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ARTICLE

Monitoring drought vulnerability using multispectral indices observed
from sequential remote sensing (Case Study: Tuy Phong, Binh Thuan,
Vietnam)

Hoa Thi Tran a*, James B. Campbella, Tri Dinh Tran b and Ha Thanh Tran b

aDepartment of Geography, Virginia Polytechnic Institute and State University, 220 Stanger Street,
Blacksburg, VA 24061, USA; bDepartment of Photogrammetry and Remote Sensing, Hanoi
University of Mining and Geology, Duc Thang, Bac Tu Liem district, Hanoi, Vietnam

(Received 24 June 2016; accepted 22 January 2017)

This study applies multispectral band ratios to examine vegetation density and vegeta-
tion health to assess drought conditions over nearly 30 years (1989–2016) in Tuy
Phong district, Binh Thuan province, Vietnam using a sequence of Landsat imagery
(TM and OLI). Our research area has a distinctive climate, characterized by arid and
semiarid areas adjacent to Binh Thuan’s coastline. Drought is likely intensified by rain
shadow effects of the Central Highlands (part of the Truong Son- or the Annamese
Cordillera, positioned immediately west of the province). The seasonal Land Surface
Temperature (LST) and Normalized Difference Vegetation Index (NDVI) were calcu-
lated to derive three other indices: Vegetation Condition Index (VCI), Temperature
Condition Index (TCI), and Vegetation Health Index (VHI). Results show that approxi-
mately two-thirds of Tuy Phong district was influenced by mid-to-severe drought.
During the dry season (November to the following April), severity of drought has
increased both intensively and extensively toward the North. Hypotheses testing of
correlation between LST and NDVI also revealed a significantly negative relationship
– increasing surface temperature and decreasing NDVI. To validate our results, we
applied the same procedure for generating the VHI from MODIS data. Despite the
absence of historical datasets for our region, Landsat data shows many advantages in
monitoring drought in remote and small areas compared to MODIS. Our research
strategies may be effective in other regions without sufficient climatic records for
conventional climatic analysis.

Keywords: Binh Thuan – Vietnam; Drought; NDVI; LST; VHI

1. Introduction

As a climatic abnormality originating from a period of usually low precipitation, drought
can occur in every part of the Earth’s surface, even in humid regions. Droughts can disrupt
both ecological and economic systems, leading to population displacement. Furthermore,
sustained drought also encourages desertification (Hirche et al. 2011), and land degrada-
tion, which are especially harmful for vulnerable landscapes bordering arid and semiarid
areas (Pandey et al. 2013). When local climatic meteorological data are available, drought
can be measured using integrated indices related to weather and soil conditions, such as
atmospheric humidity, air temperature, rainfall, and soil moisture.
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Although meteorological data do define drought status, they are not fully sufficient,
especially in areas that lack robust, sustained, and adequate records at appropriate spatial
and temporal scales. This study examines drought conditions within a small, but dis-
tinctive, region at the central coast of Vietnam characterized by serious drought, but
lacking systematic climatic records – specifically, there are only 105 internationally and
officially recognized weather stations within all of Vietnam – a country with 63 provinces.
Additionally, due to the Historical Observing Metadata Repository system, within our
study area, in Binh Thuan province (see Figure 1), there are two stations, located in Phan
Thiet City, though there are no in situ weather stations within our specific study area.
Therefore, it is very difficult to examine climate anomalies at monthly to yearly scales. On
the other hand, broad-scale weather models, can only work well over larger areas, and be
applied to predict general climatic trends, rather than specific drought episodes.

However, sequential satellite imagery can form a comprehensive method to observe
and evaluate drought conditions within regions without records of systematic climate data.
There are multiple forms of freely available remotely sensed imagery suitable for drought
analysis, such as MODIS, LANDSAT, and ASTER imagery, together providing a wide
range of resolutions and spectral channels (Cai, Mingyi, and Liu 2011). These data can be
applied to land use assessment (Doi 2002), or to generate useful indexes for specific
purposes, such as changes of surface temperature (Sobrino, Jiménez-Muñoz, and Paolini
2004; Valiente et al. 2010), and vegetation health, which can be considered as indicators
of drought (Karnieli et al. 2010; Orhan, Ekercin, and Dadaser-Celik 2014).

NDVI is a proxy index applied to extract, and to estimate, vegetation cover in terms of
proportion and density, which indirectly indicates vegetation health (Tucker 1979). In
monitoring drought status, assessing vegetative cover and health is very important as an
indicator of overall plant health, and specifically, temperature, and moisture stress. Thus,
any sign of changing behavior of the prevailing NDVI time series of the vegetative cover

Figure 1. Location of case study, Northeastern Binh Thuan Province, Southern Coastal Vietnam.
For full colour versions of the figures in this paper, please see the online version. Figure 1 should be
shown in section 2.1. Case study.
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can be attributed to variation of climatic measures, such as temperature or precipitation
(Peters et al. 2002; Sun and Kafatos 2007; Bai and Dent 2009). Otherwise, in their study
using datasets acquired by Advanced Very High Resolution Radiometer (AVHRR), Karnieli
and his colleges found a negative correlation between surface temperature (LST) and NDVI
that also can be considered as another indicator of drought monitoring in terms of water-
limiting vegetation growth (Karnieli et al. 2010). Therefore, in our study, instead of working
on NDVI separately, we investigate an integration of LST, and NDVI.

In that context, the Vegetation Health Index (VHI) has been used to monitor vegeta-
tion health according to drought impact (Kogan 1990, 1994). VHI is based upon the
correlation between NDVI and LST derived from AVHRR-NOAA imagery. Basically,
VHI, according to Kogan, is based on the three principles of environmental ecosystem
analysis: the “law of minimum; the law of tolerance; and the law of carrying capacity”
(Kogan 1990). To integrate NDVI and LST obtained over the long term, Kogan used two
indices as components to derive the general index VHI: VCI and TCI. VCI is generated
by NDVI time series analysis that measures percent change of the difference of current
NDVI and range of historical NDVI values. VCI can be applied individually in advance to
monitor impact of drought on vegetation health (Peters et al. 2002; Jiao et al. 2016), but it
is insufficient because VCI only reflects impact of moisture condition. Therefore, TCI,
which indicates the influence of thermal condition, was proposed. TCI measures the
difference of current LST and range of historical LST values. Generally, VHI is a time
series analysis of moisture and thermal impacts on vegetation. Kogan’s results demon-
strate the potential application of VHI in agricultural drought analysis. In the United
States, USDA applies this index at monthly to yearly frequencies to monitor drought and
crop health (www.star.nesdis.noaa.gov). However, application of the VHI estimation
algorithm requires sequential imagery on a weekly basis over at least 32 years of

Figure 2. False color Landsat images of the study area from January 1989 to January 2015 show
land use changes over 26 years, with the expansion of agriculture (3), shrimp fishing, and solar
salterns (4).
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observation. Thus, at coarse resolutions, or global scales, VHI seems to work well due to
the huge image databases at that scale from NOAA or MODIS, for example. Otherwise, at
moderate or high resolutions, applications of VHI are limited due to the lack of available
sequential imagery, longer revisit times, and cloud cover, especially for areas near the
Equator. As a result, there are few reports assessing influences of drought at local scales,
in part because of the absence of long-term metrological records.

This study applies the basic VHI method using Landsat imagery (TM and OLI) for a
small region within a tropical environment to assess its performance in characterizing
drought severity and monitoring vegetation stress under drought conditions. Therefore, it
contributes to an understanding of relationships between water shortages and high tem-
peratures, and their effects upon vegetation health, which are essential for monitoring
spatial and temporal impacts of drought upon local landscapes.

2. Materials and methods

2.1. Case study

District Tuy Phong is located in the Northeast of Binh Thuan Province, Southern Coast of
Vietnam (centered at 11°11′43″N, and 107°31′34″ E), covering approximately 755 km2,
with a 2015 population of around 188,000 (Figure 1). Much of this region is characterized
by a typical tropical wet and dry climate with a distinctive Monsoon summer wet season
(May–October) and a winter dry season (November–the following April). However, a

Figure 3. Flowchart of image processing and analyzing. Figure 3 should be shown in section 3.1.
Image preprocessing.
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narrow zone parallel to the coastline gives this region’s climate a distinctive arid character,
uncharacteristic of the humid tropical climate of the majority of Vietnam. During summer
months, the Southwest Monsoon brings moisture to Vietnam from the southwest, traver-
sing the Truong Son through the Central Highlands, then descends the steep eastern
slopes, likely with a rain-shadow effect reducing rainfall totals along Vietnam’s central
coast. In addition, upwelling related to the steep offshore topography near Binh Thuan’s
coastline likely creates cooler coastal currents (Jianyu et al. 2000; Chen et al. 2012),
possibly stabilizing the lower atmosphere and further reducing opportunities for local
summer rainfall. Annual rainfall here is often below 250 mm (mm) per year, concentrated
mostly in the rainy season (May–October), while annual temperature is quite high, above
30°C. During the dry season, normally extending the six months from November to the
following April, the precipitation is usually less than 50 mm per month, or even lower
than 1-mm rainfall per month during 3–4 months. Such effects intensify the semiarid
conditions prevailing over the broader region, accentuating aridity of the coastal zone, and
leading to the distinctive coastal sand dunes, xerophytes, and desertification processes that
are currently observed in this region.

One significant characteristic of Tuy Phong’s climate is the occurrence of the Xiaoman
in the end of dry season. The Xiaoman (or Soman) is the Chinese name that describes a
special weather event in the East Asian region, which lasts around 2 weeks from the end
of May to the middle of June. The Xiaoman is considered to be earliest sign of the
beginning of the rainy (stormy) season due to the significant increase of rainfall that may
occasionally lead to local flooding. The main stormy season will begin later, depending on
the location. For example, in our study area, the stormy season usually starts in the end of
August. The Xiaoman provides a very important freshwater resource for reservoirs,
supplying a seasonal reserve of freshwater for agriculture, and households, in the interval
before the rainy season starts.

During past decades, Tuy Phong has suffered several severe to extreme droughts.
Prolonged drought has led to many environmental and social impacts in this district, such
as the threat of water scarcity for agriculture and households, changes of land use (Figure 2)
and of increased wildfire risk (Pham, Binh, and Huong 2012). The 2014–2015 dry season
was the most severe recorded drought in Tuy Phong: all three of the largest local reservoirs
experienced dramatic declines; water levels in Da Ba Lake fell dramatically to 800,000
cubic meters, compared to its 4.5 million cubic meter design capacity (a decline of 90%);
local people in the communes of Vinh Hao, and Vinh Tan could not practice agriculture due
to the water shortage. In Vinh Hao commune, available water resources could serve only
600 of the 1,800 households, forcing many to pay out-of-pocket costs at the relatively high
rate of 90,000–250,000 VND (4–12 USD) per cubic meter of water.

In addition to impacts of drought, and declines in local food production, populations
suffered other difficulties, such as pressure of population, which is increasing rapidly,
doubling in just 13 years: from 90,000 in 2002 to 188,000 in 2015. Because freshwater is
not sufficient for irrigation, the local population may face risk of food shortages.
Additionally, a rapid rate of land use change with expansion of agriculture without parallel
development of management and irrigation systems will accelerate processes of land
degradation. Then, when drought happens, such processes increase rates of desertification,
consequently degrading arable lands. While there are many studies of Binh Thuan
province (Gobin et al. 2012; Tran, Hoa, Dinh, and Thanh 2015), and of neighboring
districts – Bac Binh (Le and Dao 2015), there is little research, or reference data that
provides insight on local drought, its effects upon the entire province, specifically for Tuy
Phong, and how the local population of Tuy Phong has been reacting to this hazard. This
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present research can develop knowledge about role of drought episodes in promoting local
desertification processes, and improving local knowledge to combat effects of drought.
Our review of French, English, and Vietnamese research reveals only sparse meteorolo-
gical and climatic records for this region, as might be expected for a locality peripheral to
the nation’s principal population, industrial, and agricultural concerns. Therefore, satellite
image archives provide one of the few resources that can provide accessibility, continuity,
and consistency for an inquiry into the nature and impacts of changing drought in this
region.

2.2. Data resources

Available Landsat images (Path 123, Row 52) with less than 10% cloud cover, entirely
covering the district, were selected and downloaded from GLOVIS (http://glovis.usgs.
gov) for both dry and wet seasons of 1989, 1994, 1999, 2004, 2009, 2013, 2014, 2015,
and 2016. Though all images were processed at Level 1, only 3 bands of each image were
investigated in this research (red band, near-infrared (NIR) band, and the thermal band).
Because of the 27-year interval, images from 1989–2009 were acquired by Landsat 5 TM,
and others from Landsat 8 OLI-TIRS. Although Landsat 7 ETM+ imagery is available for
this study site, to minimize the number of sensors employed for this study, only these two
datasets were used here. We used bands 3–4-6 for Landsat 5 TM, and bands 4–5-10 for
Landsat 8, as red-NIR-thermal, respectively. Thermal bands for both systems have coarser
spatial resolutions than do the two other bands; at Level 1 processing, they were
resampled by Cubic Convolution to match the 30 m pixel size as the red and NIR bands.

Otherwise, for validation, MODIS data also were collected. As mentioned on its
original website of NASA, MODIS (Moderate Resolution Imaging Spectroradiometer)
is “a key instrument aboard the Terra Satellite, and the Aqua Satellite (https://modis.gsfc.
nasa.gov/about/)”. These two satellites form the core of the Earth Observation Missions,
which are also known as the EOS AM-1 (morning acquisition), and the EOS PM-1
(afternoon acquisition). MODIS data are acquired globally every 1 or 2 days in 36 spectral
bands including visual spectral region, and the thermal bands at 250-m, 500-m, and 1-km
resolution. Thus, applications of MODIS products are widespread in land assessment,
ocean studies, atmospheric studies, environmental protection and management.
Additionally, MODIS data can form the basis for accurate validation, and monitoring
models of global variation of surface temperature, and vegetation dynamics. Other data
products, which are commonly used for modeling global variation of temperature and
vegetation, are derived from the Advance Very High Resolution Radiometer (AVHRR),
and the Visible Infrared Imaging Radiometer Suite (VIIRS) at 4-km resolution. However,
because of the disadvantages of coarser resolution of the VIIRS, and the lack of cloud-free
AVHRR data, for our study area, we investigated MODIS Terra products as prospective
validation for our study.

Because of the large number of MODIS images, we used 8-day Terra composite for
Surface Temperature data, and 16-day Terra composite for vegetation index – NDVI,
respectively. Our time range for data is dry seasons (November to April) from 2013 to
2016, approximately, 24 NDVI images, and 48 LST per season. Table 1 outlines the
overall nature of Terra products as reference at https://lpdaac.usgs.gov/dataset_discovery/
modis/modis_products_table.
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3. Methodology

3.1. Image preprocessing

Because images were collected from different sensors (Landsat 5 TM, and Landsat 8
OLI), in order to obtain values of NDVI and LST, two sets of algorithms were applied to
derive at-sensor reflectance (or Top of Atmospheric reflectance – TOA) of three bands:
Red, NIR, and Thermal. Following the Landsat user guides for TM and OLI, the
processing procedure for these images is similar, which requires several steps: co-regis-
tration, radiometric calibration, atmospheric correction, sun angle correction, topography,
and normalization. Algorithms can be generally established by converting the digital
number of each pixel to radiance, then from radiance to surface reflectance. Figure 3
shows the overall procedure to achieve final results.

3.2. NDVI calculation

During the early 1980s, the NDVI was defined and developed by scientists at NASA’s
Goddard Space Flight Center, Greenbelt, Md. for monitoring vegetation health based on
the difference between absorption and reflectance of green leaves of red and near-infrared
band of visible light, respectively (Tucker 1979). The value of NDVI of each pixel was
estimated by dividing the reflectance difference by the sum between NIR and Red band;
NIR ranges from 0.7 to 1.1 µm, while Red ranges from 0.58 to 0.68 µm. Normally, values
of NDVI range from −1 to +1, with +1 indicating healthy vegetation cover, and lower
values representing stressed vegetation, and negative values representing open water, or
high moisture content respectively. The higher NDVI values are, the healthier vegetation
is. The range value of NDVI in wet seasons is much wider than in dry seasons.

Table 1. MODIS data description.

ID of
product Name Data description

Resolution
(m)

MOD13A2 MODIS Vegetation
Indices 16-Day

A gridded level-3 product in the Sinusoidal
projection. Vegetation indices such as NDVI or
Enhance Vegetation Index (EVI) was
calculated by averaging NDVI or EVI values
generated for each scene during a 16-day period

1000

MOD11A2 MODIS LST and
Emissivity 8-Day

The level-3 MODIS global Land Surface
Temperature (LST) and Emissivity 8-day
data are average values of clear- sky LSTs
during an 8-day period

1000

MOD13A3 MODIS Vegetation
Indices Monthly

A gridded level-3 product in the Sinusoidal
projection. In generating this monthly
product, the algorithm ingests all the 16-day
1-kilometer products that overlap the month
and employs a weighted temporal average if
data is cloud free, or a maximum value in
case of clouds

1000

MOD11C3 MODIS LST and
Emissivity monthly
(Version 004)

The products provide per-pixel temperature
and emissivity values in a sequence of
swath-based to grid-based global products,
and configured on a 0.05ºlatitude/longitude
climate modeling grid (CMG)

5600
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NDVI ¼ NIR� RED

NIRþ RED
(1)

In addition, NDVI also was used to extract Land Surface Emissivity (LSE), which is
an adjustable parameter in correcting Land Surface Temperature in the next step. Values of
LSE were calculated based on the proportion of vegetation (Sobrino, Jiménez-Muñoz, and
Paolini 2004; Jiménez-Muñoz et al. 2014).

LSE ¼ 0:004Pv þ 0:986 (2)

Whereas, Pv is the proportion of vegetation, based on a normalized NDVI value of
each pixel.

Pv ¼ NDVI� NDVImin

NDVImax � NDVImin

� �2

(3)

3.3. Retrieval of LST

Land Surface Temperature (LST) was derived from the Top of Atmosphere Brightness
Temperature (T) as formula (4) where K1 and K2 are Thermal conversion constants for
band 6 for Landsat 5 TM and band 10 for Landsat 8 OLI (10.8 µm), and Lλ is spectral
radiance.

BT ¼ K2=ln
K1

Lλ
þ 1

� �
(4)

There are algorithms applied to transfer BT for LST, such as “single channel model”
(Sobrino, Jiménez-Muñoz, and Paolini 2004), “split window” (Yu, Guo, and Zhaocong
2014) or “mono window” (Wang et al. 2015). In this case study, the “single channel
model” was investigated in conducting LST (unit: Celsius degree).

LST ¼ BT= 1þ λ� E=ρð Þ � ln LSEð Þ½ � � 273:15; (5)

Whereas, BT is Brightness Temperature (4) (Kevin) λ is the band wavelength (μm);
ρ = 14380; LSE is Land Surface Emissivity (2). Here, ρ = h*c/ς, with h is Plank’s
constant (6.626*10−34Js), c is light velocity (3*108 m/s) and ς is the Boltzmann constant
(1.38 *10–23 J/K).

3.4. VHI estimation

The VHI was established by the contribution of two indices derived from NDVI and LST
for all observed years (27 years from 1989 to 2016 in this case). Two indices are related to
moisture conditions – Vegetation Condition Index, and thermal conditions – Temperature
Condition Index (Kogan 1995). The equations are below:

VCI ¼ 100� NDVI� NDVImin

NDVImax � NDVImin
(6)

174 H.T. Tran et al.



TCI ¼ 100� LSTmax � LST

LSTmax � LSTmin
(7)

VHI ¼ a� VCIþ 1� að ÞTCI (8)

While, NDVI: value of NDVI at time of observation
NDVImin = 27-year absolute maximum NDVI
NDVImax = 27-year absolute minimum NDVI
LST: value of LST at time of observation
LSTmax = 27-year absolute maximum LST
LSTmin = 27-year absolute minimum LST
“a” is the coefficient of different weighting between VCI and TCI. The value of “a”

depends on differencing conditions of moisture and temperature. In case of unknown
moisture conditions, “a” is set to 0.5, which signifies that VCI and TCI are equally
weighted for VHI estimation.

Values of VHI rank from 0 to 100 indicating extreme stress of vegetation condition to
healthy vegetation. When drought happens, its severity can be categorized from extreme
to no drought according to VHI values (see Table 2).

3.5. MODIS data processing

Methods to process MODIS imagery are similar to the Landsat procedures for generating
the three main indexes: VCI, TCI, and VHI. Maximum and minimum values of NDVI,
and LST were statistical values from the monthly values retrieved from monthly compo-
site products starting from February 2000. One of the difficulties processing composite
images of surface temperature from MODIS is the presence of gaps from prevailing cloud
cover. Figure 4 shows gaps between pixels on the 22 March image (on the right), and 1
November 2015 image (on the left). When the gap is too large, that image will be
removed from the procedure, but retained when the gap is small enough (missing fewer
pixels, such as 5 to10 pixels, for example), in such instances, we applied nearest neighbor
interpolation to generate values of the missing pixels.

4. Results and discussion

4.1. Correlation between NDVI and LST

A linear regression model was constructed to survey the relationship between LST and
NDVI across dry and wet seasons. Results demonstrate that the various distributions of
LST–NDVI correlations depend on seasonal conditions. Figure 5 shows that in wet season
(September), there were more variables compared to dry season (January and March), and

Table 2. Categorizing drought severity upon VHI values (Kogan 1995; Le Hung and Hoai 2015).

No VHI value Drought severity

1 0–10 Extreme drought
2 10–20 Severe drought
3 20–30 Moderate drought
4 30–40 Mid drought
5 >40 No drought
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the slope of the fitted line also increased across the seasonal transition from dry to wet. R2,
on the other side, dropped from near 0.8 to 0.58 (from January to September), which
means that in the wet season, due to increases of moisture and air temperature, relation-
ships between LST and NDVI were not significant, so the vegetation responses (NDVI)
are only loosely related to thermal conditions (LST). Conversely, during the dry season,
temperature can be effective in explaining and in predicting the stress of vegetation health,
and it can potentially estimate effects of vegetation drought when temperature is high, and
rainfall is low.

Overall, there was a significant negative relationship between LST and NDVI. This
result is because likely Tuy Phong is located at 11°N (a lower latitude), where weather is
hot and humid. Soil and atmospheric moisture have distinctive impacts on the response of
vegetation to changes in temperature (Sun and Kafatos 2007).

Other research investigating the relationships between LST and NDVI also showed
that, at higher latitudes, the slope will gradually change from negative to positive (Karnieli

Figure 4. MODIS surface temperature captured on 03/22/2015, and 11/01/2015. The white color
inside the border shows gaps due to missing pixels of composite products. Figure 4 should be shown
in section 3.5. MODIS data processing

Figure 5. LST–NDVI correlations during dry to wet season, 2015 (from left to right: January,
March and September). Note: there is a significant increase of the slope from −20.74 (Jan) to −5.16
(Sep). There are outliers in the March graph, caused by clouds (NDVI values can be affected by
some conditions such as clouds, snow, or ice).
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et al. 2010). The spatial relationships between LST and NDVI are represented in Figure 6.
During the dry season, density of vegetation declined, and temperatures were very high,
and during the middle dry season, the vast majority of the area had surface temperatures
higher than 31°C (red color). During wet season, vegetation was denser, the surface
temperature was down, but varied. There was also a higher temperature even in highly
dense vegetated areas.

4.2. Spatial distribution of drought severity

Based on statistical data of 27 years of NDVI and LST in both dry and wet seasons, the
maximum and minimum values of both LST and NDVI were selected (see Table 3) for the
three recent dry seasons from 2013 to 2016, and for calculation of VCI, and TCI. Monthly

Figure 6. Simply classified NDVI (top) and LST (bottom) in January, March and September in
2015 (from left to right). Throughout a year, coastal areas, where there are low NDVI vales, and
high temperatures, are potentially impacted by drought.

Table 3. Selected values of NDVI and LST used to calculate VCI and TCI.

Type of values 2013–2014 2014–2015 2015–2016

NDVI Mean value Mean value Mean value
NDVImin −0.61 −0.92 −0.92
NDVImax 0.84 0.84 0.86
LST (Celsius degree) Mean value Mean value Mean value
LSTmax 42.48 42.48 42.48
LSTmin 4.48 4.48 4.48
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values of NDVI and LST in both dry and rainy seasons of each year give a comprehensive
sense of the wide range of values and variations of both NDVI and LST (Figure 8). Monthly
records during dry season in 2014 and 2015 showed the highest temperatures, which were
over 42°C, while the lowest temperatures were recorded in mountainous area in 1994. The
values of NDVI were difficult to obtain because of fluctuations of vegetation responses each
month. Generally, high values of NDVI were recorded in wet seasons, while lowest values
were in dry seasons. Figure 7 is the graph of monthly mean NDVI and LST values from
November 2013 to April 2016, which show increasing trend of temperatures from early to end
of season, and the negative response (declination) of vegetation indexes. In order to estimate
VHI, the “a” coefficient selected as 0.5, equally contributing to VCI and TCI. Table 3 shows
selected statistical values of NDVI and LST for the three recent dry seasons.

Maps shown on Figure 7 represent spatial distributions of VCI, TCI and VHI.
Values of VCI and TCI range from 0 to 100, revealing the stress of reduced water
availability, and temperature increases upon vegetation during dry season (the smaller
the values are, the greater the stress upon vegetation health is). The VHI maps were
categorized simply into five levels of drought severity, from no drought to extreme
(green to red, respectively). During dry season 2014–2015, approximately two-thirds
of Tuy Phong district was under drought condition (from mid-to-severe drought –
Figure 9). During the 2015–2016 dry season, the drought-affected areas declined,
severe drought areas increased, which means that areas vulnerable to drought
increased, and droughts were more intensive. Furthermore, drought impacts were
especially serious in communes near the coast (in the East), such as Hoa Phu, Binh
Thanh, Phong Phu, Phu Lac, Vinh Hao. Vinh Hao commune was the most severely
influenced area. We did not observe any extension of agricultural drought into the
beginning of wet seasons because of the regular occurrence of the Xiaoman, marking
the start of growing season.

4.3. MODIS–VHI validation

The six maps of drought severity that were generated by the VHI values from MODIS and
Landsat data of three dry seasons 2013–2014, 2014–2015, and 2015–2016 (see
Figure 10), illustrate the same intensification of drought-influenced areas. And the
2014–2015 dry season is the period when drought occurred, and affected the largest
area, especially areas near the coast. In addition, that period was also recorded as severe,
and widespread drought in local, and governmental reports. Table 4 shows selected values
of NDVI and LST extracted from MODIS data for calculating the VHI.

Nevertheless, for the 2015–2016 dry season, although MODIS imagery depicted a
significant declining pattern of drought severity, we observed a slight decrease in affected

Table 4. Selected values of NDVI and LST for MODIS data.

Types of values 2013–2014 2014–2015 2015–2016

NDVI Mean value Mean value Mean value
NDVImin −0.19 −0.19 −0.2
NDVImax 0.94 0.98 0.98
LST (Celsius degree) Mean value Mean value Mean value
LSTmin 46.63 46.79 48.05
LSTmax 15.87 15.87 15.87
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area comparing to the 2014–2015 from the Landsat data. That difference arises from some
missing MODIS temperature data due to the big gap of pixels, and accuracy can be
affected by the nearest neighbor resampling procedure. Otherwise, the MODIS maps only
show general patterns of drought effects, which are moderate, and mid drought. However,

Figure 7. From upper to lower: Vegetation Condition Index, Temperature Condition Index and
Vegetation Health Index of three dry seasons (November to April), from left to right: 2013–2014,
2014–2015, and 2015–2016. All show increases of moisture and thermal stress in vegetation near
the coast of the study area, where land is used for crop production. The combination of those
stresses accelerated drought severity, and consequently increased to risks of agricultural losses.
Figure 7 should be shown in the section 4.2. Spatial distribution of drought severity.
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Landsat data permits not only assessment of areas at severe drought level (orange color in
the map), but also assessment of drought patterns (both severity and duration) monitored
with identification of specific location. Thus, applying Landsat data is an appropriate
method to monitor drought vulnerability in small and remote areas.

Figure 8. Graphs of mean NDVI (green) and mean LST(red) during three recent dry seasons.

Figure 9. Areas influenced by drought within vulnerable categories.

180 H.T. Tran et al.



Figure 10. Maps of drought severity upon the VHI values of Landsat OLI, and MODIS data.
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5. Conclusion

This study examined drought conditions within a relatively small rural region of the
Central Coast of Vietnam. This region, within Binh Thuan Province, has a distinctive
climate, characterized by pronounced aridity adjacent to the coastline, but diminishing
with increasing distance inland. Because this region lacks the history of climate records
that would normally support investigation of recent climatic trends, analysis of sequential
multispectral satellite imagery provides an opportunity to both document impacts of recent
drought conditions, and to highlight the value of such imagery in remote regions lacking
suitable weather and climate records.

Our results confirm that data collected at relatively fine spatial detail, acquired at
relatively long temporal intervals, such as LANDSAT data, are useful for recording and
monitoring vegetation health. A further analysis to cross-validate these findings with
MODIS data, which are acquired more frequently, but at coarser resolution, shows the
same patterns that we observed from Landsat data of our study area.

However, it is necessary to take into account additional parameters to indicate drought
severity, such as water capacity and rainfall, not used in this study. Finally, studies such as
this one need to consider local policies, management, and carrying capacity. These factors
play important roles in understanding behavior of local people when drought occurs.
Because drought is very closely linked to processes of land degradation, and desertifica-
tion, land that is heavily impacted by drought, without local management, will be
gradually degraded. The recent Belgian-Vietnamese project (for a larger area within our
region) (Gobin et al. 2012) used meteorological data to consider global climate change in
its development of a climate change model that involved drought as a climatic abnorm-
ality. Testing that model using recent weather records can be used to validate our results.
We expect to investigate applicability of our remote sensing approach to study drought
vulnerability for the entire province.
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