
Graph Neural Network for Molecular Structure:
Application in HIV Inhibitor Molecule Prediction

Quynh Nguyen1

Department of Finance and Banking

Abstract. The application of Graph Neural Networks (GNNs) in com-
putational chemistry provides a powerful approach to modeling and pre-
dicting the properties of molecular compounds. GNNs represent atoms
as nodes and bonds as edges, capturing the complex interactions within
molecular graphs. This approach offers a robust method for predicting
chemical properties, including molecular stability, reactivity, and toxicity.
In this paper, we explore various GNN architectures and their ability to
generalize across different molecular datasets, such as QM9 and Molecu-
leNet. As a specific application, we propose a novel framework that uti-
lizes GNNs to predict and identify potential HIV inhibitor molecules by
analyzing their graph-based representations. This research aims to con-
tribute to the discovery and design of effective HIV inhibitors, offering a
promising direction for future antiviral drug development.

Keywords: Deep learning · Molecules · reinforcement learning · Graph
neural network (GNNs) · Graph autoencoder (GAE) · MolGAN

1 Introduction

In recent years, the development of machine learning (ML) methods has sig-
nificantly advanced the biomedical field. A key area of focus within biomedical
fields where ML and deep learning (DL) methods have been extensively stud-
ied is molecular structures, which are central to numerous biomedical applica-
tions, including drug discovery and prediction. Understanding and predicting
the properties of molecular structures is crucial for identifying new therapeutic
compounds, designing effective drugs, and advancing personalized medicine. As
a result, there has been a surge in the application of ML/DL techniques, par-
ticularly those that can model and analyze the intricate details of molecular in-
teractions and behaviors. For instance, basic ML algorithms like Support Vector
Machines (SVM) and XGBoost have been explored in the context of molecular
structure analysis to predict various molecular properties and behaviors [8].

Beyond these foundational methods, more advanced techniques have been
developed for molecular structure-related problems. For example, [1] developed
a reinforcement learning (RL) framework in a continuous setting, which is based
on a stochastic parametrized Hamiltonian version of the Pontryagin maximum
principle (PMP), to solve complex problems like side-chain packing and protein

2 Quynh Nguyen

folding. Additionally, Thomas Kipf combined generative AI mechanisms with re-
inforcement learning to create [4] MolGAN, an implicit, likelihood-free genera-
tive model for small molecular graphs that can generate molecules with specific
desired chemical properties. Kipf and Welling [10] also study other graph neural
networks such as variational graph auto-encoders and their possible application
to molecular structures.

Among these advanced and novel frameworks, one of the most popular and
effective methods for capturing and investigating the complex structures of
molecules is the Graph Neural Network (GNN). GNNs have proven to be es-
pecially powerful in the biomedical domain and have been extensively studied
[12]. For instance, [15], [2], and [14] have utilized GNNs to develop knowledge-
enhanced models for information extraction from biomedical texts, demonstrat-
ing the versatility of GNNs beyond purely molecular applications.

In this work, we explore various GNN architectures and their ability to gen-
eralize across different molecular datasets. Moreover, we also propose a novel
framework leveraging GNNs to predict and identify potential HIV inhibitor
molecules via their graph-based representations. This research seeks to con-
tribute to the discovery and design of effective HIV inhibitors, paving the way
for new directions in antiviral drug development.

2 Background on autoencoder and reinforcement learning

2.1 Variational autoencoder

We wish to learn an encoder that map our data x to a continuous latent variable
z, and a decoder that maps back z to x. The variational autoencoder [9] provides
a formulation in which the encoding z is interpreted as a latent variable in a
probabilistic generative model; a probabilistic decoder is defined by a likelihood
function pθ(x|z) parameterized by θ, while the encoder represented by qφ(z|x)
attempts to approximate the posterior distribution pθ(z|x) while at the same
time maintains a certain nice functional form (nice function qφ) to make sampling
x via z simpler. Using variational Bayes approach, this task can be done by
maximizing the evidence lower bound (ELBO):

L(φ, θ;x) = Eqθ(z|x)[log pθ(x, z)− log qφ(z|x)] (1)

2.2 Generative adversarial network

Generative adversarial network (GAN) [6] is a neural network architecture that
is used for data generation and consists of a generator G and a discriminator D.
Gθ is a generator parameterized by θ and is trained to produce synthetic data x
from certain latent variable z that can be easier to sample. On the other hand,
discriminator D try to differentiate between real sample and sample generated
from G. In other words, D and G play the minimax game minGmaxD V (D,G)
with value function V (G,D):

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (2)

Title Suppressed Due to Excessive Length 3

2.3 Reinforcement learning

In the reinforcement learning, we consider an agent interacting with the envi-
ronment to learn the best action to take. At time t, the agent choose an action
at ∈ A according to its policy πθ(a|st) parameterized by θ given its current
state st ∈ X . The environment then produces a reward r(st, at) and transition
to the next states st+1 according to the transition probability P(st+1|st, at).
The goal of the agent is to maximize the expected λ-discounted cumulative re-
turn J (θ) = Eπ[Rt] = Eπ[

∑
i≥0 γ

ir(st+i, at+i)]. In the policy gradient methods,
we directly parameterize a policy πθ(a|st) and update its parameter θ so as to
maximize the objective function J (θ). There are many popular reinforcement
learning algorithms. Two of such algorithms are REINFORCE [20] and DDPG
[13]

3 Graph Neural Network (GNN)

3.1 General framework

Definition 1 A graph is represented by G = (V,E), where V is the set of ver-
tices or nodes, and E is the set of nodes. Let vi ∈ V to denote a node and
eij = (vi, vj) ∈ E to denote an edge pointing from vi to vj. The neighborhood of
a node v is defined as N(v) = {u ∈ V : (v, u) ∈ E}. The adjacency matrix A is
a n×n matrix with Aij = 1 if eij ∈ E and Aij = 0 if eij 6∈ E. A graph may have
node attribute X, where X ∈ Rn×d is a node feature matrix with rows xv ∈ Rd
representing the feature vector of a node v. A graph may also have edge attribute
Xe ∈ Rm×c with feature vector xev,u ∈ Rc of an edge (v, u).

The main idea of graph neural network (GNN) is that instead of taking an
usual input vector, a GNN will take a graph G defined above as the input. In
this way, GNN can deal with graph data, where not only content but relation
between nodes are also important (see Figure 1).

3.2 Convolutional graph neural networks (ConvGNNs)

This type of network generalizes the usual convolutional network on grid (or
image) data. The main idea is to generate a node v’s representation from its
own feature xv and neighbors’ features xu, where u ∈ N(v). There are, in fact,
two main types of ConvGNNs: spectral-based ConvGNN and spatial-based Con-
vGNN. The first type depend on the spectral represenation of the normalized
Laplacian matrix of the graph. We will focus on the second type instead as it
allows different graph structure G and is a direct generalization of the popular
convolutional neural network (CNN) on graph data. Many spatial-based Con-
vGNNs follows the architecture of the general message-passing neural network
(MPNN). The convolutional layers of MPNN can be described by the following
equation:

h(k)
v = Uk

h(k−1)
v ,

∑
u∈N(v)

Mk(h
(k−1)
v ,h(k−1)

u ,xevu)

 (3)

4 Quynh Nguyen

Here each h(k) is the hidden vector at layer k whose entries are vectors h(k)
v for

nodes v in V . Uk(.) andMk(.) are function with learnable parameters, and there
parameter xevu is an optional argument for Mk and is the edge feature vector
described earlier. Also, note that h

(0)
v = xv (zeroth hidden layer is actually

input).
The network can consist of an optional readout layer that give a representa-

tion for the entire graph as a vector hG based on the final hidden node layer:

hG = R(h(K)
v |v ∈ V) (4)

where R(.) is the readout function with learnable parameter.
Finally, similar to the pooling layer of CNNs that follows convolutional layers

to downsample the image, the pooling layer of GNNs also has the form:

hG = mean/max/sum(h1,h2, · · ·hn) (5)

where h = (h1,h2, · · ·hn) is the hidden variable of the convolutional layer right
before this pooling layer.

Fig. 1. Mechanism of Graph Neural Network (GNN)

3.3 Variational graph auto-encoders

ConvGNNs described in the last section are building block to construct the so-
called varational graph auto-encoders (VGAE). This neural network is similar to
variational neural network (VAE) [9], but with input being a graph data (X,A)
where A is the adjacency matrix and X is the node feature matrix. Similar
to VAE, VGAE also consist of two parts, which are inference and generative
models:

Inference model:

q(Z|X,A) =

N∏
i=1

N (zi|µi, diag(σ2
i)) (6)

Title Suppressed Due to Excessive Length 5

where µ = GNNµ(X,A), logσ = GNNσ(X,A) so that GNNµ and GNNσ are
two-layer graph neural networks that share the first layer parameters.

Generative model:

p(A|Z) =
n∏
i=1

n∏
j=1

p(Aij |zi, zj) (7)

p(Aij = 1|zi, zj) = σ(zTi zj) (8)

where σ is the sigmoid function.
Finally, similar to the VAE, the goal of VGAE is to optimize the variational

lower bound L:

L = Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)||p(Z)] (9)

Here the prior distribution p(Z) can be taken to be Gaussian.

4 Previous works on applying autoencoder to molecule
generation problem

4.1 Molecules representation and desired properties

Molecules representation We mention here two important data representa-
tions of a molecule:

1. SMILES string representation of molecule. Simplified molecular-input line-
entry system (SMILES) refers to a line notation for encoding molecular struc-
tures. Each SMILES string encodes one particular molecular structure:
(a) Atom are represented by standard abbreviation of the chemical elements.

They are put inside brackets except common elements such as B, C, N,
O, P, S, F, Cl, Br, or I.

(b) A bond is represented using one of the symbols: ., -, =, #, $, :, / or \.
(c) Ring structure is represented by putting labels to show connectivity be-

tween non-adjacent atoms (in SMILES string). For example, C1CCCC2-
C1CCCC2 represents two ring structure here.

(d) SMILES string also show many other properties and structures of a
molecule such as aromaticity, branching, stereochemistry or isotopes

2. One can also represent molecule as a graph: its atoms can be considered
as nodes in a graph, and edges correspond to bonds between atoms inside a
molecule. One can reconstruct the molecule and its properties from the graph
representation. Cheminformatics packages such as RDKit [17] provides a way
to do this task.

Properties Here are important properties that when one tries to choose a
desirable drug-like molecule

– Solubility: a property that measures how likely a molecule is able to mix
with water, also known as the water octanol partition coefficients (LogP).

6 Quynh Nguyen

– Synthetizability: estimates how hard (0) or how easy (1) it is to synthesize
a given molecule

– Druglikeness: how likely a molecule is a viable candidate for a drug, an esti-
mate the captures the abstract notion of aesthetics in medicinal chemistry.
This property is correlated to the previous two metrics.

4.2 Character variational autoencoder

Character variational autoencoder (CVAE) [5] uses VAE to learn a latent repre-
sentation for SMILES strings of molecules. Two databases considered are ZINC
and QM9. Both encoder and decoder are RNNs and are paired to perform
sequence-to-sequence learning (SMILES to SMILES). In particular, the encoder
consists of three 1D convolutional layers followed by on fully connected layer.
The decoder has three layers of gated recurrent unit (GRU) networks. The last
layer of the RNN decoder defines a probability distribution over all possible
characters at each position in the SMILES string.

4.3 Grammar variational autoencoder

One issue with the character-based VAE is that it may map latent points to
sequences that are not valid. Thus, Grammar VAE (GVAE) [11] proposes to
give the VAE explicit knowledge about how to produce valid sequences by using
a grammar for the sequences. The input and output in this cases are also SMILES
string. The SMILES grammar will play an important role in this auto-encoder.

The encoder first uses SMILES grammar to parse the SMILES string (cor-
reponding to a molecule) into a parse tree. Then the tree is decomposed into
a sequence of production rules by performing a pre-order tranversonal on parse
tree. Then these rules are converted into 1-hot vectors where each dimension
(of the vectors) correspond to a rule in SMILES grammar. These 1-hot vectors
combine into a matrix X that is then passed via a convolutional neural network
to a continous latent vector z

Using a recurrent neural network, the decoder first maps z to a matrix F of
size Tmax×K consisting of logit vectors. Here Tmax is the maximum number of
production rules allowed by the decoder (to create the SMILES string) and K is
the number of production rules in SMILES grammar. We now will use this logit
matrix to produce a production rule matrix X, which yields a SMILES string
based on the SMILES grammar. The idea is to maintain stack of unprocessed
non-terminal symbols (We first push smiles onto the stack). Then every time
a non-terminal symbol is processed (or pop from the stack), a product rule is
produced based on the logits T and added to X until the number of times (or
steps) reaches Tmax.

On molecular datasets, GVAE produces about twice more valid sequences
than CVAE (Character VAE). Bayesian optimization is then performed on the
learned continuous latent space to problem of finding new drug-like molecules.
In the end, GVAE also yields higher score than CVAE in this problem.

Title Suppressed Due to Excessive Length 7

4.4 ORGAN

Objective-Reinforced Generative Adversarial Network (ORGAN) [7] combines
reinforcement learing with GAN to generate valid SMILES string representa-
tions for molecules. ORGANmodels the generatorGθ as a reinforcement-learning
agent. At time t, state st is the incomplete sequence (string) Y1:t, and the gener-
ator Gθ must produces an action at that gives the next token yt+1. The agent’s
stochastic policy is then given by Gθ(yt|Y1:(t−1)), and we wish to maximize:

J(θ) = E[R(Y1:T)|s0, θ] (10)

The reward R in ORGAN model is defined as:

R(Y1:T) = λDφ(Y1:T) + (1− λ)Oi(Y1:T) (11)

where Oi is the desired objectives. In molecule generation problem, Oi can be a
combination of solubility, synthetizability, and druglikeness.

4.5 GraphVAE

Unlike previous works that use SMILES representation of molecule, GraphVAE
[19] takes input as the graph representation of molecules instead and then use
a variational graph auto-encoders to both learn latent space of molecules and
generate new molecule data.

5 MolGAN

5.1 Graph representation of molecules

As we mentioned before, one can consider graph representation of a molecule:
each node vi is an atom, with one-hot feature vector xi of dimension T , and
each edge (vi, vj) describes a bond type y ∈ {1, · · · , Y }. This gives us the node
attribute matrix X ∈ Rn×T and the adjacency tensor A ∈ Rn×n×Y . This ad-
jacency tensor is similar to the usual adjacency matrix, but each A[i, j, :] is a
one-hot vector corresponds to the bond type y ∈ {1, · · · , Y }.

MolGAN is a deep generative network that is inspired by generative adver-
sarial networks (GAN) and its improved version WGAN, that take a random
Gaussian vector as input z and generate a graph structure for some molecule
correspoding to z.

5.2 MolGAN architecture

The MolGAN consists of three main components: a generator Gθ, a discriminant
Dφ, and a reward network R̂ψ. Similar to GAN, the generator try to generate
a sample that is close to the one in the actual dataset, and the discriminator
try to differentiate between the artificially generated and the actual molecule.

8 Quynh Nguyen

The reward network learns to assign a reward to each molecule to match a score
provided by an external software.

The generator consist of a simple multi-layer perceptron (MLP) that takes
a random Gaussian vector z ∈ RD and outputs the attribute matrix X that
defines atom types and the adjacency tensor A that defines atom types. From
here, via categorical sampling, two new discrete, sparse objects X̃ and Ã are
generated from X and A respectively.

The discriminator Dφ and the reward network R̂ψ then both shares a convo-
lutional graph neural networks that outputs hG. From here, two seperate MLPs
Dφ and R̂ψ that take the same hG and output a level scalar output for the
discriminator and a number between (0, 1) for the reward network. Finally, the
loss function being minimized is:

L(θ) = λLWGAN + (1− λ)LRL (12)

where LWGAN is the loss function in the WGAN’s framework, and LRL is the
reinforcement learning loss corresponding to the reward generated by R̂ψ. De
Cao and Thomas Kipf [4] also introduces an additional gradient penalty for the
GAN network:

α(‖∇x̂Dφ(x̂)‖ − 1)2 (13)

where x̂ is a linear combination of the actual data x and the generated data
Gθ(z).

6 Molecular structures via graph

In this section, we investigate the graph data from the molecular structure via
graph autoencoder’s framework. The graph neural network architecture that we
focus on is the MolGAN by De Cao and Kipf [4]. We study other graph neural
networks such as variational graph auto-encoders by Kipf and Welling [10], and
propose our GNN framework with application to molecular structures in the
next section.

6.1 Reimplement MolGAN

One of the first goal is to understand more carefully MolGAN framework and
architecture and then reimplement this network and test on the same dataset
QM9 [18] [16]. Our discriminator Dφ also consists of two graph convolutional
layers (GCNs) followed by an aggregation layer that combines output from GCNs
with nodes input and then followed by dense layers. Generator Gθ only consists
of dense layers and then resize the hidden variable to output the corresponding
graph representation for molecules. We work on QM9 data consists of 133,885
compounds up to 9 heavy atoms: carbon (C), oxygen (O), nitrogen (N) and
fluorine (F). We split data set into: train (80%), validation (10%) and test (10%).
In the training phase, for the GAN implementation, we run for about 28 epochs
with batch size 32.

Title Suppressed Due to Excessive Length 9

A generated molecule is valid if its SMILES string is nonempty and doesn’t
contain . (non-bond) and *. In the validation phase, the generator produces valid
molecules from a single random Gaussian vector of size 32 with the success rate
close to 80%. Among valid molecules, scores for chemical properties of generated
molecules are all close to the standard scores for real molecules. During test
phase, however, the success rate drop to only 30%, but all other chemical indices
remain in good shapes. Certain modification of hyperparameters and network
architecture together with longer training time may improve the result. However,
due to time constraint and computational power together with a few training
failures (due to network architecture) prevent us from having a better result.

Fig. 2. Nine distinct generated molecules from MolGAN architecture

6.2 Develop a VGAE model for generating molecules

Since MolGAN doesn’t have an encoder, we built an additional encoder to en-
hance molecule generation. In our implementation, the encoder has the same
graph convolutional layers as the discriminator, but with different dense layers.
After training only the discriminator and generator for 28 epochs, we train the
entire auto-encoder, which include an encoder and the generator, which is re-
garded as the decoder, for an additional 11 epochs. The success rate of generating
a valid molecule is 84%, with all chemical indices in good shapes. Again, this
rate can be increased as we improve hyperparameters and network architectures
and increase training time.

10 Quynh Nguyen

Fig. 3. Nine distinct generated molecules from MolGANVAE architecture

7 Applications: HIV molecules inhibitor prediction

7.1 Datasets

The data used in this study to identify potential HIV inhibitor molecules was
sourced from the MoleculeNet data [21], a well-established resource for bench-
mark datasets in molecular machine learning. For our analysis, we specifically
utilized the HIV.csv file from this repository. This file contains experimentally
measured data on the ability of various molecules to inhibit HIV replication.
The dataset includes the following fields:

– SMILES String: a text-based representation of the molecular structure.
– Activity: Numerical variable representing the experimentally measured abil-

ity of the molecule to inhibit HIV replication.
– HIV Active Status: A binary target indicating whether a molecule is active

(1) or inactive (0) in inhibiting HIV.

It is important to note that the dataset is significantly imbalanced. Specifi-
cally, there are 39,684 samples in the negative class (not HIV active) compared
to only 1,443 samples in the positive class (HIV active). This imbalance presents
a challenge for machine learning models, as they may become biased towards
the majority class and not accurately capture the characteristics of the minor-
ity class. To mitigate this issue, we employed several techniques including data
augmentation, oversampling of the minority class, and class-weight adjustments,
and graph batching (see Figure 4).

Title Suppressed Due to Excessive Length 11

Fig. 4. Overview of Graph batching technique

7.2 Methods

To accurately predict whether a molecule is suitable as an HIV inhibitor, we
introduce Dual-Level GCN, a simple yet effective framework consisting of two
distinct stages of Graph Convolutional Networks (GCNs). The first stage, a node-
level GCN, is designed to detect and highlight the most important components of
a molecule by learning rich and informative representations of individual atoms
and their immediate environments. This stage is crucial for capturing the local
structural features that may be critical for the molecule’s inhibitory activity.

The second stage, a graph-level GCN, builds upon the node-level represen-
tations to assess the entire molecular graph. This stage focuses on identifying
molecules that are highly likely to function as HIV inhibitors. Additionally, it
proposes regions of interest (ROI) within the molecular structure that could be
key to the molecule’s inhibitory potential.

This two-stage framework (see Figure 5) not only addresses the challenge of
data imbalance by leveraging detailed information at both the node and graph
levels, but it also integrates mini-batching techniques to enhance computational
efficiency. By utilizing information from both levels, the framework offers a more
robust and comprehensive approach to predicting HIV inhibitors, ultimately
improving the model’s predictive accuracy.

7.3 Experimental Results

In this section, we present the experimental results obtained from applying our
proposed dual-stage Graph Convolutional Network (GCN) framework to the task
of identifying potential HIV inhibitor molecules. We evaluate the performance of
the framework across multiple metrics, comparing it with baseline models and
other state-of-the-art methods. The experiments were conducted using the HIV
dataset from the MoleculeNet repository, which was described in the previous
sections.

12 Quynh Nguyen

Fig. 5. Dual-Level GCN: with graph-level GCN and node-level GCN

Table 1. Results of Dual-Level GCN on MoleculeNet

Model F1-Score AUC ROC
Training 0.823 0.812
Validation 0.820 0.803
Testing 0.791 0.785

8 Conclusion and Future directions

In this paper, we have demonstrated the efficacy of Graph Neural Networks
(GNNs) in studying the intricate nature of molecule structures, particularly in
predicting the properties of molecular compounds. Furthermore, we proposed
a novel GNN-based framework specifically designed with two stages to identify
potential HIV inhibitor molecules. This two-stage approach allows the model
to capture both fine-grained local details and broad, global features, improving
its ability to predict effective HIV inhibitors. Additionally, the framework is de-
signed to handle data imbalance and efficiently process large datasets through
mini-batching and adaptive learning techniques. By combining insights from
both the node and graph levels, the model provides a robust and accurate pre-
diction mechanism, contributing valuable tools for HIV inhibitor discovery.

While our current framework has shown promising results in identifying po-
tential HIV inhibitor molecules, there is still room for improvement. In the near
future, we plan to further refine the model by adjusting hyperparameters and
experimenting with different network architectures to enhance its predictive ac-
curacy and robustness.

Additionally, we are exploring the integration of advanced reinforcement
learning algorithms into our framework. These algorithms could allow the model
to learn more dynamically and make better decisions during the training process,
potentially leading to improved identification of key molecular features associ-
ated with HIV inhibition.

We are also considering the incorporation of alternative graph neural net-
work (GNN) architectures, which may offer more efficient ways to extract and
represent the complex information embedded within molecular graphs. These

Title Suppressed Due to Excessive Length 13

alternatives could include attention-based GNNs or those that focus on spe-
cific substructures within the molecule, offering new perspectives on how to best
capture the essential characteristics for HIV inhibition.

By pursuing these avenues, we aim to further advance our framework’s ca-
pabilities and contribute to the ongoing efforts in computational drug discovery,
particularly in the context of HIV research.

References

1. Bajaj, C., Li, C., Nguyen, M.: Solving the side-chain packing arrangement of
proteins from reinforcement learned stochastic decision making. arXiv preprint
arXiv:2212.03320 (2022)

2. Beltagy, I., Lo, K., Cohan, A.: SciBERT: A pretrained language model for scien-
tific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association for Computational Linguistics,
Stroudsburg, PA, USA (2019)

3. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoen-
coder for structured data (2018)

4. De Cao, N., Kipf, T.: MolGAN: An implicit generative model for small molecular
graphs (2018)

5. Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M.,
Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D.,
Adams, R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven
continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018)

6. Goodfellow, I.: NIPS 2016 tutorial: Generative adversarial networks (2016)
7. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-

Guzik, A.: Objective-reinforced generative adversarial networks (ORGAN) for se-
quence generation models (2017)

8. Jiang, D., Wu, Z., Hsieh, C.Y., Chen, G., Liao, B., Wang, Z., Shen, C., Cao, D., Wu,
J., Hou, T.: Could graph neural networks learn better molecular representation for
drug discovery? a comparison study of descriptor-based and graph-based models.
J. Cheminform. 13(1) (2021)

9. Kingma, D.P., Welling, M.: An introduction to variational autoencoders (2019)
10. Kipf, T.N., Welling, M.: Variational graph Auto-Encoders (2016)
11. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-

coder (2017)
12. Li, M.M., Huang, K., Zitnik, M.: Graph representation learning in biomedicine and

healthcare. Nat. Biomed. Eng. 6(12), 1353–1369 (2022)
13. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

Wierstra, D.: Continuous control with deep reinforcement learning (2015)
14. Nguyen, M., Le, P.: Generalized knowledge-enhanced framework for biomedical

entity and relation extraction. arXiv preprint arXiv:2408.06618 (2024)
15. Peters, M.E., Neumann, M., Logan, R., Schwartz, R., Joshi, V., Singh, S., Smith,

N.A.: Knowledge enhanced contextual word representations. In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Stroudsburg, PA, USA
(2019)

14 Quynh Nguyen

16. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry
structures and properties of 134 kilo molecules. Sci. Data 1(1), 140022 (2014)

17. RDKit: Open-source cheminformatics. http://www.rdkit.org, [Online; accessed 11-
April-2013]

18. Ruddigkeit, L., van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166
billion organic small molecules in the chemical universe database GDB-17. J. Chem.
Inf. Model. 52(11), 2864–2875 (2012)

19. Simonovsky, M., Komodakis, N.: GraphVAE: Towards generation of small graphs
using variational autoencoders. In: Artificial Neural Networks and Machine Learn-
ing – ICANN 2018, pp. 412–422. Springer International Publishing, Cham (2018)

20. Sutton, R.S., Barto, A.G.: An Reinforcement Learning: Introduction. Mit Press
(2012)

21. Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S.,
Leswing, K., Pande, V.: Moleculenet: A benchmark for molecular machine learning.
arXiv preprint 1703.00564 (2018)

22. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24
(2021)

