel consists of a pair of lattice sites that 

are either occupied (1) or empty (0) and are located horizontally adjacent to 

each other.  

A2) The representative pixel states are listed as, 

[ ( )] [0,1]t = ;  [1,0] ;  [1,1] ;  [0,0]}t                                      

A3) There are four transpositions among these binary states from time " "t  to 

time " "t dt+ , that is,      

 [1] [0]→    self-annihilation (11a) 

 [1] [1] [1]→ +    decay/percolation (11b) 

 [1] [1] [0]+ →    pair annihilation (11c) 
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 [1] [1] [1]+ →   clustering (11d) 

A4) Following ref. [1] and figs. 1 - 2 below, dimensional pixels undergo 

transition events between " "t  and " "t dt+  as described by, 

 [1,0] [0,1]
D

⎯⎯→  (12a) 

 [1,1] [1,0],[0,1]
u

⎯⎯→  (12b) 

 [1,0],[0,1] [1,1]


⎯⎯→  (12c) 

Here, (12a) denotes a scattering event at rate D , (12b) a clustering event at rate 

u  and (12c) a decay (or percolation) event at rate c  = − , with   being a 

control parameter approaching its critical value c .  

Up to a leading order approximation, the macroscopic attributes of Reaction-

Diffusion processes may be encoded in a mean-field (MF) equation [2], which 

quantifies the competition between losses and gains in density ( )t . In 

particular, the decay/percolation process occurs with a rate proportional to 

( )t  and leads to a gain in density. By contrast, the clustering process (12b) 
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drops the density with a rate proportional to 2( )u t . Ignoring diffusion (12a), 

the resulting MF equation takes the form  

 2( )
( ) ( )

t
t u t

t


 


= −


 (14) 

In the context of our paper, the control parameter ( ) [ ( )]t t  =  represents 

the density of dimensional pixels ( ) 1t   while ( )t  denotes the density of 

active  (or unstable) lattice sites. 

 

Fig. 1: Left panel: Scattering, Right panel: Clustering ([2]) 

 

Fig. 2 Left panel: Decay/Percolation, Right panel: Annihilation ([2]) 
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The MF equation (14) exhibits a two-phase configuration: an absorbing phase 

with a vanishing density of active sites ( 0 = ) below the critical point c   

and an active phase with a steady-state density 0u =   above the critical 

point c  .    

If the starting point of the time evolution is a fully occupied lattice (0) 1 = , 

the solution of (14) reads, 

 ( )
( )exp( )

t
u u t




 
=

− − −
 (15) 

Relation (15) shows that, when the percolation rate vanishes at the critical 

point 0c  = − = , the density of unstable states drops asymptotically as in 

 1

0
lim ( ) (1 )t ut


 −

→
= +  (16a) 

or, 

 1( )t t −  (16b) 

By (16a) and (16b), the number of unstable/active sites eventually goes to 

zero and the dynamics of dimensional deviations slows down. It follows 



15 | P a g e  

 

that, in the far infrared regime (t→ ), spacetime settles in a stationary state 

matching the classical limit ( ) 0O = → .   

Before proceeding further, a few cautionary remarks are in order:  

a) Clearly, by design, the scenario embodied in (A1) – (A4) is merely a 

convenient simplification. Any realistic model of pixels defined in 

continuous spatial dimensions must necessarily include infinite sets of 

non-integer pairs having the form, 

 1 1[ ( )] {[ , ]t  = ;  2 2[ , ]  ;….[ , ]}tN N   (17) 

in which N →  and ,i i   are arbitrary numbers with 

 0 1i  ;   0 1i  ;    i i   (18) 

b) It can be argued that, on Euclidean spacetime endowed with 

continuous dimensions, the deviations   and their fluctuations   play 

an identical role with the coefficients g  of a corresponding non-

Euclidean metric [see e.g. 5]. Stated differently, a flat spacetime endowed 

with a fractal structure may be considered as dual to a curved manifold. 
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On this basis, a reasonable assumption is that classical gravitation is 

implicitly accounted for in the Reaction-Diffusion model detailed above.   

c) The stability of the MF solution with respect to perturbations can be 

studied in a variety of ways. In a general scenario, for example, one 

accounts for the combined effects of diffusion ( D ), Gaussian noise ( )t  

and random fluctuations ( )t on the percolation parameter, 

 ( )t  → +  (19) 

In this scenario, (14) gets upgraded to a Langevin type equation, namely, 

 2( )
( ) ( ) ( ) ( ) ( ) ( )

t
t u t D t t t t

t


     


= − +  + +


 (20) 

As discussed in [2–3, 16] and the complex dynamics literature, the 

generic model (20) has applications across a wide range of topics, 

including (but not limited to) percolation phenomena, epidemics 

spreading, forest fires, earthquake propagation, lattice dynamics with 

long-range correlations, spin glasses, spatiotemporal patterns in 
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condensed matter physics, random graph theory, galaxy clustering, large 

network dynamics and so on.  

4. From Reaction-Diffusion processes to Self-organized Criticality (SOC) 

Of particular interest is the relationship between the Reaction-Diffusion 

model previously outlined and Self-organized Criticality (SOC). Among the 

many ways to unveil this connection a straightforward approach is to 

supplement (14) with a driving source whose function is to boost dimensional 

instability and prevent relaxation. Adding to the percolation rate a time-

independent source term E  turns (14) into [4]   

 2( )
( ) ( ) ( )

t
E t u t

t


  


= + −


 (21) 

According to [4], since E  is a conserved quantity ( 0E = ), it can be 

conveniently used as control parameter instead of  . Following this 

scenario, the critical point is reached at cE = −  and (21) replicates the fixed 

sandpile model of SOC, whose steady state is determined by E . The impact of 
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SOC on the non-integrable sector of particle physics and early Universe 

cosmology is covered in Part 2 of this report.  

In closing Part 1, we again emphasize that the hypotheses detailed here, 

despite offering encouraging leads forward, are strictly provisional 

thoughts. Much remains to be done to debunk, confirm, or place these ideas 

on a more robust foundation.  

APPENDIX 

Feigenbaum’s Universality and the dynamic structure of the SM 

The Reaction-Diffusion model (14) with 1u=  may be analyzed as an iterated 

map operating in discrete time nt n t=  , 1,2,...n= . N . Setting 

 1 nn

t t

  + −


 
 (22) 

turns (14) into  

 1 (1 ) [1 ]
1n nn

t
t

t
   

+


= +  −

+ 
 (23) 

Under the change of variable 



19 | P a g e  

 

 
1n n

t
v

t





=

+ 
 (24) 

(23) takes the form of the logistic map 

 1 (1 )n nnv v v+ = −  (25) 

in which the critical parameter is 

 (1 )t = +   (26) 

In doing so, one recovers the universal route to chaos of unimodal maps via the 

well-known scenario of period-doubling bifurcations [31-32]. One is led to 

the Feigenbaum’s sequence of critical parameters as function of the number 

of iterations  

 0 0 0
n

n n n      −−  −  −   (27) 

where   stands for the Feigenbaum constant. 

According to [31-32], iterated maps of the unit interval are generic models of 

dynamical systems in discrete time. The standard representation of these 

models is based on first order difference equations having the form  
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 1 ( , )nnx f x + =   (28) 

The dynamics of iterated maps can be either conservative or dissipative. In the 

former case, the function (28) is monotonic and describes a one-to-one 

mapping, whereas in the latter case is non-monotonic and describes a two-

to-one mapping. Typical examples of dissipative systems include the 

quadratic map and unimodal maps of the type (25). In 1978, Feigenbaum 

discovered that the onset of chaos in quadratic maps occurs through period-

doubling bifurcations driven by changes of the critical parameter  . Unimodal 

maps exhibit the following behavior: for small values of  , (28) has a single 

stable fixed point and all nearby points converge to it under multiple 

iterations of (22)-(23). Ramping up   to a critical value 1  makes the fixed 

point unstable and produces a new stable pair of points of period 2. Further 

increasing   to another value 2( )  bifurcates this cycle into a cycle of period 

4. The bifurcation process continues with a new sequence of cycles of period 

2 j , 3j  , eventually leading to a Cantor set structure that attracts almost all 

the points of the interval [ 1,1]− . On letting   increase beyond an endpoint 
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value  , stable periodic orbits surface again and split up in a similar way. 

In the new sequence,   scans another series of critical values corresponding 

to cycles of period 3 2 j  , 0,1,2,...j = and so on. When applied to the flavor 

composition of SM, this bifurcation scenario leads to the content of Tab. 1 

below. The first branch of the fermion sector represents the set of 3 left-

handed neutrinos occurring at 0j = , a finding which naturally accounts for 

both triplication of fermion families and the fermion chirality in the SM [see 

e.g. 24]. It is instructive to note that, according to this scenario, Dark Matter 

appears to echo the properties of anyons in three-dimensional space [33]. 

Parameter Flavor Content 
Bifurcation 

Pattern 
Spin  

1  Higgs scalar 2 j  0  

n DM   Gauge Bosons 2 j  1 

DM   Dark Matter 2 j  undefined 

n   Fermions 3 2 j  1
2

 

 

Tab. 1: The flavor structure of visible and Dark Matter sectors 
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