
Virtual Plant Tissue
User Manual

User manual generated on April 22, 2017.

Contents

1 Introduction 2
1.1 The VPTissue toolset . 2
1.2 Project background . 3
1.3 Documentation . 3
1.4 Installation . 3
1.5 Known Issues . 3

2 VPTissue operation 5
2.1 The work shell . 5
2.2 Running in command line mode . 7
2.3 Running the simulator interactively . 9
2.4 Viewers . 12
2.5 Post-processors . 14
2.6 Exporters . 14

3 VPTissue features 16
3.1 File formats . 16
3.2 Customizability . 17
3.3 Dynamic parameters . 18
3.4 Algorithmic components . 18
3.5 Models and model families . 20
3.6 Pre-defined models . 21
3.7 Language interoperability . 23
3.8 Coupled simulations . 23

4 Tissue Editor 27
4.1 Overview . 27
4.2 Modes of the editor . 28
4.3 Selecting items . 28
4.4 Panels . 29

i

CONTENTS 1

4.5 Graphical editing . 29
4.6 Graphical Settings . 30
4.7 Toolbar . 31

5 Parameter Exploration 32
5.1 Client . 32
5.2 Node and server . 35

6 The VPTissue Software 36
6.1 Code base . 36
6.2 Directory layout . 37
6.3 Building and testing in Continuous Integration 39
6.4 Platforms . 39

7 Programming with the VPTissue framework 43
7.1 Adding models and components . 43
7.2 Adding an attribute . 45

A Parameter Dictionary 47
A.1 Parameters in model . 47
A.2 Parameters in auxin transport . 49
A.3 Parameters in Blad0032, Blad0128, Blad0512 (leaf models) 50
A.4 Parameters in cell mechanics . 51
A.5 Parameters in ode integration . 53
A.6 Parameters in random engine . 53
A.7 Parameters in smith phyllotaxis . 54
A.8 Parameters in termination . 55
A.9 Parameters in TestCoupling, TestCoupling I, TestCoupling II 55
A.10 Parameters in Wortel (root) . 56
A.11 Parameters in WrapperModel . 57

B Preferences Dictionary 59
B.1 Introduction . 59
B.2 Preferences for graphics: colors sizes 60
B.3 Preferences for graphics: visualization 60
B.4 Preferences for file format: bitmap graphics 61
B.5 Preferences for viewer: hdf5 . 62
B.6 Preferences for viewer: log . 62
B.7 Preferences for viewer: logwindow . 62
B.8 Preferences for viewer: qt . 63
B.9 Preferences for file format: vector graphics 64
B.10 Preferences for viewer: xml . 64

C VPTissue HDF5 file specification 65
C.1 HDF5 file stucture . 66
C.2 Tools . 68

CHAPTER 1

Introduction

This manual provides a brief description of the Virtual Plant Tissue a.k.a. VP-
Tissue. VPTissue is a cell based computer modeling framework for plant tissue
morphogenesis. It provides a means for plant researchers to analyze the biophysics
of growth and patterning.

1.1 The VPTissue toolset

The Virtual Plant Tissue toolset consists of:

Simulator (simPT sim)
The actual simulator that evolves the organ using the model specified in the
input file. It includes capability for conversion between output file formats and
for post-processing the simulation output. It can be used interactively, with a
graphical user interface, or non-interactively with a command line interface.

Tissue Editor (simPT editor)
A graphical editor capable of editing the geometry of the mesh representing
the plant organ. It can also be used to edit the attributes of cells and walls.
The Editor can only be used interactively with a graphical user interface.

Parameter Explorer (simPT parex)
Facilitates the study of the parameter dependence of the simulation results by
distributing calculations over multiple systems. It consists of a client program
that functions through a graphical user interface and a server and a worker
programs that operate via a command line interface.

Each of these tools is discussed in some detail in the following chapters.

1.2. PROJECT BACKGROUND 3

1.2 Project background

The Simulation of Plant Tissue project grew out out of extensive contacts between
the Antwerp group of VPTissue authors and the authors of VirtualLeaf ([1], [2], [3]).
In many ways, VPTissue is an offspring of VitualLeaf, in other ways it is completely
new and state-of-the-art. It has a totally new code base, takes advantage of the
multi-core architecture of present day systems and is current in its use of libraries.
More importantly, it introduces new features that are biologically relevant: new
models, dynamic models, coupled models.

1.3 Documentation

The VPTissue documentation consists of (a) a user manual in pdf format (i.e. this
document), and (b) a developer’s reference manual in html format and (c) inline
comments in the source code. The user manual has been written in latex (see
www.latex-project.org) and is generated with hyperlinks for easy navigation. The
Application Programmer Interface (API) documentation in the reference manual is
generated automatically from documentation instructions embedded in the code us-
ing the Doxygen tool (see www.doxygen.org). Additional developer documentation
has been written in the doxygen syntax and is included in the reference manual.
Figure 1.1 presents the starting page of the API documentation.

1.4 Installation

For instructions on how to install VPTissue, see the file INSTALL.txt in the root
directory. To check dependence on external resources, see DEPENDENCIES.txt in
the root directory. To check issues specific to your platform, see PLATFORMS.txt
in the root directory.

1.5 Known Issues

As with almost any software application the size of VPTissue there are a number
of known issues where the combination of operating systems and third party library
and application software has an issue that cannot be addressed. There are a few such
issues in VPTissue and they are listed in the file KNOWN ISSUES.txt in the top
level directory of the projects. When it is available a fix or workaround is suggested.

www.latex-project.org
www.doxygen.org

1.5. KNOWN ISSUES 4

Figure 1.1: Screen shot of the main page of the API documentation. The tabs at
the top of page provide access to documentation for namespaces, classes and files.

CHAPTER 2

VPTissue operation

The VPTissue simulator can be used with two different modes of operation:

• via the command line for long running simulations; in this case all simulation
parameters defined in the input data are fixed during the program run.

• in an interactive fashion, using a graphical user interface; in this case parame-
ters are initially read from the input data file but can be modified by the user
at any time during the simulation through the user interface.

These modes of operation can be mixed as convenient. The simulator also has restart
capability, i.e. simulations can be extended starting where the previous simulation
run ended. In what follows, we describe the main elements required for setting up
the basic work flow.

2.1 The work shell

The core VPTissue simulator (and to a large extent also the parameter explorer and
the editor) comes wrapped in a work shell to facilitate organization of the simulation
work. The operation of that shell refers to a number of concepts:
• workspaces
• projects
• sessions
• data files
• viewers
• post-processors

These concepts are explained briefly here and in the following sections of this chapter.

2.1. THE WORK SHELL 6

Workspace
A workspace is a directory on disk that holds all the resources that you interact
with via the simulator. They are:

• The subdirectories, which each define a project.
• The defaults for graphical (.simPT-gui-preferences.xml) and com-

mand line (.simPT-cli-preferences.xml) preferences.
• A descriptor (.simPT-workspace.xml) of the workspace state (list of

projects) and application state at the time of closing the application.
It is used to restore that state when opening the application again.

These resources are all managed via the application.

Project
A project is a directory whose contents represent a single simulation history,
that may have been built by multiple runs of the simulator. It contains all
resources associated with that history:

• It has states of the simulated system at various times in a number of files
(e.g., with the xml.gz output format), one for each time point, or in a
single file (e.g., with the hdf5 output format).
• It may contain various post processing files, i.e., files that do not serve as

input for a future simulator run, e.g., png images of the system.
• Project graphical (.simPT-gui-preferences.xml) and command line

(.simPT-cli-preferences.xml) preferences that override the workspace
default preferences. Such preferences customize some simulator actions
(e.g., the visualization of results, file format when saving results, at what
time intervals to produce output, etc).
• A descriptor (.simPT-project.xml) of the project specific application

state at the time of closing the application. It is used to restore that
state when opening the application again.

A project is either open or closed. The open project is the focus of the simulator
actions. Only one project can be open in a workspace at any given time.

Session
A session represents the activation of the simulator core within an open project.
Within a session, the simulator can do a single time step, or run, pause and
run some more. The project is the exclusive owner of the session and closing
the project closes its session. The session only has in-memory structures, an
important one being a descriptor of the state of the viewers that observe the
simulator and produce output whenever it has taken a time step.

VPTissue data file
A simPT data file contains a full description of the simulation state. If one
is using xml or xml.gz format, the this state information refers to a single
point in time and the simulation history is a sequence of such file, one for each
time. If one is using HDF5 format, all states are stored in a single binary file.
More information on the formats can be found later on in this annual. The

2.2. RUNNING IN COMMAND LINE MODE 7

state information is complete: it contains all relevant data to start or restart
a simulation run.

Viewers
We have implemented the Model-View-Controller (MVC) design pattern, a
well known design in computer science. This means that code for generat-
ing simulator state output to file, output to screen, output to logging files
etc. is node built into the simulator. This makes code of the simulator more
transparent and adding or changing output feature more flexible and extensi-
ble. Instead the simulator connects via signals (e.g indicating a time step has
been completed) to (multiple) viewers. Whenever a viewer receives a signal it
processes the signal according to its own logic. A file log viewer will post a
message to a log file. A graphical viewer will update the on-screen image of
the plant system being simulated.

Post-processors
As the name indicates the post processor are to be used after the simulation has
been run. The produce post-processing output, e.g. a sequence of images of the
simulated system in png format. The reason for making this a post-processing
activity is twofold. Firstly, it simplifies programming logic. Secondly, when
generating images of a growing organ, a scale must be set and often one knows
the appropriate scale only at the last simulated time step.

2.2 Running in command line mode

The operation of the simulator from the command line is fairly self-documented.
When one starts the executable with ’simPT sim -h’ or ’simPT sim - -help’, one
obtains the following explanation:

USAGE:

./simPT_sim [-h] [-l] [-m <cli|gui>] [--] <> ...

e.g.

./simPT_sim --mode cli -w /path/to/workspace -p project_name

Where:

-h, --help

Displays usage information and exits.

-l, --list-modes

List the available modes

-m <cli|gui>, --mode <cli|gui>

The application mode

--, --ignore_rest

Ignores the rest of the labeled arguments following this flag.

2.2. RUNNING IN COMMAND LINE MODE 8

<> (accepted multiple times)

application arguments

It indicates you should use a ’simPT sim -m cli’ or ’simPT sim - -mode cli’ to
activate the command line mode of the simulator. If one subsequently executes with
the help option, namely ’simPT sim -m cli -h’, one obtains the following information:

USAGE:

./simPT_sim -m cli [-z <HDF5|XML|XML.GZ>] [-o <BMP|CSV|CSV.GZ|JPEG|PLY

|PDF|PNG>] [-c <HDF5|XML|XML.GZ>] [-t <>] [-w

<WORKSPACE PATH>] [-p <PROJECT NAME>] [-f <TISSUE

FILE>] [-s <NUMBER OF STEPS>] [-q] [-r] [--]

[--version] [-h]

Where:

-z <HDF5|XML|XML.GZ>, --input-format-filter <HDF5|XML|XML.GZ>

Only use a specific input format

-o <BMP|CSV|CSV.GZ|JPEG|PLY|PDF|PNG>, --postprocess <BMP|CSV|CSV.GZ

|JPEG|PLY|PDF|PNG>

Postprocess mode (no simulation): Postprocess existing files in

workspace.

-c <HDF5|XML|XML.GZ>, --convert <HDF5|XML|XML.GZ>

Convert mode (no simulation): Convert existing files in workspace.

-t <>, --timestep-filter <>

Filter timesteps to convert, (list of) ranges are accepted, e.g.

"200-300,600".

-w <WORKSPACE PATH>, --workspace <WORKSPACE PATH>

Path to workspace

-p <PROJECT NAME>, --project <PROJECT NAME>

Name of project

-f <TISSUE FILE>, --file <TISSUE FILE>

Tissue file in project

-s <NUMBER OF STEPS>, --stepcount <NUMBER OF STEPS>

number of steps

-q, --quiet

Quit mode (no output)

-r, --revision

Revision identification

--, --ignore_rest

Ignores the rest of the labeled arguments following this flag.

--version

Displays version information and exits.

2.3. RUNNING THE SIMULATOR INTERACTIVELY 9

-h, --help

Displays usage information and exits.

2.3 Running the simulator interactively

Figure 2.1 shows a screen shot of VPTissue open at a workspace containing 21
projects. The interface presents a number of panels. The panel on the left shows the
projects in the workspace and their simulation data files. The top right panel is used
to access the workspace preferences determining features such as which i/o viewers
need to be enabled, what color scheme must be used and so on. This panel must
be opened explicitly via the Edit pull down menu. The panel titled ”Parameters”
allows you to view and edit all configuration parameters of the simulation. The
changes you make take effect in the time step following the edit. The panel “Project
Preferences” allows you to overrule workspace preferences for a particular project.
The bottom panel, which appears only when a project is currently open, provides a
running log.

To start a simulation in interactive mode, using the graphical user interface, one
has to double-click the simulator icon (or execute ’./simPT sim’ at the command
prompt). Following this one can select a workspace, or if one had in a previous
session accepted a particular workspace as default, opens that workspace. Then
simply open a project in your current workspace and select an input file among
those listed. Double-click the file to initiate a simulation session with this file as its
starting point. Click ’run’ in the Simulation dropdown menu or press the ’R’ key, to
let the simulator start the time propagation. To stop the time propagation one can
again press the ’R’ key or select stop from the drop down menu. It is also possible
to execute just a single step of the simulation by clicking ’single step’ in the same
drop down menu or by pressing the ’S’ key.

2.3.1 Dynamic parameters

All simulation parameters can be changed dynamically, i.e. every change takes effect
at the start of time step following the change. This includes the selection of the model
and of the time evolution algorithm. This change can be effected interactively at the
discretion of the user or it can be a computed change, i.e., effected by the simulator
when certain conditions are met such as number of cells exceeds a threshold or
simulated time reaches a value.

2.3. RUNNING THE SIMULATOR INTERACTIVELY 10

Figure 2.1: Screen shot of the simulator started with the simPT Default workspace,
that contains nine projects (left pane). Project SmithPhyllotaxis has been opened
and the editor panes for workspace and project preferences and for simulation pa-
rameters have been opened. The pane at the bottom logs the important events.

2.3. RUNNING THE SIMULATOR INTERACTIVELY 11

Figure 2.2: Screen shot of the simulator started with the simPT Default workspace.
Project SmithPhyllotaxis has been opened and the editor pane for workspace pref-
erences is open. The viewers item and most of its sub items have been expanded.

2.4. VIEWERS 12

2.4 Viewers

2.4.1 Multiple viewers

A viewer is a component that produces output at every simulation step, while the
simulation is running (as opposed to post-processors, that produce output after the
simulation run. It is possible to attach multiple viewers to a running simulation and
allow them to be individually enabled or disabled and to have individual preferences
for stride and so on. Enabling and disabling viewers is dynamical, i.e., can be done
during simulation. This is not only convenient but also relevant to performance, as
image generation and output to file are computationally intensive activities.

2.4.2 Viewers

The viewers allow one to present a view of the simulation log, the tissue images and
the simulation data files. Viewers can be activated and deactivated via the Viewers

pull down menu. The following Viewers are currently available for selection:
• XML File viewer: writes simulation output to separate xml simulation data

file for each relevant time step.
• HDF5 File viewer: writes simulation output for all relevant time steps to the

same HDF5 file.
• QT window: allows the user to observe the tissue image in a separate QT

Viewer window, as shown in Figure 2.3, in this case with a color coding that
reflects the relative size of the cell.

• Log dock window: lets user observe a running log in the bottom ’Log’ panel,
which appears only when a project is currently opened. It shows the path of
the running project, running steps, time and the current number of cells.

• Log console: logs extensively to the console from which the application was
started.

2.4.3 Preferences for viewers

Preferences that customize the action of a viewer can be edited in the panel “Workspace
Preferences” (the edits will apply to preferences of all projects) or in the panel
“Project Preferences” (the edits will apply to the open project only). Project pref-
erences may have a special value $WORKSPACE$ that indicates the corresponding
workspace preference is to be used.

An example is shown in Figure 2.2 for workspace preferences. It indicates for
instance that in this case the output file will be compressed (”gzip” is true) and
XML output is written to file at every hundred time steps (”stride” is 100).

Every viewer and the set of viewers as awhole has an ”enabled at startup”
attribute that does what the name suggests: activating the viewer at start up if
set to true or not if set to false. Activating or deactivating a viewer during a
simulation run can be done via the ’Viewers” pull down menu.

2.4. VIEWERS 13

Figure 2.3: Screen shot of Qt screen viewer for the Geometric project in the
workspace of 2.1. The color scheme is user defined and reflects the relative size
of the cell.

2.5. POST-PROCESSORS 14

2.5 Post-processors

2.5.1 Post-processing

Files can be postprocessed after simulation by right-clicking on a (closed) project
folder and choosing the “Postprocess...” option, after which a dialog will pop up.
You can choose different steps included in different files by marking them in the
list. For convenience, you can filter steps as well, by specifying a series of comma-
separated ranges of the format ‘start-stop:step’ in the regex search field. The files
in which to search can be specified as well in the file search field. Once the desired
steps have been marked, you can select the export format (BMP, CSV, JPEG, PDF,
PLY or PNG), choose a path where the exported files should be stored, and specify
a prefix for the files that will be generated. The filenames of the exported files will
have the format <prefix>_<timestep>.<extension>.

2.5.2 Preferences for viewers

Preferences that customize the action of a post-processor can be edited in the panel
“Workspace Preferences” (the edits will apply to preferences of all projects) or in the
panel “Project Preferences” (the edits will apply to the open project only). Project
preferences may have a special value $WORKSPACE$ that indicates the corresponding
workspace preference is to be used.

For graphical export (BMP, JPEG, PDF and PNG), the preferences subtree
graphics will be used. Additionally, the preferences sub trees viewer.bitmap_graphics
and viewers.vector_graphics are used for bitmap graphics export (BMP, JPEG
and PNG) and vector graphics export (PDF), respectively. See Appendix B for an
overview of those preferences.

It is advisable to match the width and height of the exported graphics to the
dimensions of the simulated tissue at the last timestep (assuming that the tissue has
it’s largest size at that time). The width and height for the images in the graphical
post-processing can then be specified in the qt preferences subtree. If you leave
these parameters unspecified, the images that are generated in the post-processing
will modify the scale as the simulated tissue grows to make the tissue fit into the
standard output width and height. To start the conversion, just click the convert
button.

2.6 Exporters

During interactive running of the project some interesting states or dynamic pro-
cesses in the tissue can be exported/saved for further use or analysis. Use the
“Export” option in the “File” menu to export a single file of the current state of
the tissue to the desirable format. A dialog will pop up to ask the user a path and
file name for the exported file. The exporters support the file formats for viewers
(XML, XML.gz and HDF5), as well as those for post-processors (BMP, CSV, JPEG,

2.6. EXPORTERS 15

PLY, PDF and PNG). The XML or HDF5 files visible in the project panel also can
be exported by double clicking them at first, then using the “Export” option.

CHAPTER 3

VPTissue features

The design of Virtual Plant Tissue intends to make it a rich, flexible and extensible
environment for developing simulations of Plat Tissue processes. In this chapter we
present a brief overview of of the key feature of VPTissue that serve to realize those
objectives.

A number of those features relate to the overall design of the interaction between
the simulation work shell and have already been discussed in the previous chapter.

3.1 File formats

The use of the MVC pattern in the design of the work shell makes it straightforward
to extend the work shell with viewers or post-processors for new file formats. At
present recognizes a number of file formats for input and output of the simulation
data and a number of graphical formats for the post-processing of simulation data.

3.1.1 Formats for input-output

The simulator supports three file formats for input and output of full simulation
data (i.e. a dataset that can be used to restart and extend the simulation):

XML a well-known human readable or text based markup format (see http://en.

wikipedia.org/wiki/XML)

XML.GZ compressed file of XML format format (see http://en.wikipedia.org/
wiki/Gzip); provides typically 80-90 percent reduction in file size

HDF5 a machine readable or binary hierarchical data format often used in data-
intensive scientific applications (see www.hdfgroup.org/HDF5/)

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Gzip
www.hdfgroup.org/HDF5/

3.2. CUSTOMIZABILITY 17

HDF5 is a widely used file format in scientific visualisation. It is a portable file
format that comes with a high-performance software library that is available across
platforms from laptops to supercomputers, with API a.o. for C/C++. It is a free,
open source software. On www.hdfgroup.org/HDF5/doc/index.html one finds doc-
umentation, specifications and examples. HDF5 provides a significant enhancement
in functionality because it enables the use of Paraview (see www.paraview.org),
a state-of-the-art scientific visualisation tool. This requires the use of a Paraview
plug-in to make the VPTissue HDF5 file structure available to Paraview. This plug-
in has been developed. The specification of the HDF5 file can be found in appendix
C.

3.1.2 Formats for post-processing

VPTissue supports the following formats for numeric or graphical (both vector and
bitmap) output:

BMP a graphics format that provides a bitmap graphics representation of the mesh
(see http://en.wikipedia.org/wiki/BMP_file_format).

CSV a human readable format for storing data in a table (see http://en.wikipedia.
org/wiki/Comma-separated_values); used to provide numeric output .

JPEG a graphics format (see http://en.wikipedia.org/wiki/JPEG); used to
provide a bitmap graphic representation of the mesh.

PLY a human readable format for storing graphical objects that are described as
a collection of polygons (see http://paulbourke.net/dataformats/ply/)

PDF a graphics format (see http://en.wikipedia.org/wiki/Portable_Document_
Format); used to provide a vector graphic representation of the mesh.

PNG a graphics format (see http://en.wikipedia.org/wiki/Portable_Network_
Graphics); used to provide a bitmap graphic representation of the mesh.

3.2 Customizability

A number of choices, represented by parameters in the input data file, can be made
to customize aspects of the simulation.

• The set of ODE solvers for the transport equations includes fixed step and
adaptive step solvers. The full set of solvers provided by the Odeint package of
the Boost library is available (see http://www.boost.org/doc/libs/1_61_

0/libs/numeric/odeint/doc/html/index.html. The choice of ODE solver
is specified in the input file in the section parameters.ode integration with
the parameter ode solver. The tolerances and solver time increments are
specified in the same section.

www.hdfgroup.org/HDF5/doc/index.html
www.paraview.org
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/JPEG
http://paulbourke.net/dataformats/ply/
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://www.boost.org/doc/libs/1_61_0/libs/numeric/odeint/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/numeric/odeint/doc/html/index.html

3.3. DYNAMIC PARAMETERS 18

• Tina’s Random Number Generators Library developed by Heiko Bauke (see
http://numbercrunch.de/trng/ are available. Tina’s Random Number Gen-
erator Library (TRNG) is a state of the art C++ pseudo-random number gen-
erator library for sequential and parallel Monte Carlo simulations. Its design
principles are based on a proposal for an extensible random number generator
facility, that has become part of the C++11 standard. Contary to the stan-
dard C++ RNG’s, the TRNG implementation allows for use in the context
of parallel calculations. The simulator correctly tracks the state of random
generators across restarts to have consistent time evolution, irrespective of the
number of restarts. The choice of random generator and seed is specified in
section parameters.random engine in the input file.

3.3 Dynamic parameters

The use of event mechanisms in the interaction between the graphical user interface
and the simulation core make it possible that all parameters in the simulation input
file are dynamic. That is: if a used edits parameters via the parameter edit panel in
the GUI, the an event is triggered signalling this to the simulation core. The core
in turn will take those changed values into account starting at the next time step
and in turn trigger an event that causes the viewers to be aware of these changes
and store the changed parameters on file (to be available for a simulation restart or
post processing analysis). A parameter change can also be a computed change, i.e.,
effected by the simulator when certain conditions are met such as number of cells
exceeds a threshold or simulated time reaches a pre-set value.

All simulation parameters can be changed dynamically. This includes the selec-
tion of the model or of model components and of the time evolution algorithm.

3.4 Algorithmic components

The code for biological processes such as cell division or cell-to-cell transport or the
time evolution scheme, has a well-defined set of variation points. These are point in
the code where different simulation models require different algorithmic steps.

We use algorithmic components, implemented as function objects (see [4, 5]) to
insert code at these points (see more on this in the section on Models).This approach
creates a lot possibilities and flexibility to customize and extend the simulator with-
out having convoluted code full of control statements to distinguish the execution
flow for each model. The algorithmic components also have well-defined interfaces,
make it straightforward for third parties to write their own components.

http://numbercrunch.de/trng/

3.4. ALGORITHMIC COMPONENTS 19

40

41 using CellChemistryComponent

42 = std::function <void (Cell*, double*)>;
43

44 using CellColorComponent

45 = std::function <std::array <double , 3> (Cell*)>;

46

47 using CellDaughtersComponent

48 = std::function <void (Cell*, Cell*)>;

49

50 using CellHousekeepComponent

51 = std::function <void (Cell*)>;

52

53 using CellSplitComponent

54 = std::function <std::tuple <bool , bool ,
55 std::array <double , 3>> (Cell*)>;

56

57 using CellToCellTransportComponent

58 = std::function <void (Wall*, double*, double*)>;
59

60 using CellToCellTransportBoundaryComponent

61 = std::function <void (Wall* w,

62 double* dchem_c1 , double* dchem_c2)>;

63

64 using DeltaHamiltonianComponent

65 = std::function <double (const NeighborNodes&,

66 Node*, std::array <double , 3>)>;

67

68 using HamiltonianComponent

69 = std::function <double (Cell*)>;

70

71 using MoveGeneratorComponent

72 = std::function <std::array <double ,3>()>;
73

74 using TimeEvolverComponent

75 = std::function <std::tuple <SimTimingTraits :: CumulativeTimings ,

76 bool >(double , SimPhase)>;

77

78 using WallChemistryComponent

79 = std::function <void (Wall*, double*, double*)>;

Listing 3.1: “Code excerpt (edited for inclusion in this manual) of the component
interface definitions.” (ComponentInterfaces.h).

3.5. MODELS AND MODEL FAMILIES 20

3.5 Models and model families

Models are defined by the attributes that are assigned to the cell tissue, to cells,
walls, and so on, and by the algorithmic steps taken in the biological processes. The
former are data members in the corresponding classes (see section 7.2 for details.
The latter are encapsulated in algorithmic components (see the section above and
section 7.1). These components deal with cell splitting, cell to cell transport of
chemicals, wall chemistry, the time evolution scheme and so forth. A full list of
model components in the current VPTissue version with a short description and the
range of choices for each component type is provided in the Parameter Dictionary
in 5.

VPTissue organizes models into model families. Models within the same family
may share components with one another, so as to avoid code duplication. Otherwise
models have no component code in common. The model family called ”Default”
plays a special role. It is always built into the VPTissue distribution and if a
model definition specifies the use of a component e.g. for the cell split that is not
present within its family of components, then the simulator will look for a cell split
component of that name in the default family. This makes sense because for some
component type e.g. the cell split type or the time evolver type, many models will
use the fairly generic component that is available in the Default family. Again we
want to avoid copy-paste code duplication with this mechanism.

Model definition is simply a specification of all the names of the components of
each type that are to be used by the simulator in executing the model. The names
are listed in xml format in the model section of the VPTissue input file. Figure 3.1
shows an example. The section contains the name of the model family and model,
the number of chemicals the model deals with, names for the model components of
each of the types and the time step to be used.

As the names in the Wortel model definition 3.1 suggests, it uses a fair number
of components specifically written for this model, but it reuses the ModifiedGC,
directed uniform and VPTissue components that it shares with other models.
Though there are two components related the hamiltonian used in the MonteCarlo
algorithm (mc hamiltonian and delta hamiltonian), these come in pairs and are
defined by a single common name.

When one introduces a new model it is a judgement call as to whether it is best
categorized as new model of an existing family or whether it warrants defining a new
model family. This depends on the amount of component reuse within the family at
present and in the future development of the new model.

All of the model specifications are dynamic parameters in the sense of section
3.3. If for instance tissue growth proceeds in distinct phases, then modularity in the
model definition allows one to simply specify the change of the relevant component(s)
during the simulation.

3.6. PRE-DEFINED MODELS 21

<model>

<group>Default</group>

<name>Wortel</name>

<cell_chemical_count>9</cell_chemical_count>

<cell_chemistry>Wortel</cell_chemistry>

<cell_daughters>Wortel</cell_daughters>

<cell_housekeep>Wortel</cell_housekeep>

<cell_split>Wortel</cell_split>

<cell2cell_transport>Wortel</cell2cell_transport>

<mc_hamiltonian>ModifiedGC</mc_hamiltonian>

<mc_move_generator>directed_uniform</mc_move_generator>

<time_evolver>VPTissue</time_evolver>

<time_step>30</time_step>

<wall_chemistry>NoOp</wall_chemistry>

</model>

Figure 3.1: Model definition for the Wortel model of the Default model family.

3.6 Pre-defined models

Some of the models in the Default model family serve only for demonstration and
have been borrowed from VirtualLeaf ([2, 6]) while others have been used in the
context of research. We review the main models briefly:

Geometric
This primitive model involves cell growth and division and simulates a simple
model of callus growth, i.e. an isotropic growth with rapid cell division. The
simulation starts with a single cell and cells expand at a constant rate. Cells
divide in two equal parts according to a division axis perpendicular to the long
axis of the cell (axis of inertia).

TipGrowth
This model illustrates the interaction between a diffusive morphogen and tissue
growth. One of the cells is a continuous morphogen production source. The
morphogen diffuses passively through Fick’s law. If its concentration exceeds
some threshold, cells expand and divide once their area has doubled. At lower
concentrations only expansion is possible, at even lower concentrations growth
stops altogether.

AuxinGrowth
This model illustrates an interaction of tissue growth with auxin-driven pat-
terning. Auxin is produced in this model along the perimeter of the tissue.
Cell to cell transport is based on the auxin transport model ([1]) and auxin
concentrations drive cell expansion inducing localized growth.

3.6. PRE-DEFINED MODELS 22

Meinhardt
This model is based on the Meinhardt reaction-diffusion model ([7]) and demon-
strates leaf venation patterning in growing tissue. Cells differentiate into vas-
cular tissue in response to activator, which is formed by autocatalysis and
lateral inhibition.

SmithPhyllotaxis
This model is derived from the Smith phyllotaxis model ([8]) but based on a
2D tissue that is similar to the Geometric model above. Details can be found
in [9].

Blad
This is a family of three leaf models which differ in the number of starting cells
(32, 128, and 512 cells, resp.). A diffusive morphogen produced in the static
leaf stem is crucial for regulating cell proliferation and cell expansion phases.
Output data of these models have been fitted to experimental leaf growth data
of Arabidopsis ([10]).

Wortel
This model describes primary root growth of Arabidopsis. The interaction
between morphogens auxin and cytokinin is central to formation and regulation
of a stable growth zone ([11]).

The next cases are rather model components or combinations thereof. They specify
the cell wall mechanics and as such can be used in other models.

PlainGC
As it was based on some geometric constraints, e.g. the cell area constraint,
the edge length constraint, etc, it is now called “PlainGC” (Plain Geometric
Constraint) model. In PlainGC for the constraint expressions the absolute
difference of parameters (areas, lengths) is used and it causes the roles of larger
cells to be more dominant than the smaller ones. As a result the smaller cells
become less and less significant during equilibration and growth cycle.

ModifiedGC
In the Modified Geometric Constraint (“ModifiedGC”) model the relative dif-
ference of cell areas is used in the cell area constraint expression, which makes
for the equal contribution of both large and small cells.

ElasticWall
The “ElasticWall” model avoids the edge length constraints in Hamiltonian,
replacing them by elastic wall term making it additive at wall splitting. Ad-
ditionally, in this model each wall has its individual and variable rest length
given in the XML file (“rest length′′ in wall attributes), instead of the com-
mon and constant rest length of edges (“target node distance′′) in “PlainGC”
and “ModifiedGC”.

3.7. LANGUAGE INTEROPERABILITY 23

Maxwell
The “Maxwell” model represents the viscoelasticity of the cells and cell walls.
In this model the turgor pressure term and the elastic wall term are used
in Hamiltonian instead of cell area and edge length constraints. The turgor
pressure in each cell is represented by the quantity of solute given in XML file
(“solute′′ in cell attributes). Contrary to all three previous models, this model
is time-dependent: at each time step the quantity of solute in each cell and
the rest length of the wall are updated.

Two new models were added to the wall relaxation/yielding model. The first of
them is based on the wall length threshold. In this model if the wall length exceeds
the threshold value during the wall extension, its rest length is updated by the some
rate at each time step until this rest length reaches some value. In fact, this model
represents the case when an external force is applied to the tissue. The second wall
yielding model is based on the pressure threshold. In this model if the pressure in
the cell exceeds the threshold, the rest lengths of cell walls are updated by the some
rate at each time step until these rest lengths reach some values. This is a more
advanced model for wall yielding in plant cells during their growth.

3.7 Language interoperability

The core simulator has been isolated into a single package. In addition to its in-
ternal interface, an adapter has been used to define a clean external interface for
the simulator with just five methods, see listing 3.2 . This has made it possible
to build wrappers for the simulator in Java and Python. These wrappers, as the
name suggests, are native Java or Python classes that can be used in regular Java
or Python programming. A wrapper object has the same five methods, but now
the methods will forward the calls to the similarly named methods of a correspond-
ing C++ object. Thus, the VPTissue core simulator can be accessed from within
Java or Python programs. This makes it possible to develop coupled simulations
with VPTissue where one (or more) instance of a VPTissue simulator is coupled to
simulators written in Java or in Python.

3.8 Coupled simulations

Multiple instances of simulations can be run in parallel via an internal (coupler)
interface thanks to the isolation of the core simulator into a single class (cf. Figure
3.2). Via the ExchangeCoupler class information exchange is restricted to modifica-
tion of the boundary conditions of a specified set of (boundary) cells. This proceeds
after the coupled models have evolved individually in terms of the respective local
chemical processes. In the coupling step the chemical concentration of the boundary
cells is exchanged (to serve as the boundary conditions in the following simulation

3.8. COUPLED SIMULATIONS 24

26 namespace SimPT_Sim {

27

28 c la s s Sim;

29 c la s s SimState;

30

31 / / / S h o w s w h e t h e r a t i m e s t e p w a s a s u c c e s s o r n o t .

32 enum SimWrapperStatus { SUCCESS , FAILURE };

33

34 / / / E x c e p t i o n s a r e d e a l t w i t h i n t e r n a l l y , m e t h o d s r e t u r n m e s s a g e s .

35 template <typename T>

36 struct SimWrapperResult {

37 SimWrapperStatus status;

38 std:: string message;

39 T value;

40 };

41

42 / / / S p e c i a l i z a t i o n o f S i m W r a p p e r R e s u l t t e m p l a t e f o r t y p e v o i d .

43 template <>
44 struct SimWrapperResult <void > {

45 SimWrapperStatus status;

46 std:: string message;

47 };

48

49

50 / / / I n t e r f a c e e x p o s i n g t h e s i m u l a t o r t o J a v a , P y t h o n , a n d C + + .

51 c la s s SimWrapper {

52 public:
53 SimWrapper ();

54

55 / / / P r o v i d e s i m s t a t e i n f o r m a t s u i t a b l e f o r i / o .

56 SimWrapperResult <SimState > GetState () const;
57

58 / / / P r o v i d e s i m s t a t e i n X M L f o r m a t s e r i a l i z e d t o s t r i n g .

59 SimWrapperResult <std::string > GetXMLState () const;
60

61 / / / S e t s i m s t a t e .

62 SimWrapperResult <void > Initialize(SimState state);

63

64 / / / I n i t i a l i z e (p a t h t o t h e i n p u t f i l e) . T h i s r e f e r s

65 / / / t o t h e one - t i m e s e t u p p r i o r t o f i r s t u s e .

66 SimWrapperResult <void > Initialize(const std:: string& path);

67

68 / / / L e t s i m u l a t o r t a k e a t i m e s t e p .

69 SimWrapperResult <void > TimeStep ();

70

71 private :
72 std:: shared_ptr <Sim > m_sim;

73 };

74 } / / n a m e s p a c e

Listing 3.2: “External simulator interface.” (SimWrapper.h).

3.8. COUPLED SIMULATIONS 25

Figure 3.2: Execution flow of coupled VPTissue simulations.

step) and finally the mechanical equilibration is executed for the respective models.
To run coupled simulations with VPTissue the interactive (gui) mode has to be used
to set up the individual model simulations (projects). A separate project is then
initialized which refers to the individual project names and precisely defines the cou-
pling: i.e. which are the boundary cells and how they communicate (coupler type,
pairing, transfer kinetics). The parameter sim ODE coupling steps determines how
tight the coupling is by specifying the number of coupling steps per simulation time
step. A working version of such a data file is included in the source code (see ’Test-
Coupling’ in the resources directory of the Default models) and defines the coupling
between models TestCoupling I and TestCoupling II.

It is also possible to couple models implemented in a different modelling frame-
work. By means of the Simplified Wrapper and Interface Generator tool (SWIG: see
www.swig.org) an interface is created which allows for models coded in other lan-
guages such as Python or Java to interact with VPTissue. For that purpose a wrap-
per class (SimWrapper) is integrated into VPTissue which contains methods that can
be called from an external program in order to exchange information as well as co-
ordinate a VPTissue simulation. Figure 3.3 shows an exampe of the interaction of a
model defined in Python using the PyPTS toolbox (https://pypi.python.org/pypi/PyPTS)
with a model defined in VPTissue. This coupled simulation runs via the command
line interface driven by a Python scripts. Precise instructions are given in the source
code (src/main/swig sim/Py WrapperModel/README.md).

3.8. COUPLED SIMULATIONS 26

Figure 3.3: Execution flow of coupled VPTissue (’SimPT’) and PyPTS simulations.

CHAPTER 4

Tissue Editor

The VPTissue Tissue editor is a graphical editor for the VPTissue mesh geometry
and the cell, wall and node attributes. The application constructs, reads and writes
a full XML file that includes simulation parameters and mesh data. The parameters
are stored on input, can be edited and written on output. The Tissue Editor lets
you edit the mesh: geometry and attributes of nodes, cells and walls.

WARNING: the tissue editor cannot process single cell meshes due to a data structure
issue forced by backward compatibility. The current implementation of the tissue
editor does not have any saveguards against reading a single cell file or making a
mesh single cell by deleting all cells but one.

4.1 Overview

When the editor starts up you will notice a menu bar with three pull down menus:
Project, Edit en View.

The Project menu provides following actions:
• New lets you initialize a new configuration. It creates a new tissue borrowing

the tissue preamble, the parameters and (in the current implementation) the
mesh.cells.chemical count from a template file that you specify in a file dialog.
The mesh (taking chemical count into account) is generated (in the current
implementation it is a mesh of two square cells with all nodes, cells and walls
having default values for the attributes) and substituted into the tissue. That
tissue is then available for editing.
• Open lets you read sim data (preamble, parameters and mesh) of an existing

XML sim dat file. The simulation parameters are stored and included in the
output when the edited mesh is written to file.

4.2. MODES OF THE EDITOR 28

• Save lets you write the current tissue to an XML sim data file.
• Close lets you close the mesh you are currently editing. If you have not saved

the sim data data yet, the application will ask you whether it needs to do so.
Depending on your operating system, you will have a Quit option in the Project
menu or in the menu with the application name.

The actions accessible through the Edit and View menus will be addressed in
the following sections.

4.2 Modes of the editor

4.2.1 Selection Modes

The mesh display area allows you to edit the mesh graphically. An important feature
are the graphical selection modes: Cell, Edge and Node. Note that the mode relates
to the type of item you can select to define an operation, rather than the type of
item you will operate on. For example, to split a cell you need to select two nodes
that define the division axis. Thus the “split cell” action is available in the Node
selection mode.

One activates a particular selection mode by clicking the appropriate icon in the
top left corner of the mesh display area or using the Mode option of the Edit pull
down menu. The icon of the current mode is highlighted in the top left corner.
The effect of a mode is that it enables the subset of operations that pertain to that
particular type of entity. For more information on the actions available in each
mode, see section 4.5.

4.2.2 Display Mode

When you initialize or open a data file, you start in the Display mode. If you
deactivate the current selection mode by clicking its icon in the top left corner or
deselect it in the Mode option of the Edit pull down menu, you will also revert to
Display mode. In this mode the mesh is displayed using one of the pre-defined color
schemes. A different color scheme (the default is size dependent coloring) can be
selected with the Set color scheme ... option of the View pull down menu. These
are the same color scheme options as available in the simulator.

4.3 Selecting items

• You can select an item (node, cell, wall - depending on the current selection
mode) by clicking it.
• You can also perform a bulk selection by holding down the Shift key and

selecting multiple items.
• Finally, you can use the search box present in the toolbar. Specifying a com-

bination (separated by a comma) of ranges of the format ‘from-to:step’ (with

4.4. PANELS 29

‘to’ and ‘step’ optional) allows the selection of multiple items based on their
ids.
• It is also possible to combine the above selection methods.

4.4 Panels

After you have initialized a new tissue or opened an existing one, you will notice
that the application window has an area displaying the mesh and three panels named
Parameters panel, Attribute panel and Geometric panel. You can zoom in or out in
the mesh display area, for instance by scrolling.
• The first panel allows editing the model and simulation parameters.
• When no item (node, cell, wall) has been selected, the latter two panels display

the mesh data.
• When an item has been selected, the Attribute panel lets you view and edit the

attributes of that item, while the Geometric panel lets you view its geometric
data. The x, y coordinates of a node can also be edited in the panel; other
geometric data cannot.

• When multiple items have been selected, the attribute panel will show all the
attributes with the same value for all selected items. Attributes with a different
value across the selected items have a question mark in the value area in the
panel.

• If you edit any of the attributes in the panel, the new value will apply to all
selected items.

4.5 Graphical editing

The first two actions (repositioning nodes and slicing the mesh) are entirely graphi-
cal. The other actions are available by using an option in the Edit pull down menu.

Reposition node [Node]
A node can be repositioned by selecting it and dragging it to its new position or by
editing its coordinates in the geometric panel. The new position is only accepted if
it is allowed, i.e., if it does not cause two cells to overlap.

Slicing mesh [Cell]
One can slice the mesh, i.e., draw a straight line and eliminate all cells completely
on one side and cut the cells intersected by the line. When in Cell selection mode,
right click outside the mesh, draw the line by moving the mouse to another point
outside the mesh and right click again. Select the part of the mesh you wish to keep.
The part on the other side of the line will disappear.

Split edge [Edge]
This action, available in Edge selection mode, splits an edge in two halves. This is

4.6. GRAPHICAL SETTINGS 30

the method you use to insert additional nodes or edges in a wall: you split an edge
of the wall and then reposition the node to where you need it to be.

Split cell [Node]
This action, available in Node selection mode, splits a cell. Select two nodes that
belong to the cell and that are positioned such that a straight line through the
nodes divides the cell in two parts. Choosing the Split cell option in the Edit menu
executes the split. It is of course perfectly all right to first insert nodes with the
Split edge action for the specific purpose of defining the axis of division.

Create cell [Node]
This action, available in Node selection mode, creates a new cell at the boundary
of the mesh. Select two nodes at the boundary of the mesh, choose the Create cell
option of the Edit menu and position the third node of the new cell by clicking
outside the mesh. If you position the third node where it would lead to an illegal
construction of the new cell, that position is disregarded. The application forces you
to retry until you position that third node at an appropriate position or cancel the
action. Of course, you can afterwards format the shape of the new cell by adding a
new node (the ”Split Edge” action) and repositioning them.

Delete item [Node / Cell]
This action removes the selected node or cell.
• When deleting a node, this node has to have a degree of two and can only

belong to cells that have at least three other nodes.
• When deleting a cell, this cell has to be located at the boundary of the cell

complex and cannot violate the consistency of the mesh upon deletion (e.g.,
the mesh cannot be split into two separate parts).

Copy attributes [Node / Edge / Cell]
This action allows you to copy attributes from a node, edge or cell to another one.
First, all target items must be selected. Next, the Copy attributes action can be
executed, after which the source item must be selected (this can also be an item
among the targets). Finally, a dialog will appear where you can specify which
attributes should be copied from the source to the targets.

Undo [Node / Edge / Cell]
This option, available in all three selection modes, allows you to undo previous
actions.

Redo [Node / Edge / Cell]
This option, available in all three selection modes, allows you to redo actions you
have undone.

4.6 Graphical Settings

In the View menu, you will find four graphical settings. The first three actions
toggle the visibility of the Parameters panel, the Attribute panel and Geometric
panel, allowing a better view on the cell complex. It also will increase performance
when handling a large number of nodes, edges or cells, as these panels will not

4.7. TOOLBAR 31

be updated when invisible. Next, Transparent cells allows you to make the cells
transparent. The functionality to create a background for the cell complex is also
available which allows to draw cell meshes with microscopic images of plant tissues
as a template. You can specify an image-file and rotate, scale or translate it as you
wish. Of course, this background can be hidden whenever desired. Finally, you can
also alter the color model of the Display mode.

4.7 Toolbar

A toolbar has been added to allow fast transitions between modes (first three pic-
tograms, respectively modes Node, Edge and Cell) and to quickly cancel an action
(fourth pictogram), e.g., splitting a cell. Next to that, the toolbar contains a search
option to select items based on their identifiers, by entering a combination of ranges
of the form ‘from-to:step’. Toggling the lock button right of this search box prevents
discarding previously selected items.

CHAPTER 5

Parameter Exploration

The VPTissue parameter exploration tool allows you to start and monitor a parame-
ter sweep calculation on a compute server. Before starting a parameter exploration,
make sure a parameter exploration server and a sufficient amount of nodes are run-
ning.

5.1 Client

Before an exploration can be sent or its progress can be shown, it is necessary to first
connect to a server. This can be done by clicking “Connect”, after which you can
enter a name, ip address and port number. To make this process more convenient,
it is possible to save a server (by clicking “Save Server”), which means you can
reconnect to a previously configured server. When the right information has been
submitted, a connection will be set up.

The central part of the client is the exploration overview, which shows the status
of a running exploration to which the user is subscribed. Subscribing to an explo-
ration can be done by clicking “Subscribe” and choosing an exploration you want
updates about. Note that when a new exploration is created, you are automatically
subscribed to it. You can only be subscribed to one exploration at a time.

A more detailed overview for all tasks that are part of an exploration can be
found under “Task Overview”. Here, you can see how many tasks there are, what
their status is, the run time for running tasks and the total time taken to finish
for completed tasks. It is also possible to cancel a task by clicking “Stop”. In case
you want to resend a cancelled task, you can click “Restart” to add this task to
the queue. Note that cancelled tasks are executed completely again when
they are resent.

Via “Start Exploration” it is possible to send a new exploration to the server.

5.1. CLIENT 33

Figure 5.1: The Parex dialog which can be used to start a template based explo-
ration. See listing 5.1 and table 5.1.1 for examples on how to design the “Template”
and “Params” file.

The wizard that pops up, gives you the choice to start an exploration based on
parameters or based on tissue files. You can also retrieve and edit the last created
exploration. By clicking “Delete Exploration”, it is possible to remove an exploration
from the server, which consequently also removes all its results. This action can not
be undone.

5.1.1 Choosing exploration options

There are several types of parameter explorations that can be started.
Sweep based exploration

In a sweep based exploration, a single parameter is varied. You can either choose to
vary a parameter based on a range of values (with a ’from’ value, a ’to’ value and a
stepsize) or you can specify the values over which to iterate in a list.

Template based exploration
When you want to vary several parameters at once, it can be useful to create an
’experiment design’, to avoid superfluous or redundant calculations. When starting
a template based exploration (see figure 5.1), you can specify a tissue file (see listing
5.1 for an example) where the parameters that should be varied are marked and a
csv file (see table 5.1.1) in which the combinations of parameters that should be
simulated are laid out.

5.1. CLIENT 34

1 ...

2 <parameters >

3 <model >

4 </model >

5 <auxin_transport >

6 <aux_breakdown >$param1$ </ aux_breakdown >

7 <k1>$param2$ </k1>

8 <k2>$param3$ </k2>

9 <aux_cons >0</aux_cons >

10

Listing 5.1: An example of how to incorporate the parameters in the tissue XML
file. Each parameter name should be enclosed by dollar signs.

param1 param2 param3

0.0001 1 0.1

0.0002 1 0.2

0.0003 1 0.3

...

Table 5.1: An example of how to design the “params” csv file. The header row
should contain the names of the parameters that were defined between the dollar
signs in the template file. Each row is a separate experiment that will be distributed
to the nodes.

5.2. NODE AND SERVER 35

5.2 Node and server

You can start a server by executing ./SimPT parex -server. By providing the
extra arguments -n and -p, you can configure the server. -n defines the minimum
number of nodes the server should have (which by default is 0). Every 30 seconds,
the server will check whether this condition is fulfilled. If not, the server will start
up a couple of nodes until the condition is satisfied. The argument -p allows you to
choose a port to communicate with clients (by default this is 8888).

Nodes can be started by running ./SimPT parex -node. The node will auto-
matically connect to the server. Nodes write the results of a simulation to the
path “vleafspaceNAMEyyyy-MM-dd-HH:mm:ss:zzz/SimulationsX /”, where NAME
is the name of the exploration, yyyy-MM-ddTHH:mm:ss:zzz the date and time, and
X the id of the task.

CHAPTER 6

The VPTissue Software

6.1 Code base

At present (spring of 2016) the software stands at approximately 49K lines of C++
application code plus 25K lines of comment (see figure 6.1). About 3.K lines of C++
code are test code in the src/test directory. The line counts were gathered with
the cloc tool (see http://cloc.sourceforge.net/).

In addition to the source code there are a significant number of other artefacts
that are involved in building, testing and executing VPTissue. Foremost among
them are a number of simulation input files (sometimes referred to as “tissue” files
in jargon). These are used for test runs and for populating a workspace template
that provides the default project to the users. Other artefacts are configuration files
and input files involved in the generation of documentation.

Concerning language conformance, we have taken a forward perspective, aiming
to make the code base last for as long as possible. We have used C++11 language
constructs (in particular lambdas, range based for loop, auto keyword (see [5, 12])
wherever possible and have continuously refactored the code to use them.

We have taken great care in designing classes, using familiar design patterns
([13]) and using the cppcheck tool (see cppcheck.sourceforge.net) to analyse the
code and flag design deficiencies. We have also maximized code reuse by using
libraries. A major example is the use of Boost’s (see section 6.3) ptree container.
This container is tailor made to hold configuration data with a hierarchical structure
and provides easy access and input-output to a number of file formats, among others
xml.

At the level of program design we have taken great pains to represent domain
concepts in well-defined classes. Not only biological concepts (e.g., mesh, cell, wall,
edge, node, . . .) but also algorithmic entities such as CellDivider, NodeInserter or

http://cloc.sourceforge.net/
cppcheck.sourceforge.net

6.2. DIRECTORY LAYOUT 37

--

Language files blank comment code

--

XML 48 4 25 160507

C++ 339 7593 9330 33702

C/C++ Header 419 6179 15141 15609

CMake 56 535 1906 2786

Python 6 117 184 430

Java 4 57 60 245

Bourne Shell 4 39 154 134

make 2 41 27 72

XSLT 1 8 0 36

HTML 2 0 2 26

DOS Batch 1 0 0 2

--

SUM: 883 14578 26829 213562

--

Figure 6.1: Line count of source text, documentation, build files, etc. in the src

directory (excluding external software). Situation of late March 2016.

the various time evolution scheme have been moulded into classes. The use of such
algorithmic objects represents current practice in computational programming ([4]).

6.2 Directory layout

The project directory structure is very systematic and is represented in list 1.
Everything used to generate project artefacts is placed in directory src:
• code related files (sources, third party libraries and headers, ...) in directory
src/main

– for each language the sources in src/main/"language"...

– third party resources in src/main/resources.
• documentation files (api, manual, html, pdf and text ...) in directory src/doc

– for each document processing tool a sub directory src/doc/"tool"...

• test related files (description, scripts, regression files, ...) in directory src/test

Every artefact is generated in directory target or its sub directories during the
build procedure (see section 6.3). This directory is completely removed when the
project is cleaned.

The directory structure is reflective of the large-scale package structure of the
VPTissue software, outlined in 6.3.

6.2. DIRECTORY LAYOUT 38

List 1 The layout of the VPTissue main directory (some directories have been elided
to their first level subdirectories). Situation of late March 2016.

main

|-cpp_execs <--- Main programs to build executables

|---modes <--- Modes (GUI, command line, ...) for executables

|-cpp_parex <--- Parameter exploration tool

|---parex_client <--- Client side of the parex tool

|---parex_node <--- Compute node for the parex tool

|---parex_protocol <--- Client-server protocol used with parex

|---parex_server <--- Server for parex

|-cpp_sim <--- Core simulator: biological concepts, algorithms, time evolution

|---algo <--- Algorithms for expansion, division, node insertion, ...

|---bio <--- Biological concepts: mesh, cell, wall, edge, node, ...

|---coupler <--- Coupled simulations code

|---fileformats <--- File formats for use by simulator

|---math <--- Miscellaneous mathematical constructs

|---model <--- Interfaces to model dependent extension points of the algorithms

|---sim <--- Simulator proper i.e. the simulation driver

|---util <--- Miscellaneous utilities

|-cpp_simptshell <--- Components that build the user interface

|---cli <--- Command line interface components

|---converter <--- Converter between file formats

|---exporters <--- Exporters to formatted files

|---gui <--- Graphical user interface

|---mesh_drawer <--- Drawing of tissue image

|---session <--- SimPT specific features of session creation

|---viewer <--- Root viewer construct

|---viewers <--- The viewers that are available

|---workspace <--- VPTissue specific features of workspace construction

|-cpp_simshell <--- Components that build the simulator user interface

|---common <--- Common code for user interface

|---gui <--- Graphical user interface for the simulator

|---ptree <--- Utilities for dealing with ptrees

|---session <--- Simulator session management

|---viewer <--- Viewers for simulator

|---workspace <--- Simulation workspace management

|-cpp_tissue_edit <--- Gui tissue editor tool

|---generator <--- Generator for meshes (regular, Voronoi)

|---editor <--- Core editor components

|---slicer <--- Component with slicing capability

|-models <--- Components and resources for each of the model groups

|---Blad <--- Components and resources for each of the model groups

|---Default <--- Components and resources the Default model group

|--- <--- Components and resources for model groups you are developing

|-resources <--- Resources i.e. non source code artefacts used in build

|---cmake <--- CMake modules used for building

|---data <--- Third party icons

|---icons <--- Icons for desktop use

|---lib <--- External software included at source level in build

|---make <--- Makefile template

|---paraview <--- Integration of HDF5 data files with Paraview

|---txt <--- Some text files

|-swig_sim <--- Java and Python wrapper sources

6.3. BUILDING AND TESTING IN CONTINUOUS INTEGRATION 39

6.3 Building and testing in Continuous Integration

The build system for VPTissue has been engineered with the CMake tool that
describes the build steps and build and install artefacts at a high level of abstraction.
This leads to build files that are to a high degree platform independent (see http:

//www.cmake.org/). For those users that do not have a working knowledge of
CMake, a front end Makefile has been provided that invokes the appropriate CMake
commands. VPTissue builds on Linux/UNIX platforms, on Mac OSX platforms and
Windows/MinGW platforms in a number of configuration (see the list in the next
section).

From the outset automated tests, including unit tests and scenario tests, have
been part of the VPTissue software. We use both ctest, companion to cmake (see
https://cmake.org/), and Google’s googletest (see https://github.com/google/
googletest).

The tests are part of the Continuous Integration develop-build-test cycle ([14],
[15]). It is executed with the Jenkins CI server (see jenkins-ci.org). Figure
(6.4) shows the status of various CI jobs managed by the jenkins server. Only when
all build activities (including generation of documentation artefacts) and tests have
been successful, does the new revision of the software get pushed to the project’s
public repository.

6.4 Platforms

The reference platforms on which the software has been developed and tested through
continuous integration are:
• Linux Ubuntu
• Mac OSX
• Windows 7 with MinGW 4.8 (4.8.1-posix-sjlj-rev5.7 available at http://sourceforge.
net/projects/mingwbuilds/files/host-windows/releases/4.8.1/32-bit/

threads-posix/sjlj/) or MinGW 4.9 embedded in the qt5 distribution.
The compilers and libraries are:
required GCC compiler C++ 4.8 or higher or Clang C++ compiler 3.5 or higher.
required Boost library release 1.53 or higher; only header components are required,

libraries are optional
required Qt4 or Qt5 library, specifically Core, GUI and Network components
optional HDF5 1.8 library or higher to have the HDF5 functionality
optional SWIG 2.0 interface compiler or higher to generate the Java and Python

wrappers for the core simulator
These are all highly regarded and active C++ library projects. These libraries
provide support in a number of domains (input-output, data structures, math, tem-
plates, . . .). All other third party software has been included in source form and is
injected in the build process at source level.

http://www.cmake.org/
http://www.cmake.org/
https://cmake.org/
https://github.com/google/googletest
https://github.com/google/googletest
jenkins-ci.org
http://sourceforge.net/projects/mingwbuilds/files/host-windows/releases/4.8.1/32-bit/threads-posix/sjlj/
http://sourceforge.net/projects/mingwbuilds/files/host-windows/releases/4.8.1/32-bit/threads-posix/sjlj/
http://sourceforge.net/projects/mingwbuilds/files/host-windows/releases/4.8.1/32-bit/threads-posix/sjlj/

6.4. PLATFORMS 40

MAC OSX 10.9 CMake 3.3 GCC 5.2 Boost 1.59 Qt 5.4 HDF5 1.8 swig 3.0 %speedy

MAC OSX 10.9 CMake 3.3 Clang 3.9 Boost 1.59 Qt 5.4 HDF5 1.8 swig 3.0 %speedy

MAC OSX 10.11 CMake 3.4 GCC 5.3 Boost 1.59 Qt 5.5 HDF5 1.8 swig 3.0 %hermes

MAC OSX 10.11 CMake 3.4 Clang 3.9 Boost 1.59 Qt 5.5 HDF5 1.8 swig 3.0 %hermes

MAC OSX 10.11 CMake 3.5 GCC 6.1 Boost 1.59 Qt 5.5 HDF5 1.10 swig 3.0 %cyclops

MAC OSX 10.11 CMake 3.5 Clang 3.9 Boost 1.59 Qt 5.5 HDF5 1.10 swig 3.0 %cyclops

MAC OSX 10.11 CMake 3.5 AppleClang 7.3 Boost 1.59 Qt 5.5 HDF5 1.10 swig 3.0 %cyclops

Ubuntu 12.04 CMake 2.8 GCC 4.8 Boost 1.54 Qt 4.8 HDF5 1.8 swig 2.0 %jperf-ubuntu

Ubuntu 12.04 CMake 2.8 GCC 5.1 Boost 1.53 Qt 4.8 HDF5 1.8 swig 2.0 %radiko

Ubuntu 14.04 CMake 2.8 GCC 5.1 Boost 1.55 Qt 5.2 HDF5 1.8 swig 2.0 %octo

Ubuntu 14.04 CMake 2.8 Clang 3.6 Boost 1.55 Qt 5.2 HDF5 1.8 swig 2.0 %octo

Ubuntu 14.04 CMake 2.8 GCC 5.1 Boost 1.54 Qt 5.2 HDF5 1.8 swig 2.0 %studento

Ubuntu 16.04 CMake 3.5 GCC 5.3 Boost 1.58 Qt 5.5 HDF5 1.8 swig 3.0 %VM

Win7/MinGW 4.8 CMake 2.8 GCC 4.8 Boost 1.53 Qt 4.8 HDF5 1.8 swig 2.0 %jslave-win7

Win7/MinGW 4.9 CMake 2.8 GCC 4.9 Boost 1.53 Qt 5.6 HDF5 1.8 swig 2.0 %jslave-win7-qt5

Figure 6.2: Full list of build-and-test platforms. Situation of late June 2016.

The build-and-test process takes from a few minutes to up to an hour depending
on the hardware platform. It benefits significantly from the parallel Make features
if executed on a multi-core platform.

6.4. PLATFORMS 41

Figure 6.3: VPTissue framework.

6.4. PLATFORMS 42

Figure 6.4: Screen shot of the overview page of the Jenkins server showing (in this
instance) perfect status for all jenkins jobs.

CHAPTER 7

Programming with the VPTissue framework

VPTissue is a simulation framework with C++ as its development language. The
code is up-to-date with the C++11 standard ([5, 12] and adheres to current coding
practices.

We have done our utmost to facilitate the job of extending or modifying the
simulator and or the models it simulates through separation into layers and packages,
minimization dependencies, classes with clear cut responsibilities, naming etcetera.

Developers adopting the platform will of course need to spend some time inspect-
ing the code and familiarizing themselves with it. The first task will most probably
be adding models which means adding components and or attributes to the code
base. in the section below we describe briefly how to go about these tasks.

7.1 Adding models and components

The code to deal with models is to be found in two locations:

src/main/cpp sim/model
This code specifies the model interfaces and the factory construction provides
a component, given its name. The code need only be extended if and when the
user decides to introduce a new component type. In that case a copy-paste-
modify approach starting from an existing component is the easy way to make
the new code.

src/main/models/”model family name”/components/”component type”

This code contains the components for each of the model families, separated
into a sub directory per component type. If and when the user intends to add
a specific component of an existing model family, the code for that component

7.1. ADDING MODELS AND COMPONENTS 44

has to be put into the sub directory of the corresponding type and the file
factories.cpp in the sub directory has to be edited to register the new com-
ponent and its name and the CMakeLists.txt file has to be edited to include
the new component. Again, the copy-paste-modify approach is the easiest. To
add a new model all specific components need to be added.

If and when the user wants to introduce a new model family, he has to remem-
ber that it is possible to ”borrow” components for the Default model family,
simply by not providing your own implementation – see section 7.1. Thus a new
sub directory src/main/models/’’model family name’’/components/’’component

type’’ has to be created only for each of the component types for which one
has a specific implementation. The file implementing the component(s) and
files factories.h and factories.cpp need to be added to the subdirectory.
The code for the component and for the factories is again straightforward to
make with the copy-paste-modify approach. Finally the CMakeLists.txt file
has to be copied and edited to reflect the names of the new component files.

In addition to generating the code for new models one needs to provide input
data file. The can be built from scratch using the VPTissue Tissue editor (see 4) or
by copy-paste-modify of an existing input file. The modification can be done either
with a text editor, an xml editor or the VPTissue Tissue editor, depending on your
preference and the number of changes that need to be made.

To implement a so called meta-component that combines the code of different (sub-
)components, a new component class (e.g. MetaSplit) has to be created and the .h
files of the sub-components need to be included in the header. Both the Initialize
and operator functions need to be adapted similar to the example below.

1 #i n c l u d e MetaSpl it . h
2 #i n c l u d e S p l i t 1 . h
3 #i n c l u d e S p l i t 2 . h
4

5 void MetaSpl it : : I n i t i a l i z e (const CoreData& cd)
6 {
7 m cd =cd ;
8 . . .
9 m s p l i t t e r 1 = (g component f a c to r i e s . at (” S p l i t 1 ”)) (m cd) ;

10 m s p l i t t e r 2 = (g component f a c to r i e s . at (” S p l i t 2 ”)) (m cd) ;
11 }
12

13 std : : tuple<bool , bool , s td : : array<double>, 3>> MetaSpl it : : operator ()\
14 (Ce l l ∗ c e l l)
15 {
16 . . .
17 return (’ some cond i t i on ’) ? m s p l i t t e r 1 (c e l l) : m s p l i t t e r 2 (c e l l) ;
18 }

7.2. ADDING AN ATTRIBUTE 45

7.2 Adding an attribute

When you want to add a new model or simulation parameter (like a kinetic constant)
you simply need to add the text field with its value to the data input file (’leaf file’).
Its value is then accessible to the component classes via the CoreData data structure,
like other parameters. When you want to add an attribute to the tissue, cell, wall or
node, you need to take a number of steps. We detail them here, by way of example,
for the addition of an attribute name solute to cells. The cases for wall and node
are similar

• Write the attribute into the CellAttributes.h header file and add getter and
setter methods for the attribute if needed.

1 public :
2 double GetSolute () const {return m solute ;}
3 void SetSo lu te (double s) {m solute = s ;}
4 protected :
5 double m solute ;

• In the CellAttributes.cpp implementation file initialize the new attribute
in the constructors and assignment operator.

1 C e l l A t t r i b u t e s : : C e l l A t t r i b u t e s (. . .)
2 , m so lute (0 . 0) ;
3

4 C e l l A t t r i b u t e s&C e l l A t t r i b u t e s : : operator = (. . .)
5 m solute = s r c . m so lute ;

• In the CellAttributes.cpp implementation file extend the ReadPtree and
ToPtree methods to include processing of the new attribute.

1 void C e l l A t t r i b u t e s : : ReadPtree (. . .)
2 m solute = c e l l p t . get<double>(” s o l u t e ”) ;
3

4 ptree C e l l A t t r i b u t e s : : ToPtree () const
5 r e t . put (” s o l u t e ” , m so lute) ;

• In the MBMBuilder.cpp implementation file extend the BuildCells method
to include processing of the new attribute.

1 void MBMBDirector : : Bu i l dCe l l s (. . .)
2 a t t r i b u t e s p t . put (” s o l u t e ” ,
3 mesh state . GetCel lAttr ibute<double>(c e l l i d x , ” s o l u t e ”)) ;

• In the Mesh.cpp implementation file extend the GetState method to include
processing of the new attribute.

1 MeshState Mesh : : GetState () const
2 // De f i n e th e a t t r i b u t e

3 s t a t e . AddCel lAttr ibute<double>(” s o l u t e ”) ;
4 // Se t c e l l a t t r i b u t e v a l u e i n s t a t e

5 s t a t e . Se tCe l lAt t r ibute<double>(c e l l i d x , ” s o l u t e ” , c−>GetSolute ()) ;

7.2. ADDING AN ATTRIBUTE 46

• Add the new attribute to the input xml files. Do this for the template
workspace xml files and for the files in the test directories.

• Edit the tooltips code if you want the new attribute to show up in the tooltip.

APPENDIX A

Parameter Dictionary

An overview of all parameters used in the simulator, specifying the defaults (if any),
the choices that are currently available and a (very) brief indication of the role the
parameter plays.

The parameter are subdivided in sections. These correspond to sub-nodes in
the xml tree representation of the parameter set with the same name. Most of
the parameters in the model section (cell chemical count and time step being the
exceptions) refer to model components.

A.1 Parameters in model

group
The name of the model group that this model belongs to. choices: Default,
plus any groups you yourself have developed.

name
The name of the model to be simulated.
choices: AuxinGrowth, Geometric, Meinhardt, SmithPyllotaxis, NoGrowth,
TipGrowth, TestCoupling, TestCoupling I, TestCoupling II, Wortel, Wrapper-
Model

cell chemical count
The number of chemicals in each cell.
choices: any positive integer number

cell chemistry
The method defining the dynamics of chemicals inside cells (e.g. auxin, cy-
tokinin, ...).
choices: AuxinGrowth, Meinhardt, NoOp, PINFlux, PINFlux2, SmithPyl-
lotaxis, Source, TestCoupling, Wortel, WrapperModel

A.1. PARAMETERS IN MODEL 48

cell daughters
The method defining the partitioning of chemicals between parent and daugh-
ter cells upon division.
choices: Auxin, BasicPIN, NoOp, Perimeter, PIN, SmithPyllotaxis, Wortel,
WrapperModel

cell housekeep
The method for updating parameters related to cell and cell wall growth.
choices: Auxin, AuxinGrowth, BasicAuxin, Geometric, Meinhardt, NoOp,
SmithPyllotaxis, Wortel, WrapperModel

cell split
The method defining the cell division rules (e.g. cell divides, when its area is
two times larger than the base area of the cell).
choices: AreaThresholdBased, AuxinGrowth, Geometric, NoOp, Wortel, Wrap-
perModel

cell2cell transport
The method defining transport dynamics (influx/efflux) across from cell to cell
across cell walls.
choices: AuxinGrowth, Basic, Meinhardt, NoOp, Plain, SmithPyllotaxis, Source,
TestCoupling, Wortel, WrapperModel

cell2cell transport boundary
Boundary conditions for cell to cell transport in coupled systems.
choices: TestCoupling I, TestCoupling II

mc delta hamiltonian
The DeltaHamiltonian used in the Metropolis method for the equilibration of
cell and wall mechanics.
choices: ElasticWall, Maxwell, ModifiedGC, PlainGC

mc hamiltonian
The Hamiltonian used in the Metropolis method for the equilibration of cell
and wall mechanics.
choices: ElasticWall, Maxwell, ModifiedGC, PlainGC

mc move generator
Algorithm to generate random displacements for nodes in the Metropolis sweep.
choices: directed normal, directed uniform, standard normal, standard uniform

time evolver
The name of the time evolution scheme to be used.
choices: Grow, Housekeep, HousekeepGrow, VPTissue, Transport, VLeaf

time step
The time step used in the time evolution in the simulator.
choices: any real number

wall chemistry
The method defining the dynamics of chemicals in cell walls (e.g. PIN trans-
porters).
choices: AuxinGrowth, Basic, Meinhardt, NoOp

A.2. PARAMETERS IN AUXIN TRANSPORT 49

A.2 Parameters in auxin transport

aux breakdown
Rate constant of auxin breakdown.
choices: any real number

aux cons
Auxin production rate outside shoot apical meristem.
choices: any real number

aux1prod
Rate of auxin production.
choices: any real number

D
Vector of diffusion coefficients.
choices: any real number

initval
Vector specifying standard starting values for cellular levels of chemicals after,
for instance, division.
choices: any real number

k1
Rate constant for PIN translocation to the cell membrane (cfr. [1]).
choices: any real number

k2
Rate constant for return from cell membrane to endosome (cfr. [1]).
choices: any real number

ka
Saturation constant for PIN mediated transport of auxin (cfr. [1]).
choices: any real number

km
Saturation constant for exocytosis (cfr. [1].
choices: any real number

kr
Saturation constant for auxin dependence of PIN translocation (cfr. [1].
choices: any real number

leaf tip source
Auxin flux at the tissue boundary.
choices: any real number

pin breakdown
Intracellular PIN breakdown rate constant.
choices: any real number

pin production
Cellular PIN production rate.
choices: any real number

pin production in epidermis

A.3. PARAMETERS IN BLAD0032, BLAD0128, BLAD0512 (LEAF MODELS)50

Cellular PIN production rate in epidermal cells (at boundary).
choices: any real number

r
Total level of surface auxin receptors.
choices: any real number

sam auxin
Auxin level at the boundary with the apical meristem (sink).
choices: any real number

sam auxin breakdown
Rate constant for auxin breakdown in shoot apical meristem.
choices: any real number

sam efflux
Maximum auxin efflux rate to shoot apical meristem.
choices: any real number

transport
Active (mediated) transport rate constant.
choices: any real number

A.3 Parameters in Blad0032, Blad0128, Blad0512 (leaf models)

These parameters are applicable only in the Blad (leaf) type models.

grid size
Number of cells in the starting grid.
choices: integer: 32, 128, or 512.

M degradation
Morphogen degradation rate constant.
choices: real number

M diffusion constant
Morphogen diffusion constant.
choices: real number

M duration
Duration of morphogen production.
choices: real number

M production
Morphogen production rate.
choices: real number

M threshold expansion
Minimum morphogen concentration for cell expansion.
choices: real number

M threshold division
Minimum morphogen concentration for cell division.
choices: real number

A.4. PARAMETERS IN CELL MECHANICS 51

relative growth
Rate of target area change (per housekeeping step).
choices: real number

size threshold division
Minimum cell area for division.
choices: real number

A.4 Parameters in cell mechanics

auxin dependent growth
Dependence of growth on auxin.
choices: true, false

base area
Base area of the cell used in the cell division condition.
default: 293.893
choices: any positive real number

cell expansion rate
Rate of target area change (per housekeeping step).
choices: any real number

collapse node threshold
Parameter defining the minimal distance between existing node and new node:
if the new node is far enough (e.g. 5% of edge length) from one of the two
existing nodes, the new node is inserted, else the existing node is used.
default: 0.05
choices: any real number

copy wall
Copying wall elements to appropriate cells during cell division.
choices: true, false

division ratio
Cell division factor: multiplier of base area.
default: 2.0
choices: any real number

elastic modulus
Young elastic modulus in Elastic Wall and Maxwell models.
choices: any real number

lambda alignment
Strength of cell alignment along given direction.
choices: any real number

lambda bend
Strength of vertex bending in cell polygon.
choices: any real number

lambda celllength
Strength of the cell length constraint.

A.4. PARAMETERS IN CELL MECHANICS 52

choices: any real number
lambda length

Spring constant of the edge (wall element): strength of the edge length con-
straint.
choices: any real number

mc abs tolerance
Absolute tolerance used in decision to continue Metropolis Monte Carlo sweep-
ing: once below this tolerance we stop.
choices: any real number

mc do not use delta
Parameter for using the calculation of total energy (hamiltonian) or just energy
difference (delta hamiltonian).
choices: false, true

mc rel tolerance
Relative tolerance used in Metropolis Monte Carlo sweeping: once below tol-
erance (relative to total mesh energy) we stop.
choices: any real number

mc retry limit
How many times we do additional Metropolis Monte Carlo sweeps when the
current sweep increases energy instead of lowering it.
choices: unsigned integer

mc sliding window
Metropolis Monte Carlo sweeping averages energy changes over a number of
mc sliding window sweeps to decide to stop or continue.
choices: unsigned integer

mc stepsize
Maximum node displacement distance: multiplier of mc move generator(). It
is used in the displacements of the nodes in the Metropolis Monte Carlo algo-
rithm for finding the equilibrated state.
choices: any real number

mc step x scale
For move generator of directed type, this number scales steps in the x direction.
choices: any real number

mc step y scale
For move generator of directed type, this number scales steps in the y direction.
choices: any real number

mc sweep limit
Maximum number of sweeps that can be executed in a single time step: to
avoid infinite sweeps.
choices: unsigned integer

mc temperature
Amount of noise; extent to which the system accepts energetically unfavourable
moves.
choices: any positive real number

relative perimeter stiffness

A.5. PARAMETERS IN ODE INTEGRATION 53

Ratio between spring constants (lambda length) of perimeter edges (wall ele-
ments) and internal edges (wall elements).
choices: any positive real number

response time
Response time needed for turgor regulation used in Maxwell model.
default: 0.1
choices: any positive real number

target node distance
Rest length of edges (wall elements): constant and the same for all edges.
default: 3.09017
choices: any positive real number

viscosity const
Viscosity used in Maxwell model.
choices: any positive real number

yielding threshold
Parameter used in edge (wall element) yielding threshold: multiplier of tar-
get node distance.
choices: any positive real number

A.5 Parameters in ode integration

abs tolerance
Absolute tolerance used in the ODE solver algorithms.
choices: any positive real number

ode solver
ODE solver algorithm to be used for reaction, diffusion and active transport
equations.
default: runge kutta dopri5
choices: adams bashforth, bulirsch stoer, euler, modified midpoint, runge kutta4,
runge kutta cash karp54, runge kutta dopri5, runge kutta fehlberg78

rel tolerance
Relative tolerance used in de ODE solver algorithms.
choices: any positive real number

small time increment
Time increment used in ode solver.
choices: any positive real number

A.6 Parameters in random engine

type
The random number engines available for use (see the C++11

A.7. PARAMETERS IN SMITH PHYLLOTAXIS 54

Standard Library documentation).
default: mt19937 64 choices: minstd rand0, minstd rand, mt19937, mt19937 64,
ranlux24 base, ranlux48 base, knuth b

seed
The seed for the random engine (the default makes the simulation results non-
reproducible).
default: time reading generates random seed
choices: unsigned integer

A.7 Parameters in smith phyllotaxis

These parameters are applicable only in the SmithPhyllotaxis model.

k IAA
IAA production limiting coefficient (saturation).
choices: any real number

k PIN
PIN1 production limiting coefficient (saturation).
choices: any real number

k T
Coefficient controlling the saturation of IAA transport.
choices: any real number

mu IAA
IAA decay.
choices: any real number

mu PIN
PIN1 decay.
choices: any real number

rho IAA
IAA production.
choices: any real number

rho PIN0
Auxin independent PIN1 production.
choices: any real number

rho PIN
PIN1 production.
choices: any real number

c
Controls PIN1 distribution.
choices: any real number

D
IAA diffusion coefficient.
choices: any real number

A.8. PARAMETERS IN TERMINATION 55

T
IAA active transport coefficient.
choices: any real number

A.8 Parameters in termination

max cell count
Maximal number of cells in the mesh to be reached for the pause (in GUI
mode) or termination (in CLI mode) of the simulator.
default: no limit
choices: unsigned integer

max sim time
Maximal number of time steps to be reached for the pause (in GUI mode) or
termination (in CLI mode) of the simulator.
default: no limit
choices: unsigned integer

stationarity check
Stationarity of ODE solution within abs tolerance to be reached for the ter-
mination of the simulator.
choices: true, false

A.9 Parameters in TestCoupling, TestCoupling I, TestCoupling II

These parameters are applicable only in the TestCoupling type models.

ch0 breakdown
Chemical 0 degradation rate constant.
choices: real number

ch0 production
Chemical 0 production rate.
choices: real number

ch1 breakdown
Chemical 1 degradation rate constant.
choices: real number

ch1 production
Chemical 1 production rate.
choices: real number

D
Vector of transport coefficients for individual models.
choices: any real number

A.10. PARAMETERS IN WORTEL (ROOT) 56

diffusion
Transport coefficient for coupled cells in coupled simulation (one value per cell
couple).
choices: any real number

sim ODE coupling steps
Number of coupling steps per simulation time step.
choices: real number

A.10 Parameters in Wortel (root)

These parameters are applicable only in the Wortel (root) model.

apoplast thickness
Assumed thickness of the apoplast compartment separating two cells.
choices: real number

aux breakdown
Cellular auxin breakdown rate constant.
choices: real number

aux production
Cellular auxin production rate constant.
choices: real number

aux shy2 breakdown
Auxin-dependent Shy2 breakdown rate constant.
choices: real number

aux sink
Rate constant for outgoing auxin flux.
choices: real number

aux source
Rate constant for incoming auxin flux.
choices: real number

ck breakdown
Cellular cytokinin breakdown rate constant.
choices: real number

ck shy2 production
Cytokinin dependent production rate constant.
choices: real number

ck sink
Rate constant for outgoing cytokinin flux.
choices: real number

ck source
Rate constant for incoming cytokinin flux.
choices: real number

D

A.11. PARAMETERS IN WRAPPERMODEL 57

Vector of diffusion coefficients (index ’0’ for auxin; index ’1’ for cytokinin).
choices: any real number

ga breakdown
Cellular gibberellin breakdown rate constant.
choices: any real number

ga production
Cellular gibberellin production rate constant.
choices: any real number

ga threshold
Minimum gibberellin concentration for cell division and growth.
choices: any real number

k export
Auxin export permeability.
choices: any real number

k import
Auxin import permeability.
choices: any real number

km aux ck
Auxin-dependent cytokinin inhibition constant.
choices: any real number

km aux shy2
S0.5 for auxin-dependent Shy2 breakdown .
choices: any real number

km shy
Shy2-dependent auxin export inhibition constant.
choices: any real number

shy2 breakdown
Cellular Shy2 breakdown rate constant.
choices: any real number

shy2 production
Cellular Shy2 production rate constant.
choices: any real number

shy2 threshold
Maximum Shy2 concentration for cell division.
choices: any real number

vm aux ck
Auxin-dependent cytokinin production rate constant.
choices: any real number

A.11 Parameters in WrapperModel

These parameters are applicable only in the WrapperModel model.

A.11. PARAMETERS IN WRAPPERMODEL 58

cell division threshold
Minimum cell area for division.
choices: real number

ch0 breakdown
Chemical 0 degradation rate constant.
choices: real number

ch0 production
Chemical 0 production rate constant.
choices: real number

ch0 threshold
Minimal chemical 0 concentration for cell expansion.
choices: real number

ch1 breakdown
Chemical 1 degradation rate constant.
choices: real number

ch1 production
Chemical 1 production rate constant.
choices: real number

D
Vector of transport coefficients.
choices: any real number

expansion rate
Rate of target area change (per housekeeping step).
choices: real number

APPENDIX B

Preferences Dictionary

B.1 Introduction

In this section we give an overview of all preferences that apply to VPTissue as a
command line or graphical application. At the present level of implementation, all
preferences deal with viewers: graphical viewers, output viewers and log viewers.

Preference definitions come in two distinct flavors, each in a separate file namely
.simPT-cli-preferences.xml and .simPT-gui-preferences.xml. The first, with
keyword cli (i.e. Command-Line Interface) in the name, applies to the command
line application, the second, with the keyword gui (i.e. Graphical User Interface)
in the name, applies to the graphical application.

The workspace preferences act as defaults for those project preferences that do
not have an actual value, but instead have a $WORKSPACE$ label as a value. An ac-
tual value for a project preference overrides the workspace default for that preference.

The installed application defines a template for the cli and gui preferences that
are used when creating a new workspace or when opening a workspace where the
preferences are missing. When creating a new project or opening a project where
the preferences are missing, the workspace preferences are copied to define the initial
project preferences.

B.2. PREFERENCES FOR GRAPHICS: COLORS SIZES 60

B.2 Preferences for graphics: colors sizes

Options for the color and size of text of mesh objects.

arrow color
choices: any color name acceptable to Qt4

arrow size
choices: unsigned integer

background color
default: white
choices: any color name acceptable to Qt4

cell color
Cell corloring scheme to be used when generating images of the tissue.
choices: AuxinPIN1, ChemBlue, ChemGreen, Meinhardt, Size, Wortel

cell number size
choices: unsigned integer

cell outline color
choices: any color name acceptable to Qt4

node magnification
choices: unsigned integer

node number size
choices: unsigned integer

outline width
choices: unsigned integer

resize stride
choices: unsigned integer

text color
choices: any color name acceptable to Qt4

B.3 Preferences for graphics: visualization

Options for the view of mesh objects.

border cells
choices: false, true

cells
choices: false, true

cell axes
choices: false, true

cell centers
choices: false, true

cell numbers
choices: false, true

B.4. PREFERENCES FOR FILE FORMAT: BITMAP GRAPHICS 61

cell strain
choices: false, true (currently no model implementation)

fluxes
choices: false, true

nodes
choices: false, true

node numbers
choices: false, true

only leaf boundary
choices: false, true

tooltips
View of cell data (number, type, chemicals, area, etc.) by mouse pointer.
choices: false, true

walls
choices: false, true

B.4 Preferences for file format: bitmap graphics

Options for output of bitmap-files. These options are used for BMP, JPEG and
PNG export or post-processing.
size

Size of generated bitmaps. This node is optional.
x
Width of generated bitmaps.
default: 800
choices: unsigned integer
y
Height of generated bitmaps.
default: 600
choices: unsigned integer

source window
Rectangular part of mesh to export. Coordinates in mesh-domain.
This node is optional. If it isn’t specified, the source window will be the
bounding box of the mesh.
min x
X-coordinate of top-left corner of source window.
default: -
choices: any real number
min y
Y-coordinate of top-left corner of source window.
default: -
choices: any real number
max x

B.5. PREFERENCES FOR VIEWER: HDF5 62

X-coordinate of bottom-right corner of source window.
default: -
choices: any real number
max y
Y-coordinate of bottom-right corner of source window.
default: -
choices: any real number

B.5 Preferences for viewer: hdf5

Option for output of hdf5-files.
enabled at startup

The viewer is disabled (inactive) or enabled (active).
default: -
choices: false, true

stride
The viewer skips time steps and takes action at steps corresponding to multi-
ples of the stride.
default: -
choices: unsigned integer

file
The name of the hdf5 output file containing the history of the simulation for
that project. Note that each project lives in its own subdirectory, so it is
perfectly fine to have the same filename, e.g., leaf.h5 for all projects.
default: -
choices: any allowed filename with .h5 extension

B.6 Preferences for viewer: log

enabled at startup
The viewer is disabled (inactive) or enabled (active).
default: -
choices: false, true

B.7 Preferences for viewer: logwindow

enabled at startup
The viewer is disabled (inactive) or enabled (active).
default: -
choices: false, true

B.8. PREFERENCES FOR VIEWER: QT 63

position
x
Position of logwindow in x-axis.
choices: unsigned integer
y
Position of logwindow in y-axis.
choices: unsigned integer

size
x
Size of logwindow in x-axis.
choices: unsigned integer
y
Size of logwindow in y-axis.
choices: unsigned integer

B.8 Preferences for viewer: qt

enabled at startup
The viewer is disabled (inactive) or enabled (active).
default: -
choices: false, true

stride
The viewer skips time steps and takes action at steps corresponding to multi-
ples of the stride.
default: -
choices: unsigned integer

position
x
Position of logwindow in x-axis.
choices: unsigned integer
y
Position of logwindow in y-axis.
choices: unsigned integer

size
x
Size of logwindow in x-axis.
choices: unsigned integer
y
Size of logwindow in y-axis.
choices: unsigned integer

B.9. PREFERENCES FOR FILE FORMAT: VECTOR GRAPHICS 64

B.9 Preferences for file format: vector graphics

Options for output of vector graphics-files. These options are used for PDF export
or post-processing.
source window

Rectangular part of mesh to export. Coordinates in mesh-domain.
This node is optional. If it isn’t specified, the source window will be the
bounding box of the mesh.
min x
X-coordinate of top-left corner of source window.
default: -
choices: any real number
min y
Y-coordinate of top-left corner of source window.
default: -
choices: any real number
max x
X-coordinate of bottom-right corner of source window.
default: -
choices: any real number
max y
Y-coordinate of bottom-right corner of source window.
default: -
choices: any real number

B.10 Preferences for viewer: xml

Option for output of xml-files.
enabled at startup

The viewer is disabled (inactive) or enabled (active).
default: -
choices: false, true

stride
The viewer skips time steps and takes action at steps corresponding to multi-
ples of the stride.
default: -
choices: unsigned integer

gzip
The viewer is disabled (inactive) or enabled (active) for packing the xml-files.
default: -
choices: false, true

APPENDIX C

VPTissue HDF5 file specification

The VPTissue framework uses a consistently defined file format for data storage and
interchange that is based on the HDF5 storage format for numerical data. Hierar-
chical Data Format 5 files are self-descriptive and well structured. This document
describes the structure of HDF5 based storage for data files used in VPTissue and
its ecosystem of related tools.

The internal data structure inside VPTissue can be summarized by the following
statements:

• nodes are points in space

• cells are polygons with nodes connected by edges nodes

• walls (membranes) are defined as entities separating two cells

• cells know their nodes and walls (and hence their neighbouring cells)

• walls know the two cells they connect and their two end-nodes

This is a (simplified) variant of what’s commonly called a winged edge1 repre-
sentation. We use these connections to define arrays in the HDF5 file that describe
the tissue structure.

HDF5 is a standardized file format for storing general numerical data in a hi-
erarchical structure. The two main types of entities in a HDF5 file are groups and
datasets.

• Groups define the hierarchical structure of the data. They are analogous to
directories or file folders in a (UNIX-like) file system.

1http://en.wikipedia.org/wiki/Winged_edge

http://en.wikipedia.org/wiki/Winged_edge

C.1. HDF5 FILE STUCTURE 66

• Datasets contain numerical data stored in general rank-n arrays of well-defined
dimensions and type of data they store. They are the “files” in the file system
analogy.

Navigating through a HDF5 file is also very analogous to browsing through a
file system: The root of the hierarchy is denoted by / and subgroups and datasets
are addressed by separating their names with a /. For example: a dataset called
nodes xy inside a subgroup step 2 of the root group / has the “absolute” path
/step 2/nodes xy.

A HDF5 file is self-descriptive in the sense that it contains all the necessary
information to read the stored information correctly without any other additional
resources. For instance, datasets know the numeric type of data they contain. The
format, however, does not define any semantics or interpretation of the data. A
gentle overview of HDF5 can be found on Wikipedia2. More in-depth info and
technical documentation on HDF5 can be found on the HDF Group website3.

C.1 HDF5 file stucture

C.1.1 Root level

The root of the VPTissue file contains two datasets related to the time progression
of the simulation. They are required and must be extendable, which means they
can grow or shrink as more simulation steps are appended or unnecessary steps are
being purged.

Name Data type Dimensions Notes

time steps double (#steps) Time stamps in simulation specific time units

time steps idx int (#steps) Index values of the simulation steps

Table C.1: Time steps

The important point to note is that the file contains a subset of all the steps
performed by the simulator, depending on the write-stride. For example: if the
stride is 3 and the simulator ran 10 steps starting from 0 we would end up having:

• time steps : [0.0, 0.3, 0.6, 0.9]

• time steps idx : [0, 3, 6, 9]

The numbers in time steps idx translate which m-th saved state corresponds
to which n-th simulator state. The state of the simulation at specific times is saved
in separate /step {n} subgroups of the / group. Note that in the case of stride
being 1, n will have the same meaning as m. Although this is not true in a general
case.

2https://en.wikipedia.org/wiki/Hierarchical_Data_Format
3https://www.hdfgroup.org/

https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://www.hdfgroup.org/

C.1. HDF5 FILE STUCTURE 67

C.1.2 Inside a /step {n} group

For a given time step index n the /step {n} group contains all the information
about the geometry of the tissue, the values of all the attributes that define the
geometry as well as the parameters used in the current simulation step. Table C.2
summarises all the datasets found inside a /step {n} that are relevant to geometry
and connectivity of cells:

Name Data type Dimensions Notes

nodes id int (#nodes) IDs of all the nodes in the tissue

nodes xy double (#nodes,2) 2D coordinates of nodes. In fig-
ure C.1 nodes are represented by
yellow points labeled with black
numbers.

cells id int (#cells) IDs of all the cells in the tissue

cells num nodes int (#cells) Number of nodes (yellow points in
C.1) used to define the polygon of
each cell.

cells nodes int (#cells,max(#nodes/cell)) Each row represents a cell. The el-
ements in each row are indices of
the nodes (as defined in nodes xy)
that define the polygon of the cell
in counterclockwise order. As such,
this dataset defines the geometry of
all cells. For conveniece, rows that
represent cells with less than max-
imal number of nodes are padded
with -1 (which is an invalid node
index).

cells num walls int (#cells) Number of walls for each cell.

cells walls int (#cells,max(#walls/cell)) IDs of walls in each cell.

walls id int (#walls) IDs of all the walls in the tissue

walls cells int (#walls,2) Indices of the two cells connected
by a wall. The region outside
the tissue is labeled by -1. All
“outer” cells that lie on the bound-
ary of the tissue have this special -1
cell among their neighbors. In fig-
ure C.1 walls are denoted by red
labels.

walls nodes int (#walls,2) Each wall has two extreme nodes.
The indices of these nodes are kept
in this dataset. The order in which
the nodes are specified is tied to the
order in which the two neighboring
cells are given in walls cells. See
red arrows in C.1 for a visual clar-
ification of the orientation that is
used.

Table C.2: Required datasets inside one step

C.2. TOOLS 68

Additionally, nodes, cells and walls can have an arbitrary number of named
attributes with values of any type. These are defined by datasets with a common
prefix name such as nodes attr concatenated with the name of the attribute.

Name Data type Dimensions Notes

nodes attr {name} any (#nodes) Datasets with values of node-based at-
tributes

cells attr {name} any (#cells) Datasets with values of cell-based at-
tributes

walls attr {name} any (#walls) Datasets with values of wall-based at-
tributes

Table C.3: Optional datasets inside one step related to cell/node/wall attributes

The used data types are summarized in tabel C.4.

Name HDF5 data type Notes

int H5T STD I32LE or compatible, such as H5T NATIVE INT

double H5T IEEE F64LE or compatible, such as H5T NATIVE DOUBLE

string H5T STRING Variable length, C-style null-terminated string

Table C.4: HDF5 data types

C.2 Tools

C.2.1 HDFView

HDF5 files contain data in binary form and are not human readable. HDFView4

is a Java-based easy to use graphical tool to browse, create and modify HDF5 file.
You can use it to quickly inspect VPTissue output for further processing.

C.2.2 Python

Python supports handling of HDF5 files through the h5py5 package. Most probably
you can install it using your system’s package manager or with pip. Access to the
data in HDF5 files is provided using numpy6 arrays which makes working with h5py

very straightforward.
The following Python script can be used to plot the example file used above (or

any other file from VPTissue, since this script only uses a rather small subset of the
available data).

4http://www.hdfgroup.org/hdf-java-html/hdfview/
5http://www.h5py.org/
6http://www.numpy.org/

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.h5py.org/
http://www.numpy.org/

C.2. TOOLS 69

Figure C.1: A schematic representation of the geometry as used by VPTissue. Yellow
points are the nodes, labeled by black numbers. Green numbers represent the labels
of the four cells in this particular example. The green arrows show how nodes are
connected to form a cell. For example: cell 1 is made up from nodes (12, 10, 1, 21,
2, 3, 19, 20, 18), in that precise order. Red labels represent the walls. For example:
wall 5 connects cells 1 and 3, in that precise order.

C.2. TOOLS 70

Figure C.2: A screenshot of the HDFView program while browsing the contents of
a VPTissue results file.

1 import h5py

2 import argparse

3 import numpy as np

4 import matplotlib.cm as cm

5 import matplotlib.pyplot as plt

6 from matplotlib.patches import Polygon

7 from matplotlib.collections import PatchCollection

8

9 #==

10 # Check for command line options

11 parser = argparse.ArgumentParser(description=’Plot simPT HDF5 results ’)

12 parser.add_argument(

13 ’filename ’,

14 action=’store ’,

15 help=’simPT HDF5 file’

16)

17 parser.add_argument(

18 ’--step’, ’-s’,

19 action=’store ’,

20 dest=’step_idx ’,

21 help=’Index of simulation step to load’

22)

23 args = parser.parse_args ()

24

25 #==

26 # Open & read the HDF5 file in read -only mode

27 tissue_file = h5py.File(args.filename , ’r’)

28

29 if args.step_idx != None:

30 step_idx = args.step_idx

C.2. TOOLS 71

31 else:

32 # Take the last step if none was given

33 step_idx = tissue_file[’time_steps_idx ’][-1]

34

35 # Read a subset of the tissue data from a particular step

36 # (after checking it actually exists)

37 step_grp_name = (’/step_ {0}’). format(step_idx)

38 if step_grp_name not in tissue_file:

39 print (’Step with index {0} not found!’). format(step_idx)

40 exit (1)

41 else:

42 step_grp = tissue_file[step_grp_name]

43

44 nodes_id = step_grp[’nodes_id ’][...]

45 nodes_xy = step_grp[’nodes_xy ’][...]

46

47 cells_id = step_grp[’cells_id ’][...]

48 cells_num_nodes = step_grp[’cells_num_nodes ’][...]

49 cells_nodes = step_grp[’cells_nodes ’][...]

50 cells_chem = step_grp[’cells_attr_chem_0 ’][...]

51

52 # Close HDF5 file

53 tissue_file.close ()

54

55 #==

56 # Some minor processing of the data

57 num_nodes = nodes_id.shape [0]

58 num_cells = cells_id.shape [0]

59

60 print (’Number of nodes: {0}’). format(num_nodes)

61 print (’Number of cells: {0}’). format(num_cells)

62

63 # Dictionary that translates from node IDs to node index values

64 nodes_idx = {nodes_id[node_idx]: node_idx for node_idx in xrange(num_nodes)}

65

66 #==

67 # Create the figure

68 fix ,ax = plt.subplots ()

69

70 # Create a list of polygons that represent the cells

71 polygons = []

72 for cell_idx in np.arange(num_cells):

73 # IDs of the nodes that define the current cell ...

74 cell_nodes_id = cells_nodes[cell_idx , :cells_num_nodes[cell_idx]]

75 # ... are translated to node index values ...

76 cell_nodes_idx = [nodes_idx[node_id] for node_id in cell_nodes_id]

77 # ... and then used to extract appropriate node coordinates for this cell

78 cell_nodes_xy = nodes_xy[cell_nodes_idx]

79

80 # Create the cell’s polygon and add it to the list of polygons to draw

81 cell_poly = Polygon(cell_nodes_xy)

82 polygons.append(cell_poly)

83

84 # Collection of patches to draw is created from the list of polygons

85 patch_coll = PatchCollection(polygons , cmap=cm.viridis)

C.2. TOOLS 72

86

87 # Set the array of per -polygon (cell) values used to color the cells

88 # (in this case , values of the first cell -based chemical saved as

89 # a cell -based attribute with the name ’chem_0 ’)

90 patch_coll.set_array(cells_chem)

91

92 # Add the collection to draw to the axis

93 ax.add_collection(patch_coll)

94

95 # Create a legend -like color bar to show the range of cell based values

96 plt.colorbar(patch_coll)

97

98 # Set figure properties

99 # Adapt figure ranges to the tissue size

100 ax.set_xlim(np.min(nodes_xy[:, 0]) - 10, np.max(nodes_xy[:, 0]) + 10)

101 ax.set_ylim(np.min(nodes_xy[:, 1]) - 10, np.max(nodes_xy[:, 1]) + 10)

102 # Use a square grid

103 ax.set_aspect (1.)

104 ax.grid()

105 # Optional: In simPT the y-axis faces downwards , to make plots look

106 # similar to these from simPT you can just flip the y-axis with:

107 ax.invert_yaxis ()

108

109 # Show the figure on screen

110 plt.show()

Running python simPT HDF5 example.py tissue.h5 gives figure C.3.

Figure C.3: A VPTissue HDF5 file plot with Python

C.2.3 Matlab

Matlab supports HDF5 files out of the box. See: MathWorks Documentation Center
for a detailed overview7. Reading data from a VPTissue file (using the “High-Level”
functions) is straightforward; a really basic example is shown in the following script.

1 leaf_file_name = ’your_simulation_result.h5’;

2

3 time_steps = h5read(leaf_file_name , ’/time_steps ’);

4 time_steps_idx = h5read(leaf_file_name , ’/time_steps_idx ’);

5

6 num_cells = zeros(i,1);

7

8 for i = 1: length(time_steps)

9 step_idx = time_steps_idx(i);

10 cells_id = h5read(leaf_file_name , [’/step_ ’, num2str(step_idx), ’/cells_id ’]);

11 num_cells(i) = length(cells_id);

12 end

13

14 plot(time_steps , num_cells , ’.-’);

15 xlabel(’Time (sec)’);

16 ylabel(’Number of cells ’);

17 grid on;

Figure C.4: Analysis of VPTissue HDF5 files in Matlab

C.2.4 ParaView

We have also developed a HDF5-based plugin for ParaView8, which can be found in
the src/main/resources/paraview/ directory.

7http://www.mathworks.nl/help/matlab/hdf5-files.html
8http://www.paraview.org/

http://www.mathworks.nl/help/matlab/hdf5-files.html
http://www.paraview.org/

Bibliography

[1] R. M. H. Merks, Y. Van de Peer, D. Inzé, and G. T. S. Beemster, “Canalization
without flux sensors: a traveling-wave hypothesis,” Trends in Plant Science,
vol. 12, pp. 384–390, 2007.

[2] R. M. H. Merks, M. Guravage, D. Inzé, and G. T. S. Beemster, “VirtualLeaf:
an open-source framework for cell-based modeling of plant tissue growth and
development.,” Plant physiology, vol. 155, pp. 656–66, Mar. 2011.

[3] D. D. Vos, A. Dzurakhalov, D. Draelants, I. Bogaerts, S. Kalve, E. Prinsen,
K. Vissenberg, W. Vanroose, J. Broeckhove, and G. T. S. Beemster, “Toward
mechanistic models of plant organ growth,” Journal of Experimental Botany,
vol. 63, no. 9, pp. 3325–3337, 2012.

[4] J. J. Barton and L. R. Nackmann, Scientific and Engineering C++. Addison-
Wesley Publishing Company, 1994.

[5] B. Stroustrup, The C++ Programming Language, Fourth Edition C++11.
Pearson Education, Inc., Upper Saddle River, New Jersey, 2013.

[6] R. M. H. Merks and M. Guravage, Building simulation models of developing
plant organs in VirtualLeaf, vol. 959 of Methods in Molecular Biology, ch. 23,
pp. 333–352. Humana Press, Springer Protocols, 2013.

[7] H. Meinhardt, “Morphogenesis of lines and nets,” Differentiation, vol. 6,
pp. 117–123, 1976.

[8] R. Smith, S. Guyomarc’h, T. Mandel, D. Reinhardt, C. Kuhlemeier, and
P. Prusinkiewicz, “A plausible model of phyllotaxis,” Proc Natl Acad Sci U
S A, vol. 103, pp. 1301–1306, 2006.

[9] D. Draelants, “Numerical analysis of pattern formation in auxin transport mod-
els,” 2016. PhD thesis.

[10] D. De Vos, E. De Borger, J. Broeckhove, and G. Beemster, “Simulating leaf
growth dynamics through metropolis-monte carlo based energy minimization,”
J Comput Sci, vol. 9, pp. 107–111, 2015.

[11] D. De Vos, K. Vissenberg, J. Broeckhove, and G. Beemster, “Putting theory to
the test: which regulatory mechanisms can drive realistic growth of a root?,”
PLoS Comput Biol, vol. 10, p. e1003910, 2014.

[12] S. B. Lippman, J. Lajoie, and B. E. Moo, C++ Primer, Fifth Edition C++11.
Addison Wesley, Inc., Upper Saddle River, New Jersey, 2013.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissedes, Design Patterns - Elements
of Reusable Object Oriented Software. Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc., 1995.

[14] B. Aiello and L. Sachs, Configuration Management. Addison Wesley, Inc., Up-
per Saddle River, New Jersey, 2011.

[15] J. Humble and D. Farley, Continuous Delivery. Addison Wesley, Upper Saddle
River, New Jersey, 2011.

	Introduction
	The VPTissue toolset
	Project background
	Documentation
	Installation
	Known Issues

	VPTissue operation
	The work shell
	Running in command line mode
	Running the simulator interactively
	Viewers
	Post-processors
	Exporters

	VPTissue features
	File formats
	Customizability
	Dynamic parameters
	Algorithmic components
	Models and model families
	Pre-defined models
	Language interoperability
	Coupled simulations

	Tissue Editor
	Overview
	Modes of the editor
	Selecting items
	Panels
	Graphical editing
	Graphical Settings
	Toolbar

	Parameter Exploration
	Client
	Node and server

	The VPTissue Software
	Code base
	Directory layout
	Building and testing in Continuous Integration
	Platforms

	Programming with the VPTissue framework
	Adding models and components
	Adding an attribute

	Parameter Dictionary
	Parameters in model
	Parameters in auxin_transport
	Parameters in Blad0032, Blad0128, Blad0512 (leaf models)
	Parameters in cell_mechanics
	Parameters in ode_integration
	Parameters in random_engine
	Parameters in smith_phyllotaxis
	Parameters in termination
	Parameters in TestCoupling, TestCoupling_I, TestCoupling_II
	Parameters in Wortel (root)
	Parameters in WrapperModel

	Preferences Dictionary
	Introduction
	Preferences for graphics: colors_sizes
	Preferences for graphics: visualization
	Preferences for file format: bitmap_graphics
	Preferences for viewer: hdf5
	Preferences for viewer: log
	Preferences for viewer: logwindow
	Preferences for viewer: qt
	Preferences for file format: vector_graphics
	Preferences for viewer: xml

	VPTissue HDF5 file specification
	HDF5 file stucture
	Tools

