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Abstract

Characterization of forest attributes at fine scales is necessary to manage terrestrial resources in a manner that replicates, as closely as

possible, natural ecological conditions. In forested ecosystems, management decisions are driven by variables such as forest composition,

forest structure (both vertical and horizontal), and other ancillary data (i.e., topography, soils, slope, aspect, and disturbance regime

dynamics). Vertical forest structure is difficult to quantify and yet is an important component in the decision-making process. This study

investigated the use of light detection and ranging (LiDAR) data for classifying this attribute at landscape scales for inclusion into decision-

support systems. Analysis of field-derived tree height variance demonstrated that this metric could distinguish between two classes of vertical

forest structure. Analysis of LiDAR-derived tree height variance demonstrated that differences between single-story and multistory vertical

structural classes could be detected. Landscape-scale classification of the two structure classes was 97% accurate. This study suggested that

within forest types of the Intermountain West region of the United States, LiDAR-derived tree heights could be useful in the detection of

differences in the continuous, nonthematic nature of vertical forest structure with acceptable accuracies.
D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Forest composition and structure are difficult to assess

over large, remote areas but represent important information

needed to guide multiple-use forest management. Remote

sensing, global positioning systems (GPS), and geographic

information systems (GIS) are the modern tools for collec-

tion and manipulation of such information. Light detection

and ranging (LiDAR; e.g., small-footprint, multireturn) is a

remote sensing tool that is proving to be particularly useful

for collection of measurement data for natural resource

assessments.

While many practical applications of LiDAR technol-

ogy focus on producing digital elevation models (DEMs;
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Kraus & Pfeifer, 1998; Petzold, Reiss, & Stossel, 1999),

the potential for using LiDAR data to derive forest

measurement information has also received strong atten-

tion over a significant period of time (Hyyppä, Kelle,

Lehikoinen, & Inkinen, 2001; Lefsky et al., 1999; Means

et al., 1999; Nelson, Krabill, & Tonelli, 1988; Nilsson,

1996; Persson, Holmgren, & Söderman, 2002). Until

recently, however, knowledge has been more limited on

the utilization of LiDAR data to map forest structure (both

vertical and horizontal) at landscape scales. Recent studies

with logical extensions to landscape scales point to the

utility of LiDAR data in forest structure characterization

(Hudak, Lefsky, Cohen, & Berterretche, 2002; Næsset,

2002; Næsset & Økland, 2002). This body of evidence led

us to examine the utility of LiDAR data for quantitative

characterization of vertical and horizontal forest structure

at landscape scales as inputs to habitat decision-support

systems (DSS).
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1.1. Environmental decision-support systems

The need for effective decision-support tools has led to

a variety of environmental or ecological DSS that attempt

to integrate current ecological theory with existing envi-

ronmental information to manage ecosystems in a sus-

tainable manner. One such ecological DSS is the

ecosystem diversity matrix (EDM), implemented jointly

by Boise Cascade and the U.S. Forest Service on land-

scape-level test beds in five states (Haufler, Mehl, &

Roloff, 1999).

The Idaho Southern Batholith Landscape (ISBL), one

of the EDM test beds, uses a combination of forest

composition, structure, and historical disturbance regime

information as inputs for the development of an ecosys-

tem diversity classification system to determine what,

where, how, and when various forestry activities will or

will not occur. The ISBL EDM (from here on referred to

as EDM) forest composition classification (or habitat

type) is based on the combination of various vegetation

species assemblages (i.e., tree, shrub, and herbaceous

species). EDM incorporates environmental gradient infor-

mation, such as elevation and slope, that is used to

characterize species assemblages as ‘‘warm–dry’’ or

‘‘cool–moist’’ for final habitat type classification. In

addition to habitat types, the EDM also incorporates

vegetation growth stage (VGS) information, which relates

various levels of canopy closure, vertical structure, and

tree size together to describe a relative structural ‘‘stage’’

within a given successional pathway. Habitat type and

VGS classifications are used in tandem to produce the

EDM, a landscape-level description of ecological diversity

within the ISBL.

Data used in the EDM were from a variety of sources,

including existing field inventory data and geospatial infor-

mation such as remotely sensed imagery (e.g., Landsat TM

classification of vegetation). When this LiDAR project was

being initiated, the VGS component of the EDM classifica-

tions had not been verified across the region. Moreover, an

accuracy assessment was not available for the Landsat TM

classifications. During the planning stages of this work,

classification maps developed for the EDM were inspected

in the field to determine if they could be used for stratifi-

cation of field plots by vegetation type and structure. These

initial field observations indicated inconsistencies between

observed vs. expected vegetation conditions. Consequently,

this project was designed to examine the potential of using

data from a small-footprint, multireturn LiDAR system to

more consistently map vertical forest structure for use in

development of the VGS classification.

1.2. LiDAR and vertical forest structure

One of the most difficult components to quantify in

forested ecosystems is overall forest structure, or the three-

dimensional organization of objects. Vertical forest struc-
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ture, defined as ‘‘. . .the bottom to top configuration of

above ground vegetation within a forest stand’’ (Brokaw &

Lent, 1999), is particularly difficult to quantify, although it

is certainly important for making management decisions.

Changes in vertical forest structure affect both microcli-

matic patterns and processes directly (Brokaw & Lent,

1999) and have been shown to impact the behavior and

distribution of various avian species (Martin, 1988; Maurer

& Whitmore, 1981; Robinson & Holmes, 1982). Docu-

mentation of vertical forest structure at landscape scales

will be extremely useful for making regional forest man-

agement decisions.

LiDAR systems create spatial data sets that provide

insights into numerous ecological conditions while moni-

toring changes within those conditions. It is possible to use

information inherent in LiDAR data to describe stand

structure attributes (basal area and biomass; Lefsky et al.,

1999). A metric, such as tree height variance, could be used

to classify various vertical forest structural configurations or

species. For example, Brandtberg, Warner, Landenberger,

and McGraw (2002) examined variables, including standard

deviation, as inputs to linear discriminant analysis and found

limited capabilities to classify some deciduous tree species.

Accurate forest structure classifications with LiDAR data

(described here as single-story or multistory) should im-

prove VGS classifications since vertical structure is one of

three components used to derive the VGS.

1.3. Study objectives

One conceptual framework for habitat structure linked

references commonly used to describe the ‘‘physical ar-

rangement of objects in space’’ to standardize what is meant

by habitat structure (McCoy & Bell, 1991). Our study

adopted this concept for describing forest structure, in

general, and vertical forest structure, in particular.

Vertical forest structure was defined as the distribution of

tree heights within a forest stand. Horizontal structure, while

not specifically studied, was defined for reference as the

distribution of percent canopy closure. EDM is an ecolog-

ical DSS that was designed for use at landscape scales.

Hence, this study focused on how information relating to

vertical structure can be derived and mapped from small-

footprint, multireturn LiDAR data at such scales. Tree

height variance derived from both field and LiDAR data

was chosen as the metric to distinguish between categories

of vertical structure. It was hypothesized that there were no

significant differences between field- and LiDAR-derived

tree height variances.

The specific objectives of this study were to: (1) deter-

mine if tree height variances can be used to separate two

vertical structure classes (single-story vs. multistory); (2)

establish whether any significant differences exist between

field- and LiDAR-derived tree height variances; and (3)

develop a methodology for mapping the distribution of

vertical structure at landscape scales.
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2. Methods

2.1. The Idaho Southern Batholith Landscape

The planning landscape (the ISBL) located in central

Idaho (Fig. 1) was derived from research used to delineate

relatively homogeneous sections and subsections within the

Idaho Batholith Landscape (Mehl et al., 1998). Forests

within the ISBL region are dominated by various config-

urations of: (1) Douglas-fir (Pseudotsuga menziesii [Mirb.]

Franco.), (2) grand fir (Abies grandis [Doug.] Lindl.), (3)

subalpine fir (Abies lasiocarpa [Hook.] Nutt.), (4) Engle-

mann spruce (Picea engelmannii [Parry]), (5) ponderosa

pine (Pinus ponderosa Laws.), and (6) lodgepole pine

(Pinus contorta [Doug.]) These forests have canopy clo-

sures typically less than 60%. The total area covered within
Fig. 1. The location of the NE and SW research blocks (black
the two research blocks (designated NE and SWon Fig. 1) is

approximately 10,000 acres (4046.86 ha).

2.2. Field data collection and analysis

Field data were collected in Idaho during the summer of

2000. These data were used to test for differences between

field- and LiDAR-derived tree height variances. Height to

the top of the live crown was measured for 837 trees [z 6.0

in. dbh (diameter at breast height)] within 49 circular 0.20-

acre (0.081-ha) plots (12 single-story plots and 37 multisto-

ry plots). Preexisting maps of stand structure classes, on

field inspection, proved to be too inaccurate to use to

establish a stratified random sample by condition. Plot site

selection, therefore, was primarily made by examination of

digital orthophoto quadrangles of the area. Real-time differ-
outlined boxes) within the ISBL study site (red outline).
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ential GPS was used to fix plot locations on both blocks

within reasonable walking distance from roads as the rugged

terrain precluded sampling all areas due to time constraints.

An ocular classification of vertical structure classes

(single-story or multistory) was made on the field plot.

The classes were later confirmed by using the ground-

measured tree heights to determine height variability. It

was important to demonstrate statistically that single-story

plots represented one class while multistory plots repre-

sented multiple classes. A significant departure away from

the single-story condition would confirm the other class

(multistory). All single-story plots were tested using an

analysis of variance (ANOVA) procedure to verify that they

could be considered a single vertical structure class. Lev-

ene’s test (Levene, 1960) was used to test the equality of

tree height variances at the 5% significance level.

A generalized linear model (GLM) approach was used to

determine if multistory tree height variance significantly

departed from single-story tree height variance. Variance

distributions followed a scaled chi-square distribution (or,

equivalently, a gamma distribution). The GLM is appropri-

ate for analysis of such distributions so a generalized

likelihood ratio test was used to determine if any significant

separability existed between the two structure classes.

2.3. LiDAR data collection and analysis

A small-footprint, multireturn LiDAR mission flown by

EarthData Technologies1 on October 12, 1998 provided

complete coverage of both research blocks (16 flight lines

per block) at a nominal post spacing of approximately 2.0

m. The AeroScan system used for this mission was capable

of recording up to five returns per outgoing shot based on a

minimum distance between returns and relative return

intensity. The average mission altitude of approximately

1067 m above terrain, combined with a 25j scan angle,

produced postpoints approximately 0.3 m in diameter across

an average swath width of 473 m.

Probable ground returns were identified using a ground-

finding algorithm developed by EarthData Technologies.

LiDAR data sets were used to produce canopy and ground

DEMs using a linear interpolation technique (0.20 m cell

resolution). Both DEMs were incorporated into a spatial

model developed to derive tree heights based on procedures

adopted with modifications from McCombs, Roberts, and

Evans (2003).

Brandtberg et al. (2002) utilized a technique of data

segmentation that matched ground- and LiDAR-derived

crown areas to determine tree locations and heights.

Popescu, Wynne, and Nelson (2002) utilized a variable

search window based on tree heights for tree identification

and measurement. The tree identification and height-finding

model used in this project relied on detection of differences
1 Mention of company or product names is for information only and

does not constitute official endorsement by the Mississippi State University.
in relative density of local maxima in the LiDAR canopy

surface.

First, a 3-ft (0.9-m) radius circular search window (based

on minimum crown radius of trees measured in the field)

was passed over the canopy surface to identify maxima that

might represent tree tops. The locations of these local

maxima were used to partition the study area into three

categories of relative assumed stem density (low, medium,

and high).

The second step involved determination within each of

the three stem density categories—the relative height rank

of pixels in relationship to their neighbors. Adjoining pixels

that were higher than 85% of their neighbors were combined

into clumps that were assumed to include the peaks of tree

crowns. All clumps smaller than the expected minimum size

of crowns based on field data were eliminated from the data

sets. The maximum height and location of that height

measurement were then derived for each clump based on

the difference between the LiDAR canopy and ground

DEMs. This provided a set of tree locations and associated

heights that could be used in subsequent operations to

examine height variability across the study area.

Since trees measured in the field were selected by

minimum dbh (z 6.0 in.), and not by absolute height, it

was important to exclude trees visible in the LiDAR data that

represented trees which were V 6.0 in. dbh from the anal-

ysis. A nonlinear regression model was developed from tree

measurements to model tree heights based on dbh and stem

densities (Parker & Evans, in press). A height threshold of

18.7 ft (5.7 m) was chosen based on the regression model

estimate that 6-in. dbh trees had an average height of 22.0 ft

(6.7 m). The difference between the predicted and utilized

height thresholds takes into consideration the accepted

understanding that LiDAR generally underestimates tree

heights (Eggleston, 2001; Nilsson, 1996). The tree height

threshold was applied to remove any trees < 18.7 ft (5.7 m),

resulting in a spatial data set detailing the predicted distri-

bution of trees z 6.0 in. dbh (Fig. 2a and b). The resulting

tree locations and heights were converted to point coverages

and then clipped to plot boundaries using a polygon cover-

age derived by buffering real-time differential GPS plot

centers with the 0.20-acre (0.081-ha) plot radius (Fig. 2c).

Statistical tests used with field measurements were ap-

plied to LiDAR-derived tree heights to determine any

departures from the single-story structure class. Likewise,

the same ANOVA (Levene’s test) was used to verify that

single-story plots were indeed a single class. The same

generalized linear model, used for the field data analysis,

was applied. The generalized likelihood ratio test was used

to test the two LiDAR-derived structure classes at a 5%

significance level.

2.4. Field vs. LiDAR data analysis

Two ANOVAs were used to determine if LiDAR-derived

tree height variances were different from field-derived tree



Fig. 2. Processes used to derive tree height information from LiDAR data. (a) Subtract the ground from first return LiDAR DEMs to yield forest height surface.

(b) Forest height surface is processed using a tree height-finding model (adopted fromMcCombs et al., 2003) to yield the highest point within an individual peak

where red dots represent assumed individual trees. (c) Tree height data are extracted to yield heights of individual trees detected within each plot (red dots).

Fig. 3. Example of vertical structure classification (SW block) in study area near McCall, ID. Light green represents single-story class and dark green represents

multistory class.
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height variances. This was done to verify that mapping

forest vertical structures using LiDAR could be accom-

plished accurately. Levene’s test was used because the total

number of trees measured in the field vs. the total number of

trees identified and measured in the LiDAR data on a per-

plot basis were different. Independent tests were run to

compare single-story field and LiDAR plots and also

multistory field against LiDAR plots.

2.5. Classifying vertical forest structure

Classifying the spatial distribution of vertical structure at

the landscape scale through LiDAR analysis required the

derivation of tree heights using the same methodology

employed for the statistical analysis. A decrease in DEM

resolution from 0.20 to 1.0 m was performed, and it was

assumed that this would not affect the validity of the vertical

structure mapping process. Cell size of the output tree height

variance product (30.0 m) was based on the reduced number

of tree heights detectable from 1.0-m resolution DEMs and

an area large enough to encompass sufficient tree heights to

calculate a variance. Furthermore, 30.0 m is a convenient

resolution since it is the same resolution of many other data
Fig. 4. Perspectives of single-story and multistory vertical structure classes from

LiDAR-derived tree heights within a single-story plot. (b) Canopy surface from f

story plot. (c) A typical single-story plot. (d) Three-dimensional perspective of rela

from first return LiDAR data along with tree heights (red points) within a multis
sets traditionally used in landscape-level analyses (e.g., U.S.

Geological Survey 30.0 m DEM and Landsatk data).

The two structure classes were based on the median

value between the minimum tree height variance observed

in the multistory plots (2.75 m) and the maximum tree

height variance observed in the single-story (1.21 m) plots.

Thus, each 30.0-m cell in the tree height variance data set

was classified as single-story ( < 1.54 m) or multistory

(>1.54 m) (Fig. 3).

An accuracy assessment was produced for the classifica-

tion using twenty-nine 0.10-acre (0.04-ha) validation plots

tallied for tree heights during the summer 2001 field season.

Plot locations were chosen randomly within 100.0 m of

roads only in the SW research block due to time constraints

during that field season.
3. Results

Analysis of field tree heights demonstrated that tree

height variance could be used as a measure to distinguish

between two vertical structural classes within the different

forest types (Fig. 4). The nonsignificant outcome of the
study area near McCall, ID. (a) Three-dimensional perspective of relative

irst return LiDAR data along with tree heights (red points) within a single-

tive LiDAR-derived tree heights within a multistory plot. (e) Canopy surface

tory plot. (f) A typical multistory plot.
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ANOVA (Levene’s test) indicated that single-story plots

measured in the field were, in fact, single-story (i.e., plot-

level tree height variances were not significantly different

from each other; p>0.6102). The GLM test confirmed that

single-story and multistory plots measured in the field could

be distinguished from each other based on their tree height

variances ( p < 0.0001).

Confirmation of differences between single-story and

multistory classes in the field data bolsters the assertion

that LiDAR-derived tree heights can be used to distinguish

between vertical structural classes. Thus, the same series of

tests were used to examine LiDAR-derived tree heights. For

single-story LiDAR plots, however, the resulting ANOVA

was significant (i.e., tree height variances between the plots

were significantly different based on the test result;

p = 0.0204).

The statistical difference in the LiDAR single-story

variances may have resulted from the limited post spacing

(f 2.0 m) acquired for this study. Post spacing accounts for

how much detail is detected in the LiDAR data. In the field,

height measurements were always made to the peaks of live

crowns. The distance covered between two consecutive

LiDAR shots could have been large enough to result in

missing the top of one tree while detecting the top of

another. The sides of some trees may have been detected

as lower peaks in the canopy surface while the other trees

were accurately measured. These inconsistencies in the

LiDAR surface likely resulted in an increase in height

variance for a given single-story plot (Fig. 5a). Moreover,

the post spacing limitation surely had some affect on

detecting the correct number of trees within a plot. Trees

often occurred as clumps, in which case some may have

been missed altogether. Conversely, the tree-finding model

may have identified two tree peaks in the canopy surface

where there should only have been one (e.g., trees with

forked or dead tops; Fig. 5b). It is also possible that peaks
Fig. 5. Tree height variance can be inflated due to misperceived tree heights (from l

and 3 is measured correctly because LiDAR returns intercept tree peaks (yellow). H

side of the crown (blue). (b) Tree 4 is counted as two stems (and heights) due to
detected in the canopy surface may have been detected as

tops of trees but may have actually been from LiDAR

returns inside the crown due to gaps within an individual

crown or a narrow terminal. These factors explain why

single-story tree heights measured in the canopy surface

were not representative of actual tree heights observed in the

field and led to a statistical difference in the final analysis.

The ANOVA on the single-story LiDAR plots resulted in

a contradictory response compared to the single-story field

plots. The GLM analysis comparing the single-story to

multistory LiDAR plots was in agreement with the same

field plot comparison. A significant difference was found

between the tree height variances of the single-story and

multistory LiDAR plots ( p < 0.0001).

This finding suggests that LiDAR data can be used to

distinguish between single-story and multistory vertical

structural classes within the study area. Although a signif-

icant difference was detected by the GLM within the

LiDAR-derived tree heights, they may not have been truly

representative of the actual tree height variances observed in

the field due to height variance possibly attributed to low

post spacing. While tree height variance inflation in the

single-story LiDAR plots was explained, tree height varian-

ces within the multistory LiDAR plots may have been

reduced. The vast differences in overall tree height variances

between these two vertical structural classes, according to

the field data, are such that even if single-story and

multistory LiDAR tree height variances were less divergent,

a significant difference was still expected (Table 1).

Unlike single-story plots, tree height variances in multi-

story LiDAR plots may be lower when post spacings are

relatively large (z 2.0 m). Large trees in multistory stands

have a greater chance of being detected by LiDAR. Al-

though the relatively low canopy closure in these forests

increases the probability of small trees being visible from

the air, they are less likely to be identified in low-density
arge post spacing) within the tree height-finding model. (a) Height of trees 1

eight of tree 2 is incorrectly measured because the LiDAR return is from the

a forked or irregular tree crown.



Table 2

Levene’s test for homogeneity of tree height variance (single-story field vs.

LiDAR and multistory field vs. LiDAR) ANOVA of squared deviations

from group means* for tree data taken on plots near McCall, ID

Source of

variation

df Mean

square

F value Pr>F

value

Single-story field Plot 1 30.6 20.88*** < 0.0001

vs. LiDAR Error 287 1.4

Multistory field Plot 1 2065.6 0.58 (NS) 0.4471

vs. LiDAR Error 1389 3572.6

*Level of significance: NS = significant (a= 0.05).
*** = significant (a= 0.001).

Table 1

Summary of mean tree height, mean tree height variances, and standard

deviation across both vertical structure classes for field and LiDAR plots

near McCall, ID

Single-story

field plots

Multistory

field plots

Single-story

LiDAR

plots

Multistory

LiDAR

plots

Mean tree height [m] 8.50 18.36 6.60 17.52

Mean tree height

variance [m2]

(S.D., in m)

0.77

(0.87)

44.00

(6.63)

0.39

(0.62)

34.30

(5.85)
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LiDAR data due to their small crown size with respect to

coarse post spacing. This would contribute to lower vari-

ability in tree heights (Fig. 6). Ultimately, even though

single-story and multistory tree height variances were not

proportionally representative of observed field tree height

variances, a significant difference between the two LiDAR

vertical structure classes was still found. This further con-

firms the robustness of the LiDAR technique of vertical

structure classification.

Concluding the series of statistical tests, a comparison

between field and LiDAR tree height variances was per-

formed. It was hypothesized that there would be no signif-

icant differences between field- and LiDAR-derived tree

height variances for each structure class. This was based on

the assumption that the reported underestimation of tree

heights by LiDAR was consistent (Eggleston, 2001) and did

not affect the actual dispersion of tree heights. However, the

outcome of the ANOVA used to compare tree height

variances resulted in a significant difference suggesting that
Fig. 6. Large post spacings can influence tree height variances due to incorrect

significant differences between single-story and multistory LiDAR plots. (a) Inflate

(blue dot). (b) Reduced multistory tree height variance due to incorrect tree heigh
the single-story field and LiDAR tree height variances were

not the same. While this was in contradiction to what was

expected, the explanation of how large LiDAR post spac-

ings can yield inflated tree height variances probably

accounts for the result. For this study, tree height measure-

ment in LiDAR data, and therefore variance estimation, was

a function of tree identification in canopy surfaces. Low

posting densities resulted in incorrect heights of identified

trees and missed heights due to trees not identified in the

canopy surface (Fig. 6). Tree height was consistently

measured to the top of live crowns; therefore it, was possible

to demonstrate that single-story field plots were one vertical

structure class. For the reasons given above, this was not the

case with the LiDAR measurements.

Inconsistencies between single-story field and LiDAR

tree height variances would lead one to expect significant

differences between the two classes ( p < 0.0001; Table 2).

The ANOVA comparison between multistory field and
tree heights within the tree height-finding model. This can still result in

d single-story tree height variance due to incorrect tree height measurements

t measurements.



Table 3

Accuracy assessment of vertical structure classes in study area near McCall,

ID

Vertical

structure

class

Reference

totals

Classified

totals

Producer’s

accuracy [%]

User’s

accuracy [%]

Single-story 5 6 100 83

Multistory 24 23 96 100
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LiDAR tree height variances, although potentially plagued

by the same variance influences that affected single-story

plots, did not result in a significant difference ( p = 0.4471;

Table 2). While there was inconsistency of overall tree

height dispersion between multistory plots, the magnitude

of the variances in both the field and LiDAR measurements

contributed to a failure to detect differences.

The accuracy assessment of the landscape-level classifi-

cation depicted in Fig. 3 revealed a significant agreement

between reference and classified plots of single-story and

multistory conditions. Producer’s accuracy (a measure of

how consistent reference plots compare to classification

plots; Congalton & Green, 1998) was very high for both

single-story and multistory classes as was user’s accuracy (a

measure of how likely a pixel was correctly classified with

regard to the same class type on the ground) (Table 3). The

overall classification accuracy was 97% and the overall j
statistic was 0.89. Although it was not possible to complete

a thorough accuracy assessment with a large number of
Fig. 7. Methods used to characterize vertical forest structure as a continuous surfa

Tree heights were used to create a tree height standard deviation data set (b) and a m

set by the mean tree height data set and multiplying by 100 produced the CV da
validation plots, the results suggested that LiDAR data

could be used to map vertical structure accurately at

landscape scales.
4. Discussion and conclusions

This study demonstrated that field-derived tree height

variances could be used to distinguish between single-story

and multistory classes of vertical structure within forests of

the study area and, presumably, other parts of the Intermoun-

tain West. Results also suggested strongly that LiDAR-

derived tree height variances could be used to differentiate

these two structure classes presumably at the landscape

scale. While this study’s methods showed that distinguishing

between single-story and multistory classes using LiDAR is

possible, they do not necessarily represent the underlying

continuous nature of vertical structure. For practical purpo-

ses, the multistory class was referred to as a single class,

although, realistically, it represents a range of conditions that

occur in forested areas. The thematic classification of vertical

structure into single-story and multistory classes may be

sufficient in some applications, but a more realistic approach

for representing vertical structure would be to characterize its

spatial distribution continuously.

One method of characterizing vertical forest structure as a

continuous surface is to employ the coefficient of variation

(CV) of LiDAR-derived tree heights. Lantham, Zuuring, &
ce. (a) Raw tree heights were derived using the tree height-finding model.

ean tree height data set (c). Dividing the tree height standard deviation data

ta set (d).
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Coble (1998) chose CV based on its use in quantifying

vertical structure with standard inventory data. This unitless

ratio between the standard deviation and mean of tree heights

is a measure of dispersion that is independent of sample size

and can be used to compare samples of unequal sizes.

To examine the potential utility of the CV, it was

developed in a fashion similar to the derivation of the tree

height variance data set. The CV data set was produced in

ARC/INFO GRID by dividing the standard deviation tree

height data set by the mean tree height data set and

multiplying by 100 (Fig. 7). Cell size was chosen to be 30

m based on the same minimum data requirements as the tree

height variance data set.

Although it was demonstrated that coarse LiDAR data

(z 2 m spacing) inflate or depress measured tree height

dispersion within a forest stand, they nonetheless were useful

in determining height detail differences at the landscape

scale (Fig. 8). It was evident that LiDAR data can be used

to detect a variety of vertical structure configurations from

relatively low CV within thinned, single-story areas (dark

blue to light green) to relatively high CVs within diverse

multistory areas (orange to red). It was observed in the field

that a majority of the areas coded as red (or high CVs) follow
Fig. 8. Example of the continuous distribution of forest complexity derived from

gradient represents low (blue) to high CV (red).
drainages/depressions that contain more ‘‘cool–moist’’ con-

ditions and a greater degree of multicohort forest types

observed as having a greater diversity of tree heights.

The benefit of a continuous description of vertical

structure within spatially based DSS, such as EDM, includes

the ability to accurately relay the realistic nature of vertical

structure across the forested landscape. Accurate character-

ization of vertical structure conditions that exist within a

given planning landscape, such as the ISBL, can provide

valuable information to decisionmakers so they can achieve a

variety of goals in a sustainable manner. For example, while

primary goals may be aimed at commodity extraction, the

necessity to achieve this goal in a sustainable way requires

that certain ecological processes remain reasonably undis-

turbed. In regards to vertical structure, this may require a

proportional representation of various vertical structural

configurations at all times within the planning landscape to

maintain desirable elements of biodiversity, which foster self-

sustaining ecosystem processes essential for the continuous

productivity of forest commodities and other outputs.

Although there are limitations in using LiDAR data with

large post spacings (z 2.0 m) in detecting various levels of

vertical structure, it was possible to distinguish between the
LiDAR data (SW block) of study area near McCall, ID. The chromatic
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two structure classes examined in this study. With this type

of information and at the level of detail LiDAR data can

provide, it was possible to map vertical structure at land-

scape scales with enough detail to be useful in a variety of

applications. However, one must recognize that post spac-

ings smaller than those used in this study are deemed

preferable. In Intermountain West forests, high-density Li-

DAR data could be used to detect far more detail than was

apparent with data used in this study (Fig. 9). However, the

derivation of tree height variances from LiDAR data with

relatively large post spacings does demonstrate its useful-

ness in producing accurate data sets that capture the the-

matic/continuous spatial distribution of vertical structure.

LiDAR data sets have application in the evaluation of

different resource management prescriptions at landscape

levels. The DSS discussed earlier requires specific informa-

tion on multiple landscape parameters. This study demon-

strated that LiDAR data can provide one parameter, vertical

forest structure, for determining vegetative growth stages

(VGS) in Boise Cascade’s EDM. Another application of

LiDAR is in assessing habitat suitability for selected wild-

life species. These could include: (1) rare and endangered

species, (2) threatened species, (3) species of high public

visibility or demand, or (4) indicator species of selected

ecological conditions. By modeling habitat suitability for

selected species, the spatial distribution of critical life

requisites (i.e., nesting, breeding, and foraging habitat)

could be evaluated under various land management pre-

scriptions and scenarios. In this way, landscapes may be
Fig. 9. LiDAR with smaller post spacings would yield better results with regard to

dispersion due to a small post spacing ( < 2.0 m). (b) Less accurate estimate of tr
managed at the ecosystem level, working toward identifying

the appropriate mix of ecological, economic, and social

objectives within the landscape.

LiDAR data can be used to generate a suite of habitat

variables or attributes for input into spatial models of

habitat suitability. Stand-level attributes such as tree height,

vertical structure, canopy closure, and density can be

generated from LiDAR data. Work is progressing on

fusing LiDAR data sets with high-resolution multispectral

imagery to generate other habitat variables such as species

composition and diversity, and snag and coarse woody

debris identification and quantification.

Continuation of the work initiated by this study involves

the development of species habitat models driven by remote-

ly sensed data sets, LiDAR, and high-resolution multispec-

tral imagery. The goal of these efforts is the development of

an application concept in the form of a DSS that can be

applied at the landscape level to assess habitat suitability. It is

recommended that research continue to investigate how

LiDAR data with higher posting densities can be used to

derive this type of information more accurately. It is also

recommended that research explore the development of

horizontal forest structure (e.g., stem density and canopy

closure) variables using LiDAR systems.

The study results indicated that continuing research in

these areas leveraging the capability of LiDAR systems for

detecting and measuring the organization of objects in three

dimensions (in this instance forests) should lead to a variety

of improvements in forestry and wildlife management
detecting the dispersion of tree heights. (a) Accurate estimate of tree height

ee height dispersion due to large post spacing (z 2.0 m).
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including more accurate habitat models, increases in classi-

fication accuracies of spectral data, and enhanced decision-

support systems.
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