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Abstract 
In many medical studies, patients may experience several events. The times between consecutive 
events (gap times) are often of interest and lead to problems that have received much attention 
recently. In this work we consider a new nonparametric estimator of the bivariate distribution 
function for censored gap times. We explore the behaviour of the estimator through simulations. 
An illustration through real data analysis is included.  
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1. Introduction 
In longitudinal studies of disease, patients can experience several events through a follow-up 
period. In these studies, the sequentially ordered events (gap times) are often of interest. The 
events of concern may be of the same nature (e.g. cancer patients may experience recurrent 
disease episodes) or represent different states in the disease process (e.g. alive and disease-free, 
alive with recurrence and dead). If the events are of the same nature this are usually referred as 
recurrent event, whereas if they represent different states (i.e. multi-state models) they are 
usually modelled thought their intensity functions [1].  

Let ( )1 2,T T  be a pair of gap times of successive events, which are observed subjected to 
random right-censoring. Let C be the right-censoring variable, assumed to be independent of 
( )1 2,T T  and let 

1 2Y T T= +  be the total time. Because of this, we only observe 

( )1 2 1 2, , , ,  1i i i iT T i n∆ ∆ ≤ ≤ , which are n independent replications of ( )1 2 1 2, , ,T T ∆ ∆ , where 

1 1T T C= ∧ , ( )1 1T C∆ = ≤I , and 2 2 2T T C= ∧ , ( )2 2 2T C∆ = ≤I  with ( ) ( )2 1 1C C T T C= − ≤I  the 

censoring variable of the second gap time. Define Y Y C= ∧  and let 1, ,   F F G  and H  denote the 

distribution functions of 1,  ,  T Y C  and Y , respectively. Since 1T  and C are independent, the 

Kaplan-Meier product-limit estimator based on the pairs ( )1 1,i iT ∆ ’s , consistently estimates the 

distribution 1F . Similarly, the distribution of the total time may be consistently estimated by the 

Kaplan-Meier estimator based on ( )1 2 2,i i iT T+ ∆ ’s. Because 2T  and 2C  will be in general 

dependent, the estimation of the marginal distribution for the second gap time is not a simple 
issue. The same applies to the bivariate distribution function ( ) ( )12 1 2, ,F x y T x T y= ≤ ≤P .This 
issue have received much attention recently. Among others it was investigated by Wang and 
Wells [9], Lin et al. [2], Wang and Chang [8], Peña et al. [4], van der Laan et al. [6] or van 
Keilegom [7]. 

In this work we present a simple estimator for the bivariate distribution function of the 
gap times. This estimator is somehow related (although not equal) to that proposed in [2]. The 
idea behind the estimator is using the Kaplan-Meier estimator pertaining to the distribution of 
the total time to weight the bivariate data. Some related problems as estimation of the marginal 
distribution of the second gap time will be discussed. Simulation studies were conducted to 



assess the properties of the proposed estimator. We applied the proposed methods to a study of 
colon cancer data [3]. 

 
 

2. The estimator 
Introduce  
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∏ ,  is the Kaplan-Meier weight attached to iY  when 

estimating the marginal distribution of Y  from ( )2,i iY ∆ ’s, and for which the ranks of the 

censored iY ’s, iR , are higher than those for uncensored values in the case of ties. 
This estimator is consistent (shown below) whenever x y+  is smaller than the upper bound of 
the support of the censoring time. From (1) we can obtain an estimator for the marginal 
distribution of the second gap time, ( ) ( )2 2F y T y= ≤P , namely 

    ( ) ( ) ( )2 12 2
1

,
n

ii
i

F y F y W T y
=

= ∞ = ≤∑ I     (2) 

Note that estimator (2) is not the Kaplan-Meier estimator based on ( )2 2,i iT ∆ ’s. This is because 

the weights iW  are based on the iY -ranks rather than on the 2iT -ranks. Indeed, since 2T  and 2C  
are expected to be dependent, the ordinary Kaplan-Meier estimator of 2F  will be in general 
inconsistent.  

Let  Fτ  be the upper bound of the support of F , an similarly define Gτ  and Hτ . From 
the independence assumption, we have H F Gτ τ τ= ∧ . Let A be the (possibly empty) set of atoms 
of Y . We have the following result. 
 
 
Theorem 1 If F  and G have no jumps in common, we have with probability 1 and in the mean 

( ) ( ) ( ) ( )12 1 2 1 2 1 2 1 2lim , , , , , ,H H Hn
F x y T x T y T T A T x T y T Tτ τ τ

→∞
= ≤ ≤ + ≤ + ∈ ≤ ≤ + =P I P  

and  
   ( ) ( ) ( ) ( )2 2 1 2 2 1 2lim , , ,H H Hn

F y T y T T A T y T Tτ τ τ
→∞

= ≤ + ≤ + ∈ ≤ + =P I P  

Proof. Use Stute [5]. 
 
Note that if any of the following conditions hold: 
(a)  H Aτ ∈ , or  
(b) ( )1 2 1 2, , 0HT x T y T T τ≤ ≤ + = =P  

we have from Theorem 1 that  ( ) ( )12 1 2 1 2lim , , , Hn
F x y T x T y T T τ

→∞
= ≤ ≤ + ≤P . Condition (b) holds in 

particular if Y is continuous. Then three different situations are possible: 
(A) If F Gτ τ<  (or if F Gτ τ= = ∞ ), than we get consistency for (1) for any ( ),x y . 
(B) If G Fτ τ< , then H Fτ τ< and consistency is only ensured for Hx y τ+ < (or for Hx y τ+ ≤  
provided that (a) or (b) above hold). 
(C) If F Gτ τ= < ∞  then consistency follows if (a) or (b) is fulfilled. 
The estimator (1) is somehow related (but not equal) to that proposed in Lin et al. [2]. In fact, in 
the next Section we report a simulation study to compare both estimators. The estimator 
proposed in Lin’s paper is expressed as  
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where  
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and where G stands for the Kaplan-Meier estimator based on the ( )2,1i iY − ∆ ’s. The estimator 

(1) proposed here can also be written as ( ) ( ) ( )12 , , 0 ,F x y H x H x y= −  where 
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3. Simulation study 
In this section, we compare by simulations the new estimator, ( )12 ,F x y ,  for the bivariate 
distribution function to that proposed in Lin et al. [2], ( )12 ,F x y . The simulated scenario is the 
same as that described in Lin’s paper (see their Section 3). In this scenario, the gap times were 
generated from Gumbel’s bivariate distribution function 

( ) ( ) ( ) ( ){ } ( ){ }12 1 2 1 2, 1 1 1F x y F x F y F x F yθ⎡ ⎤= + − −⎣ ⎦  

where the marginal distribution functions 1F  and 2F  are exponential with rate parameter 1. The 
parameter θ  was set to 0 for simulating independent gap times, and also to 1, corresponding to 
0.25 correlation between the two gap times. The censoring times were generated from a uniform 
according to model ( )0,3U . For each simulation 10000 samples were generated with sample 
size of 100. Other sample sizes (n=50) and level of censoring (according to model ( )0,4U ) 
were considered although the results are not shown here. For each setting we computed the 
mean and standard deviations for the bivariate estimator ( )12 ,F x y  at pairs of time points ( ),x y , 
where x  and y  takes values 0.2231, 0.5108, 0.9163 and 1.6094, corresponding to marginal 
survival probabilities of 0.8, 0.6, 0.4 and 0.2. The true values of ( )12 ,F x y  are reported in Table 
1. 

Table 2 reports the mean estimate along with the corresponding standard deviation. As 
it can be seen, the bias of the bivariate distribution estimator achieved reasonable levels. The 
variance increases at the right tail of the bivariate distribution, where the censoring effects are 
stronger. We also computed the bias and the deviation of the estimator proposed in Lin et al. 
[2]. The bias turned out to be of the same order as that of (1). Table 3 reports the efficiency of 

( )12 ,F x y  relative to ( )12 ,F x y . This efficiency was measured through the squared quotient of 

standard deviations. We see that ( )12 ,F x y  was always more efficient than ( )12 ,F x y  except for 
a few cases corresponding to small x and large y. 
 

 0θ =   1θ =  

x \ y 0.2231 0.5108 0.9163 1.6094  0.2231 0.5108 0.9163 1.6094 

0.0400 0.0800 0.1200 0.1600  0.0656 0.1184 0.1584 0.1856 

0.0800 0.1600 0.2400 0.3200  0.1184 0.2176 0.2976 0.3584 

0.1200 0.2400 0.3600 0.4800  0.1584 0.2976 0.4176 0.5184 

0.2231 
0.5108 
0.9163 
1.6094 

0.1600 0.3200 0.4800 0.6400  0.1856 0.3584 0.5184 0.6656 

Table 1. True values of the bivariate distribution of the gap times under the simulated model 
 



 
 0θ =   1θ =  
x \ y 0.2231 0.5108 0.9163 1.6094  0.2231 0.5108 0.9163 1.6094 

0.0398 
(.0204) 

0.0801 
(.0287) 

0.1209 
(.0355) 

0.1604 
(.0435) 

 0.0652 
(.0254) 

0.1176 
(.0340) 

0.1580 
(.0400) 

0.1853 
(.0444) 

0.0801 
(.0287) 

0.1600 
(.0399) 

0.2404 
(.0490) 

0.3203 
(.0584) 

 0.1184 
(.0344) 

0.2170 
(.0454) 

0.2978 
(.0520) 

0.3577 
(.0596) 

0.1203 
(.0361) 

0.2396 
(.0495) 

0.3598 
(.0580) 

0.4798 
(.0679) 

 0.1587 
(.0397) 

0.2985 
(.0518) 

0.4179 
(.0598) 

0.5176 
(.0668) 

0.2231 
 
0.5108 
 
0.9163 
 
1.6094 

0.1599 
(.0434) 

0.3197 
(.0579) 

0.4805 
(.0680) 

0.6345 
(.0786) 

 0.1858 
(.0439) 

0.3587 
(.0582) 

0.5176 
(.0669) 

0.6581 
(.0773) 

Table 2. Mean value and standard deviation of ( )12 ,F x y  along 10,000 simulated samples. 

 
 0θ =   1θ =  

x \ y 0.2231 0.5108 0.9163 1.6094  0.2231 0.5108 0.9163 1.6094 

0.7867 0.8627 0.9010 0.9819  0.8850 0.9383 1.0101 1.1229 

0.7703 0.8076 0.8452 0.9380  0.8415 0.8983 0.9590 1.0487 

0.7318 0.7758 0.8086 0.8351  0.7749 0.8317 0.8731 0.8778 

0.2231 
0.5108 
0.9163 
1.6094 

0.6705 0.6783 0.6355 0.6876  0.6966 0.6854 0.6608 0.6312 

Table 3. Efficiency of ( )12 ,F x y  relative to ( )12 ,F x y  along the 10,000 simulated samples. 
 
 
 
4. A real data example 
Due to large number of peoples affected by cancer of colon, there is much demand for 
information on this disease. In an large percentage of the patients, the diagnosis is made at a 
sufficiently early stage when all apparent disease tissue can be surgically removed. 
Unfortunately, some of these patients have residual cancer, which leads to recurrence of disease 
and death (in some cases). Cancer patients who have experienced a recurrence are known to be 
at a substantially higher risk of mortality. For the colon cancer data, we may consider the 
recurrence as an associated state of risk, and use the three-state multi-state model with states 
“alive and disease-free”, “alive with recurrence” and “death”. Under gap times framework, 1T  is 
the time from randomization to cancer recurrence and 2T  is the time from cancer recurrence to 
death. 
 In a large clinical trial on Duke’s stage III patients (see Moertel et al. [3] for more 
details), subjects underwent a curative surgery for colo-rectal cancer.  From the total of 929 
patients, 467 developed recurrence and among these 413 died. In colo-rectal cancer, as in other 
cancer diseases, is important to make long-terms predictions and to identify possible times of 
diagnosis (threshold values). In such cases, it is very important to obtain good estimates for the 
survival probabilities (for the bivariate distribution and for the marginal distributions of the gap 
times).  

Table 4 presents the estimates for the joint distribution function using estimator (1) for 
several values of ( ),x y (the x values are the percentiles 5%, 25% and 50% of the first gap time). 
Figure 1 illustrate the differences between the Kaplan-Meier estimator for the marginal 
distribution of the second gap time (based on the ( )2 2,i iT ∆ ’s) and estimator (2). The range of 

time has been restricted to 550 days to emphasize the differences between the two estimators. 
Differences between the two curves can be explained by the (possible) failure of the 



independence assumption, necessary to obtain consistency for the Kaplan-Meier estimator. 
Estimates for the two marginal distribution functions (using the Kaplan-Meier product-limit for 
the first gap time) can be used to compare the survival in two or more groups/treatments (results 
not shown). 

 
 

x \ y 20 100 200 500 1200 

56 0.0067 0.0533 0.1333 0.2200 0.2200 

346 0.0067 0.1733 0.4934 0.8536 0.8536 

1531 0.0133 0.2133 0.5401 0.9136 0.9136 

Table 4: Estimates of the joint distribution function, ( )12 ,F x y , for the colon cancer study. 
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Figure 1: Estimates of the marginal distribution function of the second gap time using  ( )2F y  
(solid line) and using Kaplan-Meier estimator (dashed line). Colon cancer study. 

 
 
 
5. Conclusions 
In this paper we propose a nonparametric estimator of the bivariate distribution function for 
censored gap times. In contrast to other existing methods, the introduced estimate is a proper 
distribution function, in the sense that it attaches positive mass to each observation. We use this 
estimator to introduce also an estimator for the marginal distribution of the second gap time. 
Simulations showed that the new estimator is virtually unbiased and that it may achieve 
efficiency levels clearly above those corresponding to previous proposals. For illustration 
purposes we used a real dataset from a clinical trail for colon cancer. 
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