
Abstractive Text Summarisation using
T5 Transformer Architecture with

analysis

Vasanth Kumar Bhukya
Computer Science and Engineering

National Institute Of Technology Calicut
bhukyavasanthkumar@gmail.com

Umesh Bhukya
Computer Science and Engineering

Indian Institute Of Technology Dhanbad
bhukya.umesh9@gmail.com

Abstract

Now a days, Text summarization has become important as the amount of text
data available online grows at an exponential rate. Most of the text clas-
sification systems require going through a huge amount of data. In general,
Producing exact and meaningful summaries of big texts is a time-consuming
endeavour. Hence generating abstract summaries which retain the key infor-
mation of the data and using it to train machine learning models will make
these models space and time-efficient. Abstractive text summarization has been
successful in moving from linear models to nonlinear neural network models us-
ing sparse models [1]. This success comes from the application of deep learning
models on natural language processing tasks where these mod-els are capable of
modeling the interrelating patterns in data without hand-crafted features. The
Text to Text Transfer Transformer(T5) approach was used to investigate the
text summarization problem, and the results showed that the Transfer Learning
based model performed significantly better for abstractive text summarization
than the Sequence to Sequence Recurrent Model.

1



Introduction

The advancement of natural language processing (NLP) over the years has cre-
ated more possibilities in the way we can manipulate data. With the phenome-
nal growth in the internet and technology, everything now in front of us is data
that is being used for various purposes.There is a vast amount of information
and papers available on the internet that can be used for a variety of purposes.
As the number of papers available grows, so does the requirement for in-depth
research in the field of automatic text summarization.

The text summarisation should produce a precise summary from the given text
without losing the key data and comprehensive meaning and can be viewed as
data compression and information understanding both are related to key infor-
mation retrieval. Since the last few years, various approaches and models have
been designed for abstractive summarization and the summari-sation problem
is one of the demanding and crucial problems in NLP tasks, yet it is one of the
least solved problems and research has been continuing in this area to tackle
the problem in an efficient way. Text summarisation is widely used in areas
like news article summary, tracking patient’s health history, search engines, etc.
Apps like In-shorts use this method to summarise news and provide headlines.
Search engines like Google Chrome use them to generate snippets of products,
and to facilitate headlines for news across the globe. The word ‘abstractive’
denotes a summary of sentences that are not directly extracted from the source,
but a compressed paraphrasing of the main key contents of the document, po-
tentially using/adding vocabulary and the grammar that is unseen in the source
document [2]. A human can produce a summary of a text in various ways based
on how they understand it and the keywords they use. Doing the same with ma-
chines is challenging and hence, text summarisation is considered to be limited.
Since, the machines have a deficiency of human knowledge, text summarisation
turns out to be a non-trivial task [23] and the results vary.

2



Chapter 1
1.1 Definitions

1.1.1 Summarisation

[21] defines summary as ”a text created from one or more texts that provides
crucial information from the original text(s) and is no more than half the length
of the original text(s), and frequently much less..”

1.1.2 Transformer

The transformer is an NLP-based architecture that uses self-attention to calcu-
late representations of its input and output, allowing it to handle sequence-to-
sequence problems without the use of RNNs.

1.1.3 Natural Language Processing

NLP (Natural Language Processing) is a fundamental component of Artificial
Intelligence that explains a computer program’s capacity to interpret human
language as it is spoken or written.

Chapter 2

Problem Statement

To create a brief, precise summary of a lengthy text while keeping the con-tent’s
key information Using natural language processing (NLP) techniques.

2.1 Overview of the problem

2.1.1 Input - Output

Input:
1. Data(Sentence/Paragraph)
2. Original summary of data (Used for calculating accuracy)
Output:
Based on abstractive text summarization, a concise summary is generated.

2.1.2 Diagramatic Representation

The Diagramatic representation of the Input and Output Design is as shown in
the Figure 2.1

3



Figure 2.1: Input and Output Diagram

2.1.3 Data Set

The experiment was performed using Kaggle’s News Summary dataset..The
dataset consists of 4515 examples and contains Authorname, Headlines, Url of
Article, Short text, Complete Article. The dataset only scraped news sto-ries
from Hindu, Indian Times, and Guardian, and only summarised news from
Inshorts. Chapter 3

Literature Survey

3.1 History of Text Summarisation

The number of summarisation models introduced every year has been in-creasing
rapidly. Advancements in neural network architectures, and the Large-scale data
made it possible to move away from expert knowledge and heuristics and toward
data-driven techniques based on end-to-end deep neu-ral models..

3.2 Challenges

A summary can be defined as a text that represents the main ideas or key
information in an original text in less space. Suppose, if all the sentences in
the original text are important, then the process of summarization would be
less effective as the size of the summary would effect its informativeness. The
main challenge in the process of summarization is identifying the informative
segments and finally generating it as a concise text [18].

3.3 Quality of Summary

One of the most challenging problems is determining the quality of a sum-mary
because there is no such thing as a ”ideal” summary. Human sum-marises
only meet up to 60% of the time when measuring sentence content overlap
in several circumstances, like as news articles[13]. In general, sum-marization
can be characterised as the process of identifying, interpreting, and producing
information about a given topic.

The major purpose of this portion of the identification process is to keep the
most relevant, central issues. The major goal of the interpretation sec-tion is

4



to accomplish compression by re-interpreting and fusing the picked out subjects
into more concise ones.This is quite important because abstracts are usually
much shorter than their equivalent extracts. The generation phase, on the other
hand, is quite difficult since reformulating the extracted and fused content into
a text with new phrases is quite difficult.

3.4 Current Approaches

Current approaches to text summarization uses copying mechanisms multi-task
and multi-reward training techniques, graph-based methods that basi-cally in-
volve arranging the input text in a graph and then using ranking or graph
traversal algorithms in order to construct the summary, reinforcement learning
strategies , and hybrid extractive-abstractive models [?] few among them is text
rank algorithm.

Initially, statistical methods were employed to provide a score to each sentence,
and then the sentences with the highest scores were chosen. Var-ious techniques
were employed to calculate this score, such as TF-IDF [19], Bayesian models
[14], etc. While these techniques were able to compute a sound summary by
key phrase extraction, all of them were mostly extractive approaches and were
simply trimming the original text into some summary.

Then the main focus is on Machine Learning [15] for summarization, such as
Bayesian Learning Models as was done in the paper [14]. These machine learning
techniques proved to be successful for pattern recognition in texts and establish-
ing a correlation between different words.Because the order of words is crucial
for natural language understanding and production, every text or sentence can
be conceived of as sequential data. In order to process sequential data, the
architecture needs to retain and memorize information with the help of some
memory.

3.5 Concept of Self Attention

Reading comprehension, abstractive summarization, textual entailment, and
learning task-independent phrase representations have all been successfully
utilised with self-attention [6, 17, 8, 9]. End-to-end memory networks use
a recurrent attention mechanism rather than sequence aligned recurrence to
perform well on simple-language question answering and language modelling
tasks [10]. To our knowledge, the Transformer is the first transduction model
to calculate representations of its input and output using only self-attention
rather than sequence aligned RNNs or convolution.

3.6 Transformers

One of the main advantages of the transformers is parallelisation purely
de-pending on self attention with normalisation. The basic idea behind the self
attention is that they allow inputs to interact with inputs i.e calculation of all
other inputs with respect to one input.

5



Chapter 4

4.1 Transformer

The transformer is an NLP-based architecture that uses self-attention to cal-
culate representations of its input and output, allowing it to handle sequence-to-
sequence problems without the use of RNNs. Figure 4.1 represents the Trans-
former Model With all components.

4.1.1 Encoder

The encoder is a 6 layered stack.Each layer is identical, including a feed-forward
neural network and a multi-head attention mechanism. In the en-coder, a resid-
ual connection is used around every two sub-layers, followed by layer normali-
sation.

Thus, the output of every layer is LayerNormalisation(x+Sublayer(x)) f??.

1. x - Input to the Sublayer

2. Sublayer(x) - Function implemented by the Sublayer

6



Figure 4.1: Transformer Model

4.1.2 Decoder

The decoder also consists of 6 layers like an encoder as shown in Figure 4.2. We
also have a Masked multi-headed attention sublayer in addition to the multi-
head attention mechanism and the feed-forward neural network in which the
scope of the attention is restricted to the words that occurred before the given
word. This is done in order to make the model learn.

Figure 4.2: Encoder-Decoder Stacks

4.2 Text-to-Text Transformer

4.2.1 Introduction

T5 is the abbreviation for ”Text-to-Text Transfer Transformer” [4]. The main
idea behind the T5 model is transfer learning [20]. The model as shown in Fig-
ure 4.3 was initially trained on a task containing large text in Transfer Learning
before it was finely tuned on a downstream task so that the model picks up
general-purpose skills and knowledge that can be applied to tasks like sum-
marization [4] T5 uses a sequence-to-sequence creation strategy that feeds the
encoded input to the decoder via cross-attention layers and pro-vides autore-
gressive decoder output.

We have fine-tuned a T5 model [4], where the encoder takes an input a series of
tokens which are mapped to a sequence of embeddings In this paper, we have
used Glove embeddings dataset. In the encoder block, there is a self attention
layer and a feed forward network, which are two subcomponents. The decoder
and encoder are similar in structure, except that there’s a gen-eralized attention
mechanism after every self attention layer. This enables the model to just work
with the previous outputs. The final decoder block produces an output which is
fed into another layer. The final layer is a thick layer with a softmax activation
function. The weights from this layer’s out-put are supplied into the embedding
matrix’s input.

7



Figure 4.3: Text to text Transfer Transformer (T5) Model

4.2.2 Input-Output Scenario

Here, both the input and output are in text format. The main ideology behind
T5 is transfer learning where the model is firstly trained on a large data set
before being fine-tuned on a downstream task.T5 uses a sequence-to-sequence
method that passes the encoded outputs to the decoders. The encoders take
the input of a series of tokens which are further embedded by using predefined
embedding methods such as Glove. Encoder and decoder are a 6-layered stack.
Encoder and decoder have quite similar layers namely multi-head attention and
feed-forward neural network except that decoder have an additional layer called
masked multi-head attention. The softmax is an activation function, and the
output of the final decoder block will be sent to another layer. This layer’s
output will be fed into the input embedding matrix.. T5 works on a variety of
tasks such as Summarisation and Translation.

4.2.3 Framework

Many of the NLP tasks are formulated using “ text to text ” transformer.Tthe
main idea behind this is the model is fed with some text context or condi-
tioning and is then asked to output some text this similar idea can be seen in
some of the tasks such as “WMT1” task which is translating English to german,
”CoLA” is a classification system that determines whether or not a statement
is grammatically correct., ”STSB” [25] task is to Classify the sentiment of a
sentence on a scale from 1 to 5 (21 Sentiment Classes) “Sum-marisation” i.e
summarising text into shorter representation, “SQuAD” task which is Answering
the question in the given context and many more.The framework of the t5

8



transformer is shown in Figure 4.4

Figure 4.4: Text to text Transfer Transformer (T5) Framework

4.2.4 T5 In-Detail

On a high-level overview as shown in Figure 4.5, T5 consists of an encoder block
and a decoder block. The encoder block is a stack of 6 encoders and the decoder
block is a stack of 6 decoders.

The word embeddings is the first encoder’s input (vector representation of word).
The output of the prior encoders will be the inputs of the subsequent encoders.
Every decoder block will get the output from the final encoder. The output
from the decoder will be given to linear and softmax blocks and mapped to the
embeddings to produce the text output.

Figure 4.5: High Level Overview

4.2.5 Embedding

The very first step in most of the NLP applications is converting the words into
vectors by using any embedding algorithms.After embedding, each word will be
transferred to its matching vector. Each embedding is 512 bytes in size. As a
result, the first encoder receives word embeddings of the size, or sentence length.
After embedding the words in our input sequence, each one passes through each

9



of the encoders.The graphical representation of word embeddings is shown in
Figure 4.6

CHAPTER 4. PROPOSED WORK 15

Figure 4.6: Glove Embeddings Graph

4.2.6 Positional Embedding

Positional embeddings are really important in transformer architecture. Po-
sitional embedding has information about both the meaning and position of
the word. The normal embedding will be added to positional word embedding
before sending it to the encoder block as represented in Figure 4.7.

Figure 4.7: Positional Encoding

4.2.7 Self Attention Procedure

10



Figure 4.8: Self Attention

Overview of self attention is shown in Figure 4.8

• Creating 3 vectors Q, K, V: We make a Query vector (Q), a Key vector
(K), and a Value vector (V) for each word (V). To obtain these vectors, the
embedding is multiplied by three weight matrices Wq, Wk, and Wv.

• Calculating Score: This given word must be scored against each word in
the input sentence. This score indicates how important one word is to the other.
A dot product of the query vector and the key vector of the word being scored
yields the score.. The dot product of q1 and k1 would be the first score of the
first word. The dot product of q1 and k2 would be the second score of the first
word as shown in Figure 4.9.

• Dividing the scores by 8: This is done in order to get more stable gradients

CHAPTER 4. PROPOSED WORK 17

Figure 4.9: Score

• Softmax: The The values are reduced to a [0, 1] probability distri-

bution using the softmax algorithm as shown in Figure 4.11.

• Multiplying with value vector: word by the softmax score

11



Multiply each value vector of the

• Summing up : Add all the weighted value vectors together.For the first
word, this would result in the output of the self-attention layer.This is demon-
strated in Figure 4.10

appending word embeddings as rows of the matrix, the sentence is compressed
into a two-dimensional space.

• Calculating Q, K, V matrices: We can get the Q, K, V matrices by
multiplying the sentence matrix with the weighted matrices(WQ, WK, WV).

• Calculating Z: Using the formula shown in Figure 4.11, we can com-pute z.

Multi-headed(encoder side)

As shown in Fig 16, In multi-headed attention, we have not one, but several
sets of Query/Key/Value weight matrices. The Transformer has eight weight

Figure 4.10: Whole Attention

Figure 4.11: Softmax Formula

12



sets.
each of them is
randomly initialized.

after doing
the self-
attention

calculation, we get 8 Z matrices for each word.

The output is 8 matrices. but the feedforward block only accepts one matrix.
So these 8 matrices will be concatenated to one matrix and will be multiplied
with weight wo to give the final z as shown in Figure 4.13.

Masked multi-headed(decoder side)

Because the Transformer employs self-attention when constructing target se-
quences at the decoder, it prefers to include all of the words from the

Figure 4.12: Multi Headed Attention

decoder inputs. However, this is inaccurate in practice. Only the words that
came before the current word can aid in the creation of the following term. This
is ensured through masked multi-head attention as shown in Figure 4.12.

This is done by masking(padding to Zero) the later words in the matrix.

4.2.8 Feed Forward Encoder-Decoder

The feed-forward neural networks convert the attention vectors into a form
that is acceptable by encoder/decoder block.

13



Encoder

• as shown in Figure 4.14, Every word will be passed into pre-trained embedding
algorithms which give 512 sized vectors as output. This vector will be added to
the positional encoding of the same before passing it to the encoder block.

Figure 4.13: Concate

• The vector will pass through each encoder’s multi-head attention and feed-
forward block.

Figure 4.14: Encoder

• The Residuals: In Figure 4.15, Each encoder has a residual connection
around each sub-layer (attention/feedforward), which is followed by a layer-
normalization step.

14



Figure 4.15: Residual

Decoder

• As shown in Figure 4.16 The top encoder’s output is then translated into a
set of K and V attention vectors. Each decoder will make use of these.

• We embed and applied positional encoding to those decoder inputs to deter-
mine the position of each word.

• In the next time step, the output of each step is supplied to the bottom
decoder, and in the same way that the encoders did, the decoders bubble up
their decoding findings.

• The decoder’s self-attention layers work in a somewhat different way from
the encoder’s i.e, Only earlier points in the output sequence are allowed to be
prioritised by the decoder’s self-attention layer. This is accomplished by masking
future positions (putting them to -inf) before the self-attention calculation’s
Soft-max stage.

15



Figure 4.16: Decoder

• In the same way as Multi-headed self-attention gets its Queries matrix from
the layer below it, the ”Encoder-Decoder Attention” layer gets its Keys and
Values matrix from the encoder stack’s output.

4.2.9 Linear and Softmax Layer

decoder block’s output would be a set of float vectors. This layer will be in
charge of converting the vectors into words. The Linear layer is a simple fully
connected neural network that converts the decoder’s block’s vector into a much
larger vector known as a logits vector. The cells of unique words will be mapped
to the logits vector.

The softmax layer then converts these scores to probabilities. For this time
step, the cell with the highest probability is chosen as the output, and the word
associated with it is generated.

Chapter 5

Experimental Results

The given sample input - output text is a single unit data from the music dataset.
This is a random review of a guitar product from Amazon. The dataset contains
thousands of such reviews.

The ‘model summary’ predicts the short abstractive summary for the text .
Here, since the cost is mentioned in the text/ review with almost positive quali-
ties, the summary model responds with affordable price by comparing both the
cost and quality of the product.The ‘model summary’ generates the summary
by considering the key words and phrases it’s own short sentences.

Figure 5.1 shows output summary given by our model for a guitar review. Figure
5.2 shows the output for a news summary article.

The ‘model summary’ predicts the short abstractive summary for the text. The

16



model emphasises the importance of the speech and includes the important
sentences as it is. Since both the date of public holiday and the reason for
the same are equally important, it focuses on them and summarises them by
phrasing into simpler sentences.

for Figure 5.3 The given sample input - output text is a single unit data from
the reviews dataset. This text is a random review from products in Amazon.

This sample input is about a earphones product from Amazon. The text here
explains how good the product is, by highlighting the battery life and quality.

The ‘model summary’ predicts the short abstractive summary for the text.
Since, the text highlights that the product is good in terms of quality, and
battery life, the model summarises it as a good product. Determining it as
good / bad by the model is quiet essential as users have a normal tendency to
look after the better or not review and then get into further details.

5.1 Diagrams

Figure 5.1: Results for music dataset

Figure 5.2: Results for news summary dataset

Figure 5.3: Results for earphone review dataset

17



ROUGE-1 ROUGE-2 ROUGE-3
F1
Precision
Recall

0.473
0.467
0.480

0.265
0.261
0.269

0.361
0.338
0.389

Table 5.1: Results on news summary using T5 Model

5.2 Accuracy Tables

The following tables displays the accuracy rates for the datasets considering
the scores of F1, Recall and Precision using the T5 Framework model that has
been implemented

The table 5.1 displays the accuracy rates for the datasets considering the scores
of F1, Recall and Precision using the Seq2Seq model. Rouge 1, Rouge 2 and
Rouge 3 values have been taken into consideration. The accuracy here ranges
from 20% to 38%.

The table 5.3 displays the accuracy rates for the datasets considering the scores
of F1, Recall and Precision using the Bert model. Rouge 1, Rouge 2 and Rouge
3 values have been taken into consideration. The accuracy here ranges from
60% to 70%.

CHAPTER 5.
EXPERIMENTAL
RESULTS 26

ROUGE-1 ROUGE-2 ROUGE-3
F1
Precision
Recall

0.312
0.388
0.324

0.194
0.274
0.1329

o.264
0.288
0.199

Table 5.2: Results on news summary using Seq2Seq Model

18



ROUGE-1 ROUGE-2 ROUGE-3
F-
Bert
P-
Bert
R-
Bert

0.672
0.668
0.680

0.665
0.660
0.668

o.662
0.638
0.62

Table 5.3: Results on news summary using bert Model

Models ROUGE-1 ROUGE-2 ROUGE-3

Pipeline-
BART
BART
modified
T5
Pegasus

0.37
0.40
0.46
0.42

0.28
0.274
0.33
0.28

o.38
0.42
0.43
0.40

Table 5.4: evaluation and comparision of ROUGE values of different transformer
models

Chapter 6

Conclusion

Our work deals with the implemenation of a model for abstractive text sum-
marisation. The work uses deep learning in order to increase the efficiency. De-
creased train loss is also a major contribution in this the sequence to sequence
model.

In this Report, we discussed how exactly abstractive text summarisation is a
challenging task, yet much needed in present times.We clearly specified the
problem definition with a brief input-output statement along with a pic-torial
representation. Also, we’ve mentioned most closely related works that has been
done by researches before, that were based on our problem. It fol-lows by
section which provides a brief idea on the basics of Neural Networks. It further

19



explains the advancement in Neural Networks. Feed forward neural networks
and RNN are explained later on. LSTM is finally explained with the internal
mechanism. Later on, motivation behind the NLP and LSTM is given. We went
on further explaining the design and the flow graph. The entire preprocessing
we did in implementation is explained which includes cleaning and encoding of
data. Results along with tabular representation are provided.

Considering our current work, we came to a conclusion that using the current
T5 Framework would give the summarisation with around 70-80% of accuracy.
The work has been tested with around 7 datsets which includes news reports,
music rewiews, product reviews, medical reports, etc.

20



References

[1] Ekaterina Zolotareva, Tsegaye Misikir Tashu and Toma´s Horv ˇ ath ELTE-
´ Eotv ¨ os Lor ¨ and University, Faculty of Informatics, De-partment of Data
´ Science and Engineering, Telekom Innovation Lab-oratories Pazm´ any ´ Pe-
ter s ´ et´ any 1/C, 1117, Budapest, Hungary (dnbo45, tomas.horvath , ´
misikir)@inf.elte.hu

[2] Ramesh Nallapati et al. “Abstractive Text Summarization using Sequence-
to-sequence RNNs and Beyond”. In: Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning. Berlin, Germany: Associ-
ation for Computational Linguistics, Aug. 2016, pp. 280–290

[3] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. ¨
Neural computation, 9(8):1735–1780, 1997.

[4] Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li
W, Liu PJ (2019) Exploring the Limits of Transfer Learning with a Unified
Textto-Text Transformer. CoRR abs/1910.10683:

[5] Zhang J, Zhao Y, Saleh M, Liu PJ (2019) PEGASUS: Pre-training with Ex-
tracted Gap-sentences for Abstractive Summarization. CoRR abs/1912.08777

[6] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memo-
rynetworks for machine reading. arXiv preprint arXiv:1601.06733, 2016

[7] Junyoung Chung, C¸ aglar Gulc¸ehre, Kyunghyun Cho, and Yoshua Ben-
¨ gio. Empirical evaluation of gated recurrent neural networks on se-quence
modeling. CoRR, abs/1412.3555, 2014

[8] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304, 2017

[9] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xi-
ang, Bowen Zhou, and Yoshua Bengio. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130, 2017

[10] ] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus.
End-to-end memory networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 2440–2448. Curran Associates, Inc., 2015.

[11] Devlin J, Chang M-W, Lee K, Toutanova K (2018) BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. CoRR
abs/1810.04805:

[12] Radford A (2018) Improving Language Understanding by Generative Pre-
Training

[13] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and
Yonghui Wu. Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410, 2016.

21



[14] Nomoto T (2005) Bayesian Learning in Text Summarization

[15] Babar S, Tech-Cse M, Rit (2013) Text Summarization:An Overview

[16] Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoy-
anov V, Zettlemoyer L (2019) BART: Denoising Sequence-toSequence

Pre-training for Natural Language Generation, Translation, and Com-
prehension. CoRR abs/1910.13461:

[17] Ankur Parikh, Oscar Tackstr ¨ om, Dipanjan Das, and Jakob Uszkoreit.¨
A decomposable attention model. In Empirical Methods in Natural Language
Processing, 2016.

[18] Dragomir R Radev, Eduard Hovy, and Kathleen McKeown. 2002.“ In-
troduction to the special issue on summarization,“Computational linguistics 28,
4 (2002)

[19] Christian H, Agus M, Suhartono D (2016) Single Document Auto-matic
Text Summarization using Term Frequency-Inverse Document Frequency
(TFIDF). ComTech: Computer, Mathematics and Engineer-ing Applications
7:285 . https://doi.org/10.21512/comtech.v7i4.3746

[20] Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard Socher.
Unifying question answering and text classification via span ex-traction. arXiv
preprint arXiv:1904.09286, 2019b.

[21] Dragomir R Radev, Eduard Hovy, and Kathleen McKeown. 2002.“ In-
troduction to the special issue on summarization,“Computational lin-guistics
28, 4 (2002)

[22] Natural Language Processing Market — 2022 - 27 — Industry Share, Size,
Growth - Mordor Intelligence

[23] llahyari, Seyedamin Pouriyeh and Mehdi Assef “Text Summarization Tech-
niques: A Brief Survey“.

[24] Attention Is All You Need Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

[25] https://towardsdatascience.com/hands-on-googles-text-to-text- transfer-
transformer-t5-with-spark-nlp-6f7db75cecff?gi=ae6f13491c99

[26] https://arxiv.org/pdf/1609.04747.pdf

[27] GloVe: Global Vectors for Word Representation Jeffrey Pennington,
Richard Socher, Christopher D. Manning Computer Science Depart-ment, Stan-
ford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org,
manning@stanford.edu

[28] http://jalammar.github.io/illustrated-transformer/

22


