
Scaling High-Quality Pairwise Link-Based Similarity
Retrieval on Billion-Edge Graphs
(Full version)

WEIREN YU, University of Warwick, UK
JULIE MCCANN, Imperial College, UK
CHENGYUAN ZHANG, Hunan University, China
HAKAN FERHATOSMANOGLU, University of Warwick, UK

SimRank is an attractive link-based similarity measure, used in fertile fields of Web search and sociometry.
However, the existing deterministic method by Kusumoto et al. [25] for retrieving SimRank does not always
produce high-quality similarity results, as it fails to accurately obtain diagonal correction matrix D. Moreover,
SimRank has a “connectivity trait” problem: increasing the number of paths between a pair of nodes would
decrease its similarity score. The best-known remedy, SimRank++ [1], cannot completely fix this problem,
since its score would still be zero if there are no common in-neighbors between two nodes.

In this article, we study fast high-quality link-based similarity search on billion-scale graphs. (1) We
first devise a “varied-D” method to accurately compute SimRank in linear memory. We also aggregate
duplicate computations, which reduces the time of [25] from quadratic to linear in the number of iterations.
(2) We propose a novel “cosine-based” SimRank model to circumvent the “connectivity trait” problem. (3) To
substantially speed up the partial-pairs “cosine-based” SimRank search on large graphs, we devise an efficient
dimensionality reduction algorithm, PSR#, with guaranteed accuracy. (4) We give mathematical insights to the
semantic difference between SimRank and its variant, and correct an argument in [25] that “if D is replaced
by a scaled identity matrix (1 − γ)I , their top-K rankings will not be affected much”. (5) We propose a novel
method that can accurately convert from Li et al.’s SimRank S̃ to Jeh and Widom’s SimRank S . (6) We propose
GSR#, a generalisation of our “cosine-based” SimRank model, to quantify pairwise similarities across two
distinct graphs, unlike SimRank that would assess nodes across two graphs as completely dissimilar. Extensive
experiments on various datasets demonstrate the superiority of our proposed approaches in terms of high
search quality, computational efficiency, accuracy, and scalability on billion-edge graphs.

CCS Concepts: • Information systems → Web searching and information discovery; Retrieval models and
ranking.

ACM Reference Format:
Weiren Yu, JulieMcCann, Chengyuan Zhang, andHakan Ferhatosmanoglu. 2021. ScalingHigh-Quality Pairwise
Link-Based Similarity Retrieval on Billion-Edge Graphs (Full version).ACMTransactions on Information Systems
1, 1 (November 2021), 47 pages. https://doi.org/XXXX/XXXXXXXX

Authors’ addresses: Weiren Yu, University of Warwick, Coventry, UK, weiren.yu@warwick.ac.uk; Julie McCann, Imperial
College, Department of Computing, London, UK, j.mccann@imperial.ac.uk; Chengyuan Zhang, Hunan University, School
of Computer Science and Engineering, Changsha, China, cyzhang@csu.edu.cn; Hakan Ferhatosmanoglu, University of
Warwick, Coventry, UK, hakan.f@warwick.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1046-8188/2021/11-ART $15.00
https://doi.org/XXXX/XXXXXXXX

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

https://doi.org/XXXX/XXXXXXXX
https://doi.org/XXXX/XXXXXXXX

2 Yu et al.

1 INTRODUCTION
The Web today is a massive, self-organised, and hyperlinked network. These salient features have
brought striking challenges to efficient web data management, thus calling for new search abilities
to extract meaningful knowledge automatically from the gigantic Web. Link-based similarity search
is a fundamental tool to quantify node-to-node relationships based on topologies [27], with a wide
spectrum of successful real applications, e.g., link prediction [5, 31], collaborative filtering [10, 12],
community detection [23, 45], co-citation analysis [13, 32], and automatic image annotation [18].
SimRank, conceived by Jeh and Widom [19], is one of the most influential similarity measures.

The central theme underpinning SimRank is a simple recursion that “two distinct nodes are assessed
as similar if they are in-linked from similar nodes”, together with the base case that “each node
is maximally similar to itself”. Mathematically, given a digraph G = (V , E) with |V | nodes and |E |
edges, let N −a = {x ∈ V |(x,a) ∈ E} be the in-neighbor set of node a, and |N −a | be the cardinality of
the set N −a . Then, the SimRank similarity between nodes a and b is defined by1

s(a,b) =

{
1 (a = b)

γ ·

∑
(i , j)∈N−a ×N

−
b
s(i , j)

|N −a | |N −b |
(a , b)

(1)

where γ ∈ (0, 1) is a decay factor. Generally, γ = 0.6 [34] or 0.8 [19], which penalizes long paths
relative to short ones.

In contrast to other link-based similarity models, SimRank has the following prominent features:
(a) It takes a concise form that captures both direct and indirect neighbors recursively, unlike
Bibliographic Coupling [17] andCo-citation [38] that focus only on direct neighbors. (b) It considers
structural equivalence of two nodes, whereas Personalized PageRank [20, 24] focuses on reachability
from every node to a query. Thus, SimRank has attracted increasing attention recently [6, 14, 34, 54].

1.1 Motivation: UndesirableQuality of SimRank Search
Despite much effort devoted to fast computation of SimRank similarities (e.g., [9, 25, 26, 34, 47]),
the quality of SimRank search is still less desirable, due to the following two reasons:
(1) Superfluous Diagonal Correction Error. One of the most efficient deterministic methods,
proposed by Kusumoto et al. [25], is based on the following “linearized SimRank formula”:

s(a,b) = e⊤a Deb + γ (Pea)
⊤D(Peb) + γ

2(P2ea)
⊤
D(P2eb) + · · · (2)

where D is a precomputed diagonal correction matrix, ea is a unit vector with a 1 in the a-th entry,
and P is the column normalized adjacency matrix, i.e., Pa,b = 1/|N −b | if (a,b) ∈ E; and 0 otherwise.

According to [25], before Eq.(2) is computed, D requires to be determined in advance. However,
it is too difficult to compute the exact D (not to mention within linear memory) since SimRank
results have a recursive impact on D. Note that even Kusumoto et al. [25] have not obtained the
exact D, but simply approximated D by D̃ := (1 − γ)I . Consequently, the computing method by
Kusumoto et al. [25] implies the diagonal correction error as follows:

ϵdiag := |s(a,b) − sD̃ (a,b)|, (3)

where s(a,b) is the exact solution, and sD̃ (a,b) is the estimated similarity when D is replaced by D̃
in Eq.(2). After D is estimated, [25] uses an iterative method that sums up only the first k terms of
series sD̃ (a,b), denoted as s(k)

D̃
(a,b). This yields another type of error, namely, the iterative error :

ϵiter := |sD̃ (a,b) − s
(k)
D̃
(a,b)| ≤

γ k+1

1−γ . (4)

1To avoid division by 0 in Eq.(1), s(a, b) = 0 if |Na | |Nb | = 0.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 3

1 2

3
4 56

7

8

9

10

11 12 s(1, 2) s(4, 5) s(2, 8) s(8, 10) s(3, 9)
SimRank (SR) 0.24 0.30 0.12 0.18 0.30
SimRank++ (SR++) 0.20 0.23 0 0 0.15
RoleSim (RS) 0.34 0.24 0.05 0.07 0.12
SimRank# (SR#) 0.38 0.24 0.14 0.10 0.17

SimRank SimRank++ RoleSim SimRank#
s(1, 2) > s(4, 5) ✗ ✗ ✓ ✓
s(2, 8) > s(8, 10) ✗ ✗ ✗ ✓
s(4, 5) > s(3, 9) ✗ ✓ ✓ ✓

Fig. 1. SimRank++ (SR++) and RoleSim (RS) cannot fix the “connectivity trait” problem of SimRank (SR)

As a result, the total error ϵtotal for approximating s(a,b) by s(k)
D̃
(a,b) consists of two parts:

ϵtotal := |s(a,b) − s(k)D̃
(a,b)| ≤

Part 1 in Eq.(3)︷ ︸︸ ︷
|s(a,b) − sD̃ (a,b)| +

Part 2 in Eq.(4)︷ ︸︸ ︷
|sD̃ (a,b) − s

(k)
D̃
(a,b)|

≤ ϵdiag + ϵiter.

We argue that ϵdiag is far more serious than ϵiter. This is because ϵiter is guaranteed to converge by
[25], and will be minimized by increasing the number of iterations, k . The increase of k , however,
cannot reduce the value of ϵdiag. Worse still, there is no bound on ϵdiag for Eq.(3). The only argument
about ϵdiag in [25] is that “estimating D as D̃ := (1 − γ)I does not much affect the top-K rankings of
sD̃ (∗, ∗) and s(∗, ∗)”, but this argument bears a blemish, as will be shown in Section 5.1. Motivated
by this, we aim to devise an accurate and fast similarity search method that does not produce the
diagonal correction error ϵdiag while avoiding the computation of the exact value of D.
(2) “Connectivity Trait” Problem. Another factor that plagues the quality of SimRank search
is the “connectivity trait” problem. That is, increasing the number of paths between nodes a and
b often incurs a contrary decrease in s(a,b). However, a paucity of existing works [1, 9, 33] only
noticed a special case (1-hop neighbor) of the above phenomenon, i.e., “increasing the number of
common in-neighbors between nodes a and b will decrease s(a,b).” The best-known treatment is
due to Antonellis et al. who proposed SimRank++ [1] that replaces the decay factor γ in Eq.(1) with
the following “evidence factor”:

γ̃ := γ (1 − e−|N −a ∩N −b |) or γ̃ := γ
∑ |N −a ∩N −b |

i=1
1
2i (5)

These revised “evidence factors” have a good property: γ̃ is increasing with respect to |N −a ∩ N −b |.
Therefore, a larger γ̃ implies that there are more common direct in-neighbors (i.e., length-2 paths)
between a and b.

However, we observe a weakness of SimRank++. That is, SimRank++ score s̃(a,b) is always zero
if there are no common (direct) in-neighbors between nodes a and b. This is because, by the definition
in Eq.(5), if N −a ∩ N −b = �, then γ̃ = 0. Thus, s̃(a,b) = 0, regardless of how many common l-hop
in-neighbors (l > 2) exist between a and b. Other pioneering works (e.g., RoleSim [22], PSimRank
[9], and MatchSim [33]) for evaluating s(a,b) also resort to common direct in-neighbors between a
and b, all of which can resolve the special case (1-hop) of the SimRank “connectivity trait” problem
(see Related Work in Section 8.2 for more details). However, increasing the number of paths with
length > 2 between a and b may still lead to a decrease in s(a,b).

Example 1. Consider a real Web graphG in Figure 1, where each node is a web page, and each edge
is a hyperlink. We evaluate the similarity of each node-pair by four measures: (a) SR (Jeh and Widom’s
SimRank [19]); (b) SR++ (SimRank++ [1]); (c) RS (RoleSim [22]); (d) SR# (our method). The results are

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

4 Yu et al.

partly depicted in the table. We notice that SR++ and RS do not well resolve the SR “connectivity trait”
problem. For example, most people would agree s(1, 2) > s(4, 5) since node-pair (1, 2) has 3 common
in-neighbors {4, 6, 3}, whereas (4, 5) has only 2 in-neighbors {11, 12} in common. However, although
SR++ narrows the gap between s(1, 2) and s(4, 5) due to the use of an “evidence factor”, it gives the
same counter-intuitive answer s(1, 2) < s(4, 5) as SR.
Another example is the comparison of s(2, 8) and s(8, 10). For SR++, s(2, 8) = s(8, 10) = 0. This is

because (2, 8) has no common direct in-neighbors, N2 ∩ N8 = �; neither has (8, 10). Thereby, their
“evidence factors” γ̃ = 0. However, there are 4 indirect path-pairs in-linked from (2, 8):

2← 4← 11 → 5→ 8, 2← 3← 11 → 5→ 8

2← 4← 12 → 5→ 8, 2← 3← 12 → 5→ 8

as opposed to only 1 from (8, 10), i.e., 8← 5← 12 → 9→ 10. Thus, node-pair (2, 8) has a higher
connectivity than (8, 10), but this connectivity trait is ignored by SR++. Regarding RS, since it is a “role”
similarity measure, it emphasizes more on similar node degree than high connectivity. Thus, RS can
only partially resolve the SR “connectivity trait” problem. □

Example 1 suggests that the state-of-the-art methods (e.g., SimRank++ [1] and RoleSim [22])
cannot solidly circumvent the “connectivity trait” problem of SimRank. Unfortunately, as illustrated
by our statistical experiments in Section 7.5.4, there are many node-pairs suffering from this
problem (e.g., 62.3% in social networks, 82.7% in Web graphs, and 56.4% in citation graphs), which
has adversely affected the quality of similarity search. This highlights our need for a high-quality
model for efficient similarity search to resolve the “connectivity trait” problem.

1.2 Main Contributions
Our main contributions are summarised as follows:
• We formulate the exact diagonal correction matrix D, and propose a “varied-D” method to
accurately compute SimRank with no ϵdiag and in linear memory. Moreover, by grouping
computation, we also optimize the algorithm [25] from quadratic to linear timew.r.t.k . (Section 2)
• We observe a “connectivity trait” problem for SimRank, which SimRank++ [1] cannot resolve
in a recursive style. To circumvent this problem, we design a “cosine-based” SimRank model
and improve the search quality. (Section 3)
• We propose an efficient dimensionality reduction method, PSR#, via block Arnoldi-Ruhe itera-
tions, which will drastically accelerate partial-pairs “cosine-based” SimRank similarity join on
billion-scale graphs, with provable guarantees on accuracy. (Section 4)
• We give mathematical insights to the semantic difference between Jeh and Widom’s model [19]
and its variant [29], and correct an argument [25]: if D is replaced by (1 − γ)I , top-K rankings
will not be affected much. (Sections 5.1–5.2)
• We devise a novel algorithm that can make instant conversion from Li et al.’s SimRank S̃ to Jeh
and Widom’s SimRank S without any loss of accuracy, and provide key intuitions behind our
conversion formulae. (Section 5.3)
• We also notice that, if two nodes are in two different graphs (or two disconnected components
of the same graph), the existing SimRank model and the “cosine-based” model would assess
these nodes as completely dissimilar. To alleviate this problem, we generalise our “cosine-based”
SimRank model, GSR#, which effectively measures the similarity for the nodes across two
distinct graphs (or two disconnected components). (Section 6)

Comprehensive experiments on various real datasets validate that (1) SR# improves an accuracy
of average NDCG200 by ∼30% over SimRank on various real networks, and runs ∼10x faster than

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 5

the state-of-the-art competitors on large datasets with 65.8M links for 1000 queries. (2) PSR# scales
well on billion-edge graphs and runs ∼8x faster than SR# with comparable memory consumption of
SR#. (3) Our formulae that convert from Li et al.’s SimRank to Jeh and Widom’s SimRank produce
exact similarity scores without any sacrifice in accuracy, and converges faster than the traditional
SimRank iterative approach. (4) GSR# achieves better semantics when assessing similarities for
the nodes across two distinct graphs. Its Arnoldi-based variation, AGSR#, will enable one-order-of-
magnitude speedup while achieving high accuracy to at least 7 decimal places. (Section 7)

Note that a preliminary version of this work has been published as a conference paper in SIGIR
2015 [52]. We summarise the main changes as follows:
(1) Introduction (Section 1). We reorganise the abstract and introduction to enhance the motivation

and contributions of this extended version.
(2) Techniques and Methods (Section 4, Section 5.3, and Section 6). On top of the “cosine-based”

SimRank model (SR#) that we presented in the conference version [52], we add 3 new sections:
• In Section 4, we propose a fast scalable algorithm, PSR#, for evaluating partial-pairs “cosine-
based” SimRank similarities on large graphs, which enables a significant speedup in the
retrieval of SR# similarities. We also provide theoretical guarantees on the accuracy of PSR#.
• In Section 5.3, we devise a novel approach that accurately converts from Li et al.’s SimRank
S̃ to Jeh and Widom’s SimRank S , and provide mathematical insights underpinning our
conversion. In comparison, our conference paper [52] only illustrated the different pairs of
paths tallied by S̃ and S , with no investigations on how to convert from S̃ to S .
• In Section 6, we propose GSR#, a generalisation of SR# [52], to effectively quantify the
similarities for the nodes across two distinct graphs. Moreover, we devise AGSR#, which
incorporatesGSR# with Arnoldi-based dimensionality reduction techniques, to substantially
accelerate the retrieval of GSR# similarities.

(3) Experiments (Sections 7.2–7.5). We conduct additional experiments to show (i) the retrieval
quality of PSR# integrated to the overall performance comparison (§ 7.2.1), (ii) the time efficiency
and high scalability of PSR# on more billion-scale real datasets (e.g., UK02 and IT04) (§ 7.2.3),
(iii) more qualitative case studies on retrieval quality over DBLP dataset (§ 7.2.2), (iv) sensitivity
analysis of PSR# relevant to low dimensionalitym and iteration number k (§ 7.2.3 and 7.2.6), (v)
the memory efficiency of PSR# and SR#, and its impact relevant tom and k (§ 7.4.1 and 7.4.2), (vi)
the exactness and faster convergence rate of our formulae that convert from Li et al.’s SimRank
to Jeh and Widom’s SimRank (§ 7.5.2), (vii) the better semantics of GSR# and AGSR# across two
graphs, and high efficacy of AGSR# against GSR# in terms of time (§ 7.3.3), memory (§ 7.4.3),
accuracy (§ 7.2.4, 7.2.5), and a case study of GSR# on two graphs with different scales (§ 7.2.7).

(4) Related Work (Section 8). We also add new related work that has appeared recently to make
the paper more complete.

2 ACCURATE AND FAST SIMRANK
We first show the sensitivity of diagonal correction matrix D to SimRank matrix S , and formulate
the exact D. Then, we devise an accurate fast “varied-D” model to compute S .

2.1 Sensitivity of Diagonal Correction Matrix
In matrix forms, SimRank in Eq.(1) can be rewritten as

S = max{γP⊤SP, I }, (6)

where max{∗} denotes the matrix entry-wise maximum, i.e., (max{A,B})i , j = max{Ai , j ,Bi , j }. The
bottleneck for solving S in Eq.(6) is to deal with the non-linear matrix operator max{∗}. To tackle

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

6 Yu et al.

this problem, based on the observation that S and γP⊤SP differ only in their diagonal entries,
Kusumoto et al. [25] have showed that there exists a unique diagonal matrix D such that Eq.(6) can
be converted to

S = γP⊤SP + D, (7)
where D is called the diagonal correction matrix, which needs to be determined beforehand.

However, [25] did not mention how to accurately compute the exact D, but simply approximated
D by D̃ = (1 − γ)I . In fact, D is very sensitive to the resulting S . Even small errors in D may lead to
large changes in SimRank scores S by a factor of up to 1

1−γ , as shown in Lemma 1.

Lemma 1. Let S be the solution to Eq.(7), and SD̃ be the solution to the equation:

SD̃ = γP
⊤SD̃P + D̃, (8)

and let ∆D := D − D̃ and ∆S := S − SD̃ . Then,

∥∆S ∥max ≤
1

1−γ ∥∆D∥max.
2 (9)

Proof. The recursion of SD̃ in Eq.(8) naturally leads to the following series:

SD̃ = D̃ + γP⊤D̃P + γ 2(P⊤)
2
D̃P2 + · · · , (10)

We subtract Eq.(10) from Eq.(2), and then take ∥ ∗ ∥max norms on both sides:

∥∆S ∥max ≤ ∥∆D∥max +
∑∞

i=1 γ
i

≤∥∆D ∥max︷ ︸︸ ︷
∥(P⊤)

i
∆D(P i)∥max

≤ (1 + γ + γ 2 + · · ·)∥∆D∥max

= 1
1−γ ∥∆D∥max. □

2.2 Formulating Diagonal Correction Matrix
We next derive an exact explicit formulation of D in Eq.(7). For ease of exposition, the following
notations are adopted.

Definition 1 (Entry-Wise Product). For two n ×m matrices X and Y , their entry-wise product,
denoted by X ◦ Y , is an n ×m matrix, with each (i, j)-entry given by (X ◦ Y)i , j = Xi , jYi , j .

Let diaд(Z) be a diagonal matrix whose diagonal entries are those of Z , i.e., (diaд(Z))i ,i = Zi ,i .
Using this notation, Eq.(6) can be represented as

S = γP⊤SP + I − γdiaд(P⊤SP). (11)

Due to D uniqueness, Eqs.(7) and (11) imply that

D = I − γdiaд(P⊤SP). (12)

To formulate the exact D in Eq.(12) only in terms of P , we introduce the following lemma.

Lemma 2. Let
−−−→
diaд(Z) be a column vector of the diagonal entries of Z , i.e., (

−−−→
diaд(Z))i = Zi ,i . For two

n × n matrices X and Y , and an n × n diagonal matrix Z , we have
−−−→
diaд(X⊤ZY) = (X ◦ Y)⊤

−−−→
diaд(Z).

Combining Lemma 2 with Eq.(12), we next formulate D.

2 ∥X∥max returns the maximum of the absolute values of all entries in matrix X.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 7

Theorem 1. The diagonal correction matrix D in Eq.(7) can be explicitly formulated as

−−−→
diaд(D) =

(∑+∞
k=0 γ

k (Pk ◦ Pk)
)−⊤®1, (13)

where ®1 is a |V | × 1 vector of all 1s, and (∗)−⊤ := ((∗)⊤)−1.

Proof. The recursive SimRank equation defined by Eq.(7) implies the following unrolled form:

S = D + γP⊤DP + γ 2(P⊤)2DP2 + γ 3(P⊤)3DP3 + · · · (14)

Taking
−−−→
diaд(∗) on both sides of Eq.(14) produces

−−−→
diaд(S) =

−−−→
diaд(D) + γ

−−−→
diaд(P⊤DP) + γ 2−−−→diaд((P⊤)

2
DP2) + · · · (15)

According to SimRank definition, Si ,i = 1 (∀i ∈ V), which implies
−−−→
diaд(S) = ®1. Applying this and

Lemma 2 to the right-hand side of Eq.(15) yields

®1 =
(
I + γ (P ◦ P) + γ 2(P2 ◦ P2) + · · ·

)⊤−−−→
diaд(D), (16)

Since 0 ≤ (P ◦ P)i , j ≤ Pi , j ≤ 1, one can readily show that (I + γ (P ◦ P) + γ 2(P2 ◦ P2) + · · ·)
⊤ is

diagonally dominant. Multiplying both sides by its inverse produces Eq.(13). □

Theorem 1 characterizes the exact D as an infinite series. Hence, prior to computing S , it is too
difficult to obtain the exact D in only a finite number of iterations. This tells us that using the
method of [25] will innately produce ϵdiag.
In addition, Theorem 1 implies that the estimation D ≈ (1 − γ)I in [25] is not appropriate for

accurately computing S in Eq.(7). This is because replacing (Pk ◦ Pk) by Pk in Eq.(13) yields

−−−→
diaд(D) ≈

(∑+∞
k=0 γ

kPk
)−⊤®1 = (I − γP)⊤®1 = (1 − γ)®1,

which suggests that the approximation D ≈ (1 − γ)I in [25] is equivalent to the approximation
Pk ◦Pk ≈ Pk . However, it is generally unreasonable to assume that ((Pk)i , j)

2
≈ (Pk)i , j . In Section 5.2,

we will further discuss D ≈ (1 − γ)I from the viewpoint of semantics.

2.3 A “Varied-D” Iterative Model
Another important consequence of Theorem 1 is to derive an accurate SimRank algorithm without
ϵdiag. Instead of determining the exact D in advance, our method is to iteratively update D and S at
the same time. Precisely, we leverage the “varied-D” SimRank model as follows:

S (k) := Dk + γP
⊤Dk−1P + · · · + γ

k (P⊤)
k
D0P

k , (17)

where {Dk } is a diagonal matrix sequence (convergent to D), which can be iteratively obtained
while S is being iterated.

Different from the model Eq.(2) by Kusumoto et al. [25], our “varied-D” model Eq.(17) replaces
all Ds by a convergent sequence {Dk }. The advantage of our replacement is that Eq.(17) can avoid
determining the exact D beforehand, and thus, will not produce the superfluous error ϵdiag.

The correctness of our “varied-D” model can be verified by taking limits k →∞ on both sides of
Eq.(17). As k →∞, Dk → D and S (k) → S . Thus, Eq.(17) converges to Eq.(2).

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

8 Yu et al.

2.3.1 Finding Dk in “Varied-D” Model. The challenging problem in our “varied-D” Eq.(17) is to
determine the diagonal matrix Dk . Our main idea is based on two observations:
(a) S (k) in Eq.(17) can be iterated as

S (l) = γP⊤S (l−1)P + Dl with S (0) = D0. (18)
(b) To ensure diaд(S (l)) = I , Dl in Eq.(18) must satisfy

Dl = I − γdiaд(P⊤S (l−1)P). (19)
Coupling these observations, we can compute Dk in Eq.(17).

Theorem 2. The diagonal correction matrices in Eq.(17) can be iteratively obtained as follows:

(Dk)i ,i = 1 −
∑k
l=1 (hl ◦ hl)

⊤−−−→diaд(Dk−l) with D0 = I , (20)
where the auxiliary vectors h1, · · · ,hk are derived from{

h0 = ei
hl =

√
γPhl−1 (l = 1, 2, · · · ,k) (21)

Proof. First, we derive a matrix formula of Dk . By Lemma 2, Eq.(20) can be converted to

(Dk)i ,i = 1 −
∑k
l=1 hl

⊤Dk−lhl (22)

Successive substitution applied to Eq.(21) yields hl =
√
γ lP lei . Then, substituting this back into

Eq.(22) produces
Dk = I −

∑k
l=1 γ

ldiaд
(
(P l)

⊤
Dk−l (P

l)
)

(23)
Next, we show that Dk in Eq.(23) satisfies Eqs.(17)–(19). It follows from Eq.(17) that

diaд(γP⊤S (k−1)P) = diaд(
∑k−1
l=0 γ

l+1(P l+1)
⊤
Dk−1−lP

l+1)

= diaд(
∑k
l=1 γ

l (P l)
⊤
Dk−lP

l).

Thus, the above equation implies that

I − diaд(γP⊤S (k−1)P) = I −
∑k
l=1 γ

ldiaд
(
(P l)

⊤
Dk−l (P

l)
)

Applying Eq.(23) to the right-hand side yields Eq.(19). □

Theorem 2 provides a simple efficient method to compute Dk , as shown in Algorithm 1. It
works as follows. The algorithm first initializes D0 := I . To compute Dk (k ≥ 1), it then iteratively
generates k auxiliary vectors h1, · · · ,hk via Eq.(21). Finally, utilizing h1, · · · ,hk and the diagonal
matrices D0, · · · ,Dk−1, it obtains Dk from Eq.(20).

Algorithm 1: Compute Diagonal Matrix Dk

1 initialize t := 0, h0 := ei , D0 := I ;
2 for l := 1, 2, · · · ,k do
3 compute hl :=

√
γPhl−1 ;

4 update t := t + (hl ◦ hl)
⊤−−−→diaд(Dk−l) ;

5 return (Dk)i ,i := 1 − t ;

The correctness of Algorithm 1 is verified by Theorem 2. Regarding computational complexity,
we have the following result.

Theorem 3. Given the total number of iterations k = 1, 2, · · · , Algorithm 1 runs inO(k |V |)memory
and O(k(|E | + |V |)) time.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 9

Proof. The complexity of Algorithm 1 is dominated by Lines 3 and 4. Specifically, for each
iteration l , (a) in Line 3, it requires O(|E |) time and O(|V |) memory to compute hl , involving
matrix-vector multiplication Phl−1; (b) in Line 4, updating t needs O(|V |) time and O(|V |) memory,
including vector entry-wise product hl ◦ hl , and a dot product between vectors (hl ◦ hl) and
−−−→
diaд(Dk−l). Hence, for k iterations, it takes O(k(|E | + |V |)) time and O(k |V |) memory in total. □

Theorem 3 implies that our “varied-D” method to computeDk will not compromise the scalability
of [25] for high quality search, since Dk can be computed in linear memory as well.

2.3.2 Fast Convergence of “Varied-D” Model. In contrast to the bound
(γ k+1
1−γ

)
(see Eq.(10) of [25]),

our “varied-D” model in Eq.(17) converges faster than [25], as shown below.

Theorem 4. The gap between the k-th iterative SimRank S (k) (Eq.(17)) and the exact S (Eq.(7)) is
∥S (k) − S ∥max ≤ γ

k+1. (24)

Proof. We subtract Eq.(7) from Eq.(18) to obtain, ∀k ,
S (k) − S = γP⊤(S (k−1) − S)P + (D(k) − D). (25)

We notice from Eq.(19) that (S (k))i ,i = Si ,i = 1, ∀i ∈ V . Thus, when i , j, it follows from Eq.(25)
that, ∀i, j ∈ V ,

(S(k) − S)i , j = γ (P
⊤)i ,∗(S

(k−1) − S)P∗, j .

≤ γ ∥S(k−1) − S ∥max ≤ · · · ≤ γ
k ∥I − S ∥max

(26)

By Eq.(1), ∥I − S ∥max ≤ γ . Thus, Eq.(24) holds. □

2.4 Efficiently Computing S (k)

Having determined Dk in our “varied-D” model Eq.(17), we next propose our method to efficiently
compute S (k). The existing method by Kusumoto et al. [25] requires O(k2 |E |) and O(k2 |V | |E |) time,
respectively, to compute single-source and all-pairs SimRank. We observe that there exist many
duplicate products in [25]. Precisely, to obtain the result of the sums

(S (k))i ,∗ = Dkx0 + γP
⊤Dk−1x1 + · · · + γ

k (P⊤)kD0xk , (27)

the method [25] separately computes every
(
γ l (P⊤)l (Dk−l)xl

)
and then adds them together. Its

main limitation is that, to compute any power of (P⊤), [25] has to go through all of the previous
powers from scratch. As a result, there are l matrix-vector products to compute each h, leading to∑k
l=1 l = O(k

2) products for k iterations in total.
We now propose an efficient method which reduces O(k2 |E |) to O(k |E |) time, with no loss

of accuracy. Our key observation is that “doing each matrix-vector multiplication separately is
equivalent to multiplying a matrix by a group of the resulting vectors added together”. Hence, we
rearrange the computation of Eq.(27) as follows:

(S (k))i ,∗ = Dkx0 + γP
⊤(Dk−1x1 + γP

⊤(Dk−2x2 + · · ·

· · · + γP⊤(D1xk−1 + γP
⊤(D0xk)))) (28)

and obtain the result by starting with the innermost brackets and working outwards. In contrast
with the method [25], Eq.(28) has only O(k) matrix-vector products in k brackets.

It is noteworthy that our “varied-D” model and the efficient strategy to compute S from Eq.(28)
in this section lay a solid foundation for optimising the computation of the enhanced “cosine-based”
SimRank in the following sections. As will be seen shortly in Sections 3.2 and 6.3, these strategies
will be applied in a similar manner to (i) the “cosine-based” SimRank model (leading to Eqs.(34)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

10 Yu et al.

a b

...

...

...

x1 xn

Fig. 2. SimRank “Connectivity Trait” Problem

and (35)) and (ii) our generalised “cosine-based” SimRank model (leading to Eqs.(64) and (65)),
respectively. Moreover, the “varied-D” model makes it possible for us to accurately compute Jeh
and Widom’s SimRank on graphs using only linear memory, thereby scaling the computation of
Jeh and Widom’s SimRank on any sizable real-world graphs for future experiments on semantic
comparisons in Section 7.2.1.

3 ENHANCING SIMRANK QUALITY
After the superfluous ϵdiag is avoided, we next focus on the “connectivity trait” problem of SimRank.

3.1 The “Connectivity Trait” Problem
We observe that the root cause of the “connectivity trait” problem is that the order of the normalized
factor 1

|Na | |Nb |
in the SimRank definition Eq.(1) is too high. To clarify this, let us consider the

following situation in Figure 2.
Let δ be the number of paths {a ← x → b} to be inserted between nodes a and b. By SimRank

definition Eq.(1), after insertions, s(a,b) will become a function of δ :

sδ (a,b) = γ ·
|Na∩Nb |+δ

(|Na |+δ)(|Nb |+δ)
∼ γ · δδ 2 → 0. (δ →∞) (29)

This suggests that, for large δ , sδ (a,b) behaves like (γ · 1δ), which will eventually decrease w.r.t. δ .

3.2 Our Kernel-Based SimRank Model
To avoid the order inconsistency between denominator and numerator in Eq.(29), our goal is to
judiciously adjust the order of 1

|Na | |Nb |
while normalizing s(a,b) correctly.

Definition 2. Let A be an adjacency matrix. The “cosine-based” SimRank Ŝa,b between a and b is
defined by

Ŝa,b = (1 − γ)
∞∑
k=0

γ k
e⊤a (A

k)
⊤
Akeb

∥Akea ∥2∥A
keb ∥2

, (30)

where ∥x ∥2 :=
√∑

i |xi |
2 denotes the L2-norm of vector x . To prevent division by zero in Eq.(30), we

define the k-th term of the sums to be 0 if (Ak)∗,a or (Ak)∗,b = ®0.

Our cosine-based SimRank Ŝa,b integrates the weighted cosine similarities between a’s and b’s
multi-hop in-neighbor sets. This can be seen more clearly when we rewrite Eq.(30) as

Ŝa,b = (1 − γ)
∑∞

k=0 γ
kϕ(Akea,A

keb) with ϕ(x,y) := x⊤y
∥x ∥2 ∥y ∥2

. (31)

We call ϕ(x,y) a kernel similarity function. In Definition 2, we take ϕ(x,y) as the well-known cosine
similarity function. The vector Akea (resp. Akeb) in Eq.(31) collects the information about k-hop
in-neighbors of node a (resp.b). Hence, the termϕ(Akea,A

keb) in Eq.(31) evaluates how similar node
a’s and b’s k-hop in-neighbor sets are likely to be in terms of the number of length-k paths in-linked
from both a and b. The factor γ k penalizes connections made with distant k-hop in-neighbors, and
(1 − γ) normalizes Ŝa,b into [0, 1]. Thus, Ŝa,b not only distills the self-referentiality of SimRank, but
also extends a one-step cosine similarity to a multi-step one.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 11

Theorem 5. The cosine-based SimRank model in Eq.(30) can circumvent the SimRank “connectivity
trait” problem.

Proof. Let hopk (x) = {i ∈ V |(Akex)i > 0} be the k-hop in-neighbor set of node x . Then, we
have

e⊤a (A
k)⊤Akeb = |hopk (a) ∩ hopk (b)|,

∥Akea ∥2 =

√
e⊤a (Ak)⊤Akea =

√
|hopk (a)|.

Plugging these into Eq.(30) produces

Ŝa,b = (1 − γ)
∞∑
k=0

γ k
|hopk (a) ∩ hopk (b)|√
|hopk (a)| · |hopk (b)|

. (32)

When inserting the following δ paths between a and b:
a← ◦ ← · · · ← ◦ ←︸ ︷︷ ︸

k1 edges

◦ → ◦ → · · · → ◦ →︸ ︷︷ ︸
k2 edges

b (33)

we notice that, only for k1 = k2, the k1-th term of the series Eq.(32) is changed to a function of δ :

f (δ) = γ k1
|hopk1 (a) ∩ hopk1 (b)| + δ√

(|hopk1 (a)| + δ) · (|hopk1 (b)| + δ)
. (δ > 0)

To show f (δ) increases w.r.t. δ , we take log(∗) on both sides, and then use implicit differentiation
w.r.t. δ on both sides:

f ′(δ) = f (δ)
(1
|hopk1 (a) ∩ hopk1 (b)| + δ

−
1

2(|hopk1 (a)| + δ)
−

1
2(|hopk1 (b)| + δ)

)
.

Since f (δ) > 0 and |hopk1 (a)| ≥ |hopk1 (a) ∩ hopk1 (b)| and |hopk1 (b)| ≥ |hopk1 (a) ∩ hopk1 (b)|,
we can obtain f ′(δ) > 0. Thus, f (δ) increases w.r.t. δ , which implies that paths (33) insertion will
not decrease Ŝa,b . □

Indeed, by using Peb = Aeb/∥Aeb ∥1
3 to the original SimRank Eq.(2), we notice that both Eqs.(2)

and (30) tally the same paths in-linked from a and b. The difference is norms ∥ ∗ ∥2 and ∥ ∗ ∥1 used
by Eq.(30) and Eq.(2)4, respectively. Since the SimRank “connectivity trait” problem is due to the
high order of 1

|Na | |Nb |
in Eq.(1), it is reasonable for us to prevent its high order by replacing ∥ ∗ ∥1

with ∥ ∗ ∥2 since ∥x ∥2 ≤ ∥x ∥1. Moreover, by using ∥ ∗ ∥2, Ŝa,b can be correctly normalized into [0, 1].
This is because ϕ(∗, ∗) ∈ [0, 1], which indicates that 0 ≤ Ŝa,b ≤ (1 − γ)

∑∞
k=0 γ

k ≤ 1 in Eq.(31).

Example 2. Recall the δ paths {a ← x → b} to be added intoG in Figure 2. After insertion, Ŝa,b (δ)
in Eq.(30) can circumvent the “connectivity trait” problem. This is because

Aea = (1, 1, · · · , 1︸ ︷︷ ︸
|Na |

, 0, 0, · · · 0︸ ︷︷ ︸
|Nb−Na |

, 1, 1, · · · , 1︸ ︷︷ ︸
δ

)⊤ Aeb = (0, 0, · · · 0︸ ︷︷ ︸
|Na−Nb |

, 1, 1, · · · , 1︸ ︷︷ ︸
|Nb |

, 1, 1, · · · , 1︸ ︷︷ ︸
δ

)⊤

Then, we have (Aea)⊤Aeb = |Na ∩ Nb | + δ and

∥Aea ∥2 =
√
12 + · · · + 12︸ ︷︷ ︸

|Na |

+ 12 + · · · + 12︸ ︷︷ ︸
δ

=
√
|Na | + δ , ∥Aeb ∥2 =

√
|Nb | + δ

3 ∥x ∥1 :=
∑
i |xi | denotes the L1-norm of vector x .

4P is associated with 1
|Na | |Nb |

(= 1
∥Pea ∥1 ∥Peb ∥1

) in Eq.(1).

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

12 Yu et al.

1

2 3

4

5

6 7
8

IR DB AI

IR DB

1

2

4

8

5

7

1 2 3 4 5 6 7 8

1 0 1 0 1 1 0 1 1
2 0 0 0 0 1 0 0 0
3 1 1 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 1 0
7 0 0 0 0 0 0 0 1
8 0 0 0 1 0 0 0 0

Adjacency Matrix A

⇒

Partial Similarities of S

0.098

0.181

0.193

0.216

0.120

0.216

0.166

0.203

5 7

1

2

4

8

DB

IR

Fig. 3. Partial-pairs similarity search on citation graphG , where each node is a paper labelled with an area it
belongs to (e.g., IR, DB, AI) - how to retrieve only the similarities of pairs of papers between IR and DB.

Therefore, it follows from Eq.(30) that Ŝa,b (δ) = (1 −γ)γ · |Na∩Nb |+δ√
|Na |+δ

√
|Nb |+δ

→ (1 −γ)γ (δ →∞).

Comparing this with Eq.(29), Ŝa,b (δ) is not decreasing w.r.t. δ , due to norm ∥ ∗ ∥2 used in Eq.(30). □

In contrast to SimRank++ [1] and PSimRank [9] whose revised weight factors rely only on
common 1-hop neighbors Na and Nb , our method by Eq.(30), even if Na ∩ Nb = �, can evaluate
s(a,b) from common multi-hops neighbors hopk (a) and hopk (b).

To compute the cosine-based SimRank score Ŝa,b , if a = b, Eq.(30) implies Ŝa,b = 1. If a , b, we
compute Ŝa,b as

Ŝ (k)a,b = Ŝ (k−1)a,b + (1 − γ)γ k (u(k))⊤v(k) with Ŝ (0)a,b = 0 (34)

where the auxiliary vectors u(k) and v(k) are obtained by{
u(0) = ea

u(k) = Au (k−1)
∥Au (k−1) ∥2

{
v(0) = eb
v(k) = Av (k−1)

∥Av (k−1) ∥2

(35)

4 ACCELERATIVE TECHNIQUES FOR COSINE-BASED SIMRANK SIMILARITY JOIN
WITH GUARANTEED ACCURACY

The conventional method using Eqs.(34) and (35) for iteratively computing Ŝa,b is rather cost-
inhibitive. This is especially evident for the following partial-pairs search problem:
Problem (Partial-Pairs “Cosine-based” SimRank Similarity Search).
Given: a graph G = (V , E), and two subsets A and B of nodes V .
Retrieve: partial-pairs “cosine-based” SimRank scores ŜA,B := {Ŝa,b |∀a ∈ A,∀b ∈ B,a , b}

between A and B efficiently with guaranteed accuracy.

There are many real applications for the partial-pairs similarity search problem, e.g., entity
resolution [3], data integration and cleaning [4], and duplicate detection [36]. One typical example
is link-based similarity join, as illustrated below:

Example 3. Consider citation digraph G in Figure 3, where each node represents a paper labelled
with the research area it belongs to, e.g., IR (Information Retrieval), ML (Machine Learning), DB
(Databases). Each edge is a citation from one paper to another. Partial-pairs similarity search is quite
useful when one would like to efficiently retrieve only the similarities of pairs of papers between two
given areas (e.g., IR and DB). □

If the single-pair algorithm in Eqs.(34) and (35) directly runs multiple times for partial-pairs
similarity search, it would involve many duplicate computations, taking O(K |A| |B |(|E | + |V |)) time
to evaluate A × B pairs of similarities for K iterations, which is rather expensive.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 13

4.1 Dimensionality Reduction via Block Arnoldi–Ruhe Process
To efficiently accelerate the computation of our “cosine-based” SimRank model (Eqs.(34) and (35))
for partial-pairs similarity search, we first build a low-dimensional Krylov subspace using a variant
of the standard Arnoldi iteration, namely, Block Arnoldi–Ruhe Process [7]. Specifically, given a
low-order parameterm (≪ |V |), a graph adjacent matrix A, and two distinct nodes a and b in V ,
we first construct a low 2m-dimensional space, namely, block Krylov subspace, as follows:

Km(A, [ea, eb]) := span{ea, eb ,Aea,Aeb ,A2ea,A
2eb , · · · ,A

m−1ea,A
m−1eb︸ ︷︷ ︸

2m−dimension

}

where two unit vectors ea and eb are chosen as the starting vectors for generating the block Krylov
subspace Km(A, [ea, eb]), and span{·} denotes the set of all linear combinations of vectors in {·}.

Then the following procedure, also known as the Block Arnoldi–Ruhe Process [7], will produce
an orthonormal basis Qm = [q1,q2, · · · ,q2m] of the Krylov subspace Km(A, [ea, eb]), which is a
modified version of Gram-Schmidt process, as illustrated below:

Procedure 2: Block Arnoldi-Ruhe Process(m,A,a,b)
Input : low-order parameterm, graph adjacency matrix A, two distinct nodes a and b.
Output :column orthonormal matrix Qm := [q1,q2, · · · ,q2m],

upper block Hessenberg matrix Hm := (hi , j).
1 initialize q1 := ea and q2 := eb ;
2 for j := 2, 3, · · · , 2m + 1 do
3 set t := j − 1;
4 updatew := Aqt ;
5 for i := 1, 2, · · · , j do
6 compute hi ,t := w⊤qi ;
7 updatew := w − hi ,tqi ;
8 compute hj+1,t := ∥w ∥2;
9 if hj+1,t , 0 then compute qj+1 := w/hj+1,t ;

10 return Qm := [q1,q2, · · · ,q2m] and Hm := (hi , j)1≤i , j≤2m ;

Procedure 2 provides an efficient Arnoldi-Ruhe decomposition of the graph adjacency matrix A.
Given a user-specified low-order parameterm (≪ |V |), and two initial distinct nodes a and b, the
above Block Arnoldi-Ruhe Process, abbreviated as

[Qm,Hm] ← Arnoldi-Ruhe (m,A,a,b)

can compress the large adjacency matrixA (of size |V | × |V |) into the small upper block Hessenberg
matrix Hm (of size 2m × 2m) via the column-orthonormal basis Qm := [q1,q2, · · · ,q2m] (of size
2m × |V |) of the Krylov subspace Km(A, [ea, eb]), such that the following relations hold [7]:

AQm = QmHm + [q2m+1 | q2m+2]

[
h2m+1,2m−1 h2m+1,2m
h2m+2,2m−1 h2m+2,2m

]
[e2m−1 | e2m]

⊤︸ ︷︷ ︸
residual error afterm steps

(36a)

Q⊤mAQm = Hm (36b)

Figure 4 pictorially depicts the Block Arnoldi-Ruhe decomposition of Eqs.(36a) and (36b), which
is useful to our following accelerative techniques for partial-pairs “cosine-based” SimRank search.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

14 Yu et al.

...

...

A

=

Qm

+

EmQm

n 2m 2m

2m

2m

...

...

...

...

...

..
.

Hm=

· ·

· · +

n

2m

2 2 2

2

A

=

QT
m Qm

n 2m

...

...2m

2m

...

...

...

...

...

..
.

Hm=

· ·

· ·

n 2m

2

2

2

n

Fig. 4. Visualisation of Block Arnoldi-Ruhe Decomposition of Eqs.(36a) and (36b)

4.2 Accelerating “Cosine-based” SimRank Search
By virtue of the Block Arnoldi-Ruhe decomposition, we are now ready to provide fast efficient
techniques for partial-pairs “cosine-based” SimRank search. We first propose the following lemma.
Lemma 3. Given a low-order parameterm (≪ |V |), an adjacency matrix A ∈ R |V |× |V | , and two

distinct query nodes a and b, let [Qm,Hm] ← Arnoldi-Ruhe (m,A,a,b) be them steps of the Block
Arnoldi–Ruhe process. Then, the following equation holds:

m−1∑
k=0

γ k
e⊤a (A

⊤)
kAkeb

Akea

2

Akeb

2
=

m−1∑
k=0

γ k
e1
⊤(Hm

k)
⊤
Hm

ke2

Hm
ke1

2

Hm

ke2

2

(37)

where e1 (resp. e2) is a 2m × 1 unit vector, whose 1st (resp. 2nd) entry is 1, and 0s elsewhere.

Lemma 3 implies an efficient dimensionality reduction technique that can substantially speed up
partial-pairs “cosine-based” SimRank search. Precisely, let Ŝ (K)a,b be the K-th partial sum of the exact
“cosine-based” SimRank score defined by Eq.(30), i.e.,

Ŝ (K)a,b := (1 − γ)
K−1∑
k=0

γ k
e⊤a (A

k)
⊤
Akeb

∥Akea ∥2∥A
keb ∥2

. (38)

For any user-specified low-order parameterm (≪ |V |), Lemma 3 indicates that them-th partial
sum of the “cosine-based” SimRank score Ŝ (m)a,b can be computed, quickly and accurately, via them
steps of the Block Arnoldi–Ruhe process as

Ŝ (m)a,b = (1 − γ)
m−1∑
k=0

γ k
e1
⊤(Hm

k)
⊤
Hm

ke2

Hm
ke1

2

Hm

ke2

2
. (39)

Due to the small dimensionality of Hm , the computation of Eq.(39) only runs iteratively over the
low-order subspace (2m × 2m) yielding O(m2) worst-case time for each iteration (m ≪ |V |), which
is significantly faster than the conventional Eq.(35) that iterates over the original large space
(|V | × |V |) entailing O(|V |2) time in the worst case. Moreover, Lemma 3 implies that, when K ≤ m,
the speedup of Eq.(39) to evaluate Ŝ (K)a,b does not sacrifice any accuracy. This is because, for any
k = 0, 1, · · · ,m−1, the projection of {Akea} (resp. {Akeb }) onto the Krylov subspace Km(A, [ea, eb])
with respect to the orthonormal basis Qm is itself.

However, when K > m, for each k =m,m + 1, · · · ,K − 1, projecting {Akea} (resp. {Akeb }) onto
the Krylov subspace Km(A, [ea, eb]) will sacrifice a little accuracy due to the residual errors in the
Arnoldi-Ruhe decomposition of Eq.(36a). The following theorem provides a light-weight upper
bound of the approximation error for iteratively evaluating Ŝ (K)a,b in the case of K > m.

Theorem 6. For any number of iterations K = 1, 2, · · · , let Ŝ (K)a,b be the K-th partial sum of the exact

“cosine-based” SimRank score defined by Eq.(38). Given a low-order parameterm (≪ |V |), let R̂(K)a,b [m]

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 15

be the K-th partial sums of the approximation of Ŝ (K)a,b using them steps of the Block Arnoldi–Ruhe
process [Qm,Hm] ← Arnoldi-Ruhe (m,A,a,b), that is,

R̂(K)a,b [m] = (1 − γ)
K−1∑
k=0

γ k
e1
⊤(Hm

k)
⊤
Hm

ke2

Hm
ke1

2

Hm

ke2

2

(40)

Then, for any K > m, the difference between the values Ŝ (K)a,b and R̂(K)a,b [m] is bounded by���Ŝ (K)a,b − R̂
(K)
a,b [m]

��� ≤ 2(γm − γK) (∀a,b)

Proof. Let

δ (k) =
e⊤a (A

⊤)
kAkeb

Akea

2

Akeb

2
−

e1
⊤(Hm

k)
⊤
Hm

ke2

Hm
ke1

2

Hm

ke2

2

By Cauchy–Schwarz inequality, it follows that��e⊤a (A⊤)kAkeb
�� = ��(Akea)

⊤
(Akeb)

�� ≤

Akea

2

Akeb

2��e1⊤(Hm

k)
⊤
Hm

ke2
�� ≤

Hm

ke1

2

Hm

ke2

2

Thus, substituting these results back into |δ (k)|, we have��δ (k)�� = ��e⊤a (A⊤)kAkeb
��

Akea

2

Akeb

2
+

��e1⊤(Hm
k)
⊤
Hm

ke2
��

Hm

ke1

2

Hm

ke2

2
≤ 2 (41)

By the definition of Ŝ (K)a,b and R̂(K)a,b [m] in Eqs.(38) and (40), since K ≥ m, we obtain

��Ŝ (K)a,b − R̂
(K)
a,b [m]

�� = (1 − γ)�� ∑K−1
k=0 γ

kδ (k)
�� = (1 − γ)�� =0 by Lemma 3︷ ︸︸ ︷∑m−1

k=0 γ
kδ (k)+

∑K−1
k=m γ kδ (k)

��
=(1 − γ)

�� ∑K−1
k=m γ kδ (k)

�� ≤ (1 − γ)∑K−1
k=m γ k

��δ (k)��︸︷︷︸
≤2 by Eq.(41)

≤ 2(1 − γ)
∑K−1

k=m γ k = 2(γm − γK) □

Theorem 6 provides a guaranteed a-priori error bound for them-step Arnoldi-Ruhe approximation
of the K-th partial sum Ŝ (K)a,b of the exact “cosine-based” SimRank similarity in Eq.(38). Precisely,
for a given low-order parameterm (≪ |V |), Theorem 6 indicates that, when K > m, the first K-th
partial sum of the exact similarity Ŝa,b can be approximated by R̂(K)a,b [m] with the approximation
error bounded by ϵ := 2(γm − γK). While the low-order parameterm increases to K , we notice
that γm approaches to γK , leading to ϵ → 0. Whenm ≥ K , as indicated by Lemma 3, the error ϵ
becomes 0, i.e., R̂(K)a,b [m] = Ŝ (K)a,b for ∀m ≥ K .
Capitalizing on Theorem 6, we are now ready to estimate the difference between R̂(K)a,b [m] and

the exact “cosine-based” SimRank similarity Ŝ (K)a,b , as shown in Theorem 7.

Theorem 7. Let Ŝ be the exact “cosine-based” SimRank matrix, with each entry Ŝa,b defined by
Eq.(30), and let R̂(K)[m] be the approximation of Ŝ via them steps of the Arnoldi-Ruhe process, whose
each entry R̂(K)a,b [m] is defined by Eq.(40). Then, the difference between R̂(K)[m] and Ŝ is bounded by

Ŝ − R̂(K)[m]

max ≤

{
γK (if K ≤ m) (42a)
2γm − γK (if K > m) (42b)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

16 Yu et al.

Proof. For each node pair (a,b) ∈ V 2, since Ŝ (K)a,b be the K-th partial sum of the exact “cosine-
based” SimRank score Ŝa,b , we subtract Eq.(38) from Eq.(30), which produces

Ŝa,b − Ŝ
(K)
a,b = (1 − γ)

∞∑
k=K

γ k
e⊤a (A

⊤)
kAkeb

Akea

2

Akeb

2

From Cauchy-Schwarz inequality, it follows that��e⊤a (A⊤)kAkeb
�� = ��(Akea)

⊤
(Akeb)

�� ≤

Akea

2

Akeb

2

which implies that��Ŝa,b − Ŝ (K)a,b

�� = (1 − γ) ∞∑
k=K

γ k
��e⊤a (A⊤)kAkeb

��

Akea

2

Akeb

2
≤ (1 − γ)

∞∑
k=K

γ k = γK (∀a,b) (43)

When K ≤ m, it follows from Lemma 3 that Ŝ (K)a,b = R̂(K)a,b [m] (∀a,b). When K > m, it follows
from Theorem 6 that

��Ŝ (K)a,b − R̂
(K)
a,b [m]

�� ≤ 2(γm − γK) (∀a,b). Thus,

Ŝ (K) − R̂(K)[m]

max ≤

{
0 (if K ≤ m)

2(γm − γK) (if K > m) (44)

Therefore,

Ŝ − R̂(K)[m]

max =

(Ŝ − Ŝ (K)) + (Ŝ (K) − R̂(K)[m])

max

≤

Ŝ − Ŝ (K)

max︸ ︷︷ ︸
≤γ K by Eq.(43)

+

Ŝ (K) − R̂(K)[m]

max︸ ︷︷ ︸
≤0 or 2(γm−γ K) by Eq.(44)

≤

{
γK (if K ≤ m)

2γm − γK (if K > m)

□

Theorem 7 derives the first concise a-priori error bound for the maximum approximation error
between the exact “cosine-based” SimRank similarity Ŝ and the approximate solution R̂(K)[m]
obtained by the K-th partial sums of them-step Arnoldi-Ruhe projection method. For any fixed
low-orderm, when K ≤ m, the error between Ŝ and R̂(K)[m] only comes from the truncation error
γK for the K-th partial sums of Ŝ . This is because, according to Lemma 3, Ŝ (K) = R̂(K)[m] for K ≤ m,
implying that the low-order Arnoldi-Ruhe projection would not incur any additional errors for this
case. When K > m, the error bound between Ŝ and R̂(K)[m] consists of two parts: The first part γK
bounding ∥Ŝ − Ŝ (K)∥max is due to the truncation error for the K-th partial sums of Ŝ . The second
part 2(γm − γK) bounding ∥Ŝ (K) − R̂(K)[m]∥max is produced by the low-dimensionality reduction
technique using them-step Arnoldi-Ruhe process.

As an extreme case, when K andm are sufficiently large, the bound

Ŝ − R̂(K)[m]

max → 0, indi-

cating that our low-dimensionality reduction method is convergent. Given a low-order parameter
m, when K → +∞, we have the following corollary:

Corollary 1. Let Ŝ be the exact “cosine-based” SimRank, and let R̂[m] be the solution via them
steps of the Arnoldi-Ruhe process, whose each (a,b)-entry is the limitation of R̂(K)a,b [m] as K →∞, i.e.,

R̂a,b [m] := lim
K→+∞

R̂(K)a,b [m] = (1 − γ)
+∞∑
k=0

γ k
e1
⊤(Hm

k)
⊤
Hm

ke2

Hm
ke1

2

Hm

ke2

2

Then, the gap between R̂[m] and Ŝ is bounded by:

Ŝ − R̂[m]

max ≤ 2γm

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 17

4.3 An Efficient Algorithm for Partial-Pairs “Cosine-based” SimRank Similarity Join
Leveraging Theorems 6 and 7, we next present an efficient algorithm for partial-pairs “cosine-based”
SimRank search, as illustrated in Algorithm 3.

Algorithm 3: Partial-Pairs Cosine-Based SimRank Evaluation (A,X ,Y ,m,K,γ)
Input :graph adjacency matrix A, two node subsets X and Y , low dimensionalitym, number of

iterations K , and decay factor γ .
Output : “cosine-based” SimRank scores {R̂(K)x ,y [m] | ∀(x,y) ∈ X × Y } between X and Y .

1 foreach node x ∈ X do
2 foreach node y ∈ Y do
3 [Qm,Hm] ← Arnoldi-Ruhe (m,A, x,y);
4 initialize u(0) := e1 and v(0) := e2;
5 initialize s := 0;
6 for k := 1, 2, · · · ,K do
7 set u(k) := Hmu(k−1) and v(k) := Hmv

(k−1);
8 set α := ∥u(k)∥2 and β := ∥v(k)∥2;
9 if α , 0 and β , 0 then
10 update u(k) := u(k)/α and v(k) := v(k)/β ;
11 update s := s + γk (u(k))⊤v(k);

12 update R̂(K)x ,y [m] := (1 − γ)s;

13 return {R̂(K)x ,y [m] | ∀(x,y) ∈ X × Y } ;

Algorithm 3 works as follows. For every node-pair (x,y) ∈ X × Y , it first invokes the “Block
Arnoldi-Ruhe Process” in Procedure 2 that compresses the large adjacency matrix A into the
small upper block Hessenberg matrix Hm (Line 3) using a low-dimensional Krylov subspace. Then,
utilising Hm , the algorithm iteratively computes two auxiliary vectors u(k) and v(k) (Lines 4–7) and
their Euclidean norms α and β (Line 8) for K iterations. At each iteration k , the inner product of
the normalized vectors u(k) and v(k), once computed, is dampened by a factor of γ k and aggregated
together to produce s (Line 11). Finally, scaling s by a factor of (1 − γ) yields the scoring result
R̂(K)x ,y [m] (Line 12).

Example 4. Recall graph G in Figure 3, where each node is a paper (indexed by an integer). Given
two node subsets (i.e., two areas of these papers) IR = {1, 2, 4, 8} and DB = {5, 7}, low-order parameter
m = 3, number of iterations K = 4, and decay factor γ = 0.4, we assess the partial-pairs “cosine-based”
SimRank scores between IR and DB, R̂(4)IR×DB[3], via Algorithm 3 as follows:
For each node-pair (e.g., (8, 5)), we first apply the Block Arnoldi-Ruhe technique (Line 3) to obtain

upper block Hessenberg matrix H3 and column-orthonormal matrix Q3:

H3 =



0 0 0 0 0 0
0 0 0 0 0 0

1.414 0.707 0.5 0.224 −0.408 0.112
0 1.581 1.118 0.1 −0.183 0.05
0 0 1.225 0.548 −0.333 0.274
0 0 0 0.8 −0.548 0.4


Q3 =



0 0 0.707 0.316 0 0.158
0 0 0 0.633 −0.577 0.316
0 0 0 0 0.577 0.791
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0.633 0.577 −0.474
0 0 0.707 −0.316 0 −0.158
1 0 0 0 0 0


ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

18 Yu et al.

Next, using H3, we iteratively compute two normalised vectors u(k) and v(k) (Line 10) and scalar s
(Line 11) as follows:

k u(k) v(k) (u(k))⊤v(k) s (Line 11)
0 [1, 0, 0, 0, 0, 0]⊤ [0, 0, 1, 0, 0, 0]⊤ 0 0
1 [0, 0, 1, 0, 0, 0]⊤ [0, 0, 0.408, 0.913, 0, 0]⊤ 0.408 0.163
2 [0, 0, 0.289, 0.646, 0.707, 0]⊤ [0, 0, 0.289, 0.387, 0.707, 0.516]⊤ 0.833 0.297
3 [0, 0, 0, 0.467, 0.853, 0.234]⊤ [0, 0, 0, 0.467, 0.853, 0.234]⊤ 1 0.361

Finally, normalising s at the last iteration by a factor of (1 − γ) (Line 12) produces

R̂(4)7,4[3] = (1 − γ) × s = (1 − 0.4) × 0.361 = 0.216

Similarly, similarities R̂(4)IR×DB[3] for other node-pairs in IR×DB = {1, 2, 4, 8}×{5, 7} can be obtained.
We compare the gap between R̂(4)IR×DB[3] and the original solution Ŝ

(4)
IR×DB via Eqs.(34) and (35) below:

R̂(4)IR×DB[3] =


5 7

1 0.098 0.120
2 0.181 0.216
4 0.193 0.165
8 0.216 0.203

 R̂(4)IR×DB[3] − Ŝ
(4)
IR×DB =


5 7

1 0 0
2 0 0
4 0.0016 0
8 0 0


It can be verified that this gap is bounded by our estimated error derived from Theorem 6:

∥R̂(4)IR×DB[3] − Ŝ
(4)
IR×DB∥max = 0.0016 ≤ 2(γm − γK) = 2 × (0.43 − 0.44) = 0.0768. □

Time Complexity. The total time complexity of Algorithm 3 is bounded byO(|X | |Y |m(|E | +Km)).
This is because, for each node-pair (x,y) ∈ X ×Y , it takesO(m |E |) time for the “Block Arnoldi-Ruhe
Process” to generate the upper block Hessenberg matrix Hm (Line 3). Then, for each loop iteration
(Lines 6–11), it requires O(m2) time to compute u(k) and v(k) (Lines 6–7),O(m) time to evaluate the
Euclidean norms α and β (Line 8), andO(m) time to compute s that involves the inner product ofu(k)
and v(k) (Line 11), which is bounded by O(Km2) for K iterations. Thus, putting these all together,
the total time for computing each node-pair similarity R̂(K)x ,y [m] isO(m |E |+Km2) = O(m(|E |+Km)),
which is dominated by O(|X | |Y |m(|E | + Km)) time in total for |X | × |Y | pairs of nodes.
Space Complexity. The space complexity of Algorithm 3 is dominated byO(m2 + |E |). We analyse
it as follows. Firstly, the memory for the “Block Arnoldi-Ruhe Process” (Line 3) is bounded by
O(m2 + |E |), including O(|E |) space for storing the adjacency matrix A and O(m2) space for Hm .
Then, in the iterative phase (Lines 6–11), O(m) memory is required for storing the vectors u(k) and
v(k). Hence, the total space is bounded by O(m2 + |E | +m), which is dominated by O(m2 + |E |).
Choosing m and K with Guaranteed Error. When one wants to achieve desired accuracy ϵ
such that

Ŝ − R̂(K)[m]

max ≤ ϵ , there are two options to select appropriate values a-priori for
low-dimensionality parameterm and number of iterations K :
1) One option is settingm = K = ⌈logγ ϵ⌉, which is in accordance with Eq.(42a) in Theorem 7.

For example, to guarantee desired accuracy ϵ = 0.001, given γ = 0.6, one can select

m = K = ⌈log0.6 0.001⌉ = 14.

2) Another option is performing δ more iterations relative tom, by setting m = ⌈logγ ϵ
2−γ δ ⌉

and K =m + δ , which is consistent with Eq.(42b) in Theorem 7. For example, to achieve desired
accuracy ϵ = 0.005, given γ = 0.6, we can perform δ = 3 more iterations relative tom, by choosing

m = ⌈log0.6
(0.005
2−0.63

)
⌉ = 12 and K =m + δ = 12 + 3 = 15.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 19

1

2

3

4

5

6

7

8

(a) A Counterexample - Citation Graph G

Pairs #-Rank by S #-Rank by S̃
(6, 6) 1 3
(4, 4) 1 4
(3, 3) 1 8
· · · · · · · · ·

(7, 8) 9 9
(1, 2) 9 10

(b) Top-10 Rankings by S and S̃

Fig. 5. A Citation Graph (a counterexample)

5 SEMANTIC DIFFERENCE
Apart from Jeh and Widom’s SimRank model [19]:

S = max{γP⊤SP, I }, (45)
recent years have witnessed many studies (e.g., [11, 15, 29, 48]) based on Li et al.’s model [29]:

S̃ = γP⊤S̃P + (1 − γ)I . (46)
It is worth mentioning that Li et al.’s SimRank Eq.(46) is essentially Kusumoto et al.’s model
Eq.(7) that approximates the diagonal matrix D with (1 − γ)I . In Section 2, from the computational
perspective, we have shown the difference between Li et al.’s SimRank and Jeh and Widom’s
SimRank, implying that approximating D with (1 − γ)I is not accurate. In this section, we will
explore further the relationship of the two models from the semantic perspective, and devise an
instant formula that can accurately convert from Li et al.’s SimRank S̃ to Jeh and Widom’s SimRank
S . In particular, we will point out that the semantic meaning of Li et al.’s SimRank is more powerful
than that of Jeh and Widom’s SimRank. As such, in Section 3.2, our “cosine-based” SimRank Eq.(30)
employs (1 − γ)I (instead of D) as the “seed” matrix.

5.1 A Fly in the Ointment of [25, 29]
There are two pieces of work [25, 29] that mentioned the relationship between S̃ and S . 1) Li
et al. [29] argued that “S̃ affects only the absolute similarity value of S , but not the relative similarity
ranking of S .” 2) The recent work by Kusumoto et al. [25] states that “S̃ does not much affect the
top-K ranking of S . 5” However, either of them implies a limitation, as disproved by the following
counterexample.

Example 5. Consider graph G in Figure 5a. For decay factor γ = 0.6, the node-pair similarity
rankings by S (Jeh and Widom’s SimRank model [19]) and S̃ (Li et al.’s model [29]) are partially shown
in Figure 5b. From the results, we can discern the following.
1) S̃ does not preserve the relative similarity rankings of S . In particular, for each singleton pair

(e.g., (6, 6), (4, 4), (3, 3)), its similarity score by Jeh and Widom’s SimRank model is always 1, whereas
Li et al.’s model can differentiate {S̃x ,x }x ∈V according to the complexity of the in-neighboring structure
pointing to node x .

2) At least 5 out of top-10 rankings of S are affected by S̃ . Even for non-singleton pairs (e.g., (7, 8) and
(1, 2)), Jeh and Widom’s model is unable to differentiate them since two random surfers starting from
two nodes 7 and 8 (resp. nodes 1 and 2) will not go any further after they meet at node 6 (resp. node 3).
In contrast, for Li et al.’s model, after the random surfers starting from two nodes 7 and 8 meet at node
6, they continue moving against the in-coming edges of node 6 until they meet at node 3 again.

Thus, neither of the statements by [25, 29] is correct. □

5In essence, S ≈ S̃ is equivalent to D ≈ (1 − γ)I .

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

20 Yu et al.

5.2 Semantic Comparisons Between S and S̃

To compare semantics between S and S̃ , we first introduce the following notation:

Definition 3 (Off-diagonal Operator). For square matrix X , let (∗)off be a matrix operator
defined by

(X)off := X − diaд(X).

This notation is introduced to bring new insights into S .

Theorem 8. The similarity S in Jeh and Widom’s model Eq.(45) can be characterized as follows:

S =I + γ (P⊤P)off + γ
2(P⊤(P⊤P)offP)off + · · ·+

+ γ k (P⊤ · · · (P⊤(P⊤P)offP)off · · · P)off︸ ︷︷ ︸
k nested (∗)off

+ · · · (47)

Proof. Applying (∗)off, Eq.(45) can be iterated as

Sk = γ (P
⊤Sk−1P)off + I . (48)

We now construct the iterations: starting with R0 = I ,

Rk = γ
k (P⊤ · · · (P⊤(P⊤P)offP)off · · · P)off︸ ︷︷ ︸

k nested (∗)off

+Rk−1. (49)

Using induction on k , we next show that Sk = Rk (∀k). Clearly, S0 = I = R0. Assume Sk = Rk
holds, we consider

Sk+1 = γ (P
⊤SkP)off + I (using the hypothsis Sk = Rk)

= γk+1
(
P⊤(P⊤ · · · (P⊤P)off · · · P)off︸ ︷︷ ︸

k nested (∗)off

P
)
off + γ (P

⊤Rk−1P)off + I︸ ︷︷ ︸
={using Eq.(48)}

= γk+1
(
P⊤(P⊤ · · · (P⊤P)off · · · P)offP

)
off︸ ︷︷ ︸

(k+1) nested (∗)off

+Rk = Rk+1.

which completes the proof. □

By Theorem 8, S in Eq.(45) is the weighted sums of
(P⊤ · · · (P⊤(P⊤P)offP)off · · · P)off︸ ︷︷ ︸

k nested (∗)off

∀k = 1, 2, · · · (50)

In contrast, S̃ in Eq.(46) is the weighted sums of the terms
(P⊤ · · · (P⊤(P⊤P)P) · · · P)︸ ︷︷ ︸

k nested brackets

∀k = 1, 2, · · · (51)

To investigate the semantic relationship between S and S̃ , we merely need to compare the paths
tallied by (50) and (51), as shown below.

Theorem 9. Given a graph G, the terms in Eq.(50) tally the following paths in G:

x0← x1 ← · · · ← xk−1 ←︸ ︷︷ ︸
k edges

xk → xk+1 → · · · → x2k−1 →︸ ︷︷ ︸
k edges

x2k (52)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 21

k = 1 k = 2

i j i (j) i j i j i (j) i (j)

k = 0

i (j)

Li et al.’s

Variation

Jeh and

SimRank
i (j) i j i j

...

...

...

➁ ➂➀ ➃ ➄ ➅

SimRank

S̃k

Widom’s

Sk

Fig. 6. Different Paths Tallied by S and S̃

where x0, · · · , x2k can be any nodes, but with no repetition of nodes xi and x2k−i allowed, ∀i ∈
{0, 1, · · · , 2k} − {k}. In comparison, the terms in Eq.(51) tally the paths of (52) in G without having
such a constraint on nodes xi and x2k−i .

Proof. By the power property of the adjacency matrix,
(
(Pk)

⊤
Pk

)
i , j tallies the paths of (52)

between i and j. To show the terms in Eq.(50) tally the paths of (52) with the additional constraint,
we use induction on k as follows.

When k = 1, ((P⊤P)off)i , j = (P⊤P)i , j for i , j , and 0 for i = j . Thus, ((P⊤P)off)i , j tallies i ← x → j
with i , j.

Assume that, for the fixed k , the term

Ek := (P⊤ · · · (P⊤(P⊤P)offP)off · · · P)off︸ ︷︷ ︸
k nested (∗)off

tallies the length-2k paths (52) with no repetition of nodes xl and x2k−l (∀l). We now consider the
term Ek+1 for k + 1. Due to (Ek+1)i , j = (P⊤)i ,∗Ek (P)∗, j if i , j, and 0 if i = j, (Ek+1)i , j tallies the
length-(2k + 2) paths concatenated by i ← x0, paths (52), and x2k → j, which is

i ← x0← x1 ← · · · ← xk−1 ←︸ ︷︷ ︸
k edges

xk → xk+1 → · · · → x2k−1 →︸ ︷︷ ︸
k edges

x2k → j

with no repetition of nodes xi and x2k−i and i , j. □

In light of Theorem 9, the semantic relationship between S and S̃ is evident: S̃ often aggregates
more paths than S , and S excludes the paths with self-intersecting nodes that are considered by S̃ .
Figure 6 depicts an illustrative comparison of the paths tallied by (Sk)i , j and (S̃k)i , j for k = 0, 1, 2.

For verification, let us apply (∗)off definition to expand, e.g., the term (P⊤(P⊤P)offP)off as follows:(
(P⊤(P⊤P)offP)off

)
i , j

➂

=
(
(P2)⊤P2

)
i , j

➂ ➃ ➄ ➅

−
(
P⊤diaд(P⊤P)P

)
i , j

➃ ➅

−

−
(
diaд((P2)⊤P2)

)
i , j

➄ ➅

+
(
diaд(P⊤diaд(P⊤P)P)

)
i , j

➅

where a circled number beneath each term is associated with a path numbered in the upper-left
corner of Figure 6.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

22 Yu et al.

i j

➂

i j i j i (j) i (j)

➂ ➃ ➄ ➅

i j

➃

i (j)

➅

i (j) i (j)

➄ ➅

i (j)

➅

= − − +

The following result shows the specific types of paths that are tallied by S̃ but not by S .

Corollary 2. Let P(S) and P(S̃) be the sets of paths tallied by S and S̃ , respectively. Then,
P(S̃) ⊇ P(S), and P(S̃) − P(S) is the set of “special” cycles of length 2k (k = 1, 2, · · ·), with first k
contiguous edges oriented in one direction, and next k contiguous edges in the opposite direction.

5.3 Converting from S̃ to S

Having investigated the semantic relationship between S̃ and S , we next show how to convert from
Li et al. ’s SimRank S̃ to Jeh and Widom’s SimRank S without any loss of accuracy.
It has been noticed from Corollary 2 that Sa,b counts only non-self-intersecting pairs of paths

between nodes a and b, whereas S̃a,b counts all the pairs of paths that include both non-self-
intersecting and self-intersecting ones. The self-intersecting symmetric paths contain at least one
“special” cycle at each intersecting node (e.g., the symmetric paths 7← 6← 4← 3 → 5→ 6→ 8
in Figure 5a contains a “special” cycle 6← 4← 3 → 5→ 6 at the intersecting node 6). It is the
contributions of these “special” cycles that make the similarity values of S̃ and S different. Therefore,
to convert from S̃ to S , our main idea is removing all the similarity contributions of these “special”
cycles from the pairs of paths counted by S̃ .

There are two challenges for quantifying the similarities contributed by these “special” cycles: 1)
Each self-intersecting pair of paths may have more than one intersecting node, implying that there
may exist many “special” cycles in a single pair of paths. Since cycles may have variable length, and
some edges in variable-length cycles may overlap each other, there is a pressing need for an effective
method to avoid tallying duplicate edges in different cycles for each pair of paths. 2) Some “special”
cycles counted by S̃ may have repeated nodes between two branches of a path-pair, leading to such
“special” cycles being degraded into a single “repeated” path (which we call “degenerated cycles”.
For instance in Figure 5a, there is a degenerated cycle 6← 4← 3 → 4→ 6 at the intersecting
node 6, which is degraded into a single “repeated” path 3→ 4→ 6. Another degenerated cycle
is 6 ← 4 → 6, which also reduces to a single “repeated” edge 4 → 6. When such degenerated
cycles reduce to a single “repeated” path (or edge), it is imperative to find a way to differentiate
these “repeated” paths from the original simple paths, which is a nontrivial task.
To address the above challenges, we propose the following theorem that effectively converts

from S̃ to S with no compromise in accuracy.

Theorem 10. Given Li et al.’s SimRank matrix S̃ on graph G, we can obtain Jeh and Widom’s
SimRank matrix S from S̃ as follows:

First, we iteratively construct a sequence of vectors {vl } (l = 0, 1, 2, · · ·):

v0 =
1

1−γ
−−−→
diaд(S̃) − ®1 and vl =

∑∞
k=1 γ

k (Pk ◦ Pk)
⊤
vl−1 (l = 1, 2, · · ·) (53)

Next, letw be an auxiliary vector generated by {vl } as

w =
∑∞
l=0 (−1)

lvl (54)

Then, S can be derived from S̃ as

S = 1
1−γ S̃ − ∆S with ∆S =

∑∞
k=0 γ

k (P⊤)kdiaд (w) Pk (55)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 23

Proof. By definition, Jeh and Widom’s SimRank equation can be rewritten as
S = γP⊤SP ∨ I ⇔ S = γP⊤SP + D with D = I − γdiaд(P⊤SP) (56)

According to Theorem 1, the diagonal correction matrix D in Eq.(55) can be represented as(∑+∞
k=0 γ

k (Pk ◦ Pk)
)⊤−−−→
diaд(D) =

−→1 (57)

In what follows, we shall show that the solution
−−−→
diaд(D) to Eq.(57) is

−−−→
diaд(D) = ®1 −

∑+∞
l=0 (−1)

lvl (58)
To this end, we plug Eq.(58) into the left-hand side of Eq.(57), which produces(∑+∞

k=0 γ
k (Pk ◦ Pk)

)⊤ (
®1 −

(∑∞
l=0 (−1)

lvl

))
=

∑+∞
k=0 γ

k (Pk ◦ Pk)
⊤®1︸ ︷︷ ︸

using Lemma 2

−
∑+∞

k=0
∑+∞
l=0 (−1)

lγ k (Pk ◦ Pk)
⊤
vl︸ ︷︷ ︸

interchange the order of summation

=diaд

(∑+∞
k=0 γ

k (Pk)
⊤
Pk︸ ︷︷ ︸

=1/(1−γ)S̃

)
−

∑+∞
l=0 (−1)

l
(
vl +

∑+∞
k=1 γ

k (Pk ◦ Pk)
⊤
vl︸ ︷︷ ︸

=vl+1

)
= 1

1−γ diaд(S̃) −
(∑+∞

l=0 (−1)
lvl +

∑+∞
l=0 (−1)

lvl+1

)
︸ ︷︷ ︸
=
∑+∞
l=0 (−1)

lvl−
∑+∞
l=1 (−1)

lvl=v0

= 1
1−γ diaд(S̃) −v0 =

®1

Combining this with Eq.(56), we can rewrite Jeh and Widom’s SimRank equation as

S =
∑+∞
l=0 γ

k (P⊤)kDPk with D = I − diaд (w) and w =
∑+∞
l=0 (−1)

lvl

Therefore, it follows that
S =

∑∞
l=0 γ

k (P⊤)k (I − diaд (w))Pk

=
∑∞
l=0 γ

k (P⊤)kPk︸ ︷︷ ︸
=1/(1−γ)S̃

−
∑∞
l=0 γ

k (P⊤)kdiaд(w)Pk︸ ︷︷ ︸
=∆S

= 1
1−γ S̃ − ∆S □

Theorem 10 provides an effective approach through which we can make instant conversion
from Li et al. ’s SimRank S̃ to Jeh and Widom’s SimRank S without any loss of accuracy. The key
intuition underpinning our approach is pictorially depicted in Figure 7. It can be noticed that each
vi (i = 0, 1, 2, · · ·) in Eq.(53) tallies the “special” cycles in which two surfers, starting from the same
node and moving against incoming edges, will meet again at least (i + 1) times. That is, the pair
of paths tallied by vi (i = 0, 1, 2, · · ·) has at least (i + 2) self-intersecting nodes. For instance in
Figure 7, each pair of paths tallied by v0 has at least 2 self-intersecting nodes. To be specific, the
path-pairs tagged by ➂, ➄, ➇ (resp. ➆, ➈, ➉) in v0 have 2 (resp. 3) self-intersecting nodes; and the
path-pair tagged by ➊ in v0 has 4 self-intersecting nodes (i.e., two branches are totally overlapped).
Similarly, the pair of paths tallied by v1 (resp. v2) has at least 3 (resp. 4) self-intersecting nodes.
To guarantee the pairs of paths with exactly 2 self-intersecting nodes (i.e., the start and end

nodes) are the only pairs tallied byw , we use the principle of inclusion and exclusion by setting
w = v0 −v1 +v2 − · · · , which can avoid overcounting or undercounting the path-pairs. For instance,
the pair of paths with 4 self-intersecting nodes, tagged by ➊, should not be counted byw , but ➊
has appeared once in v0, twice in v1, and again once in v2, respectively. Thus, to avoid ➊ appearing
inw , v0 −v1 would undercount the path ➊ once, whereas ➊ in v0 −v1 +v2 can be cancelled out in

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

24 Yu et al.

diag(P>P)

v0

Â Ä Æ

diag((P>)2P 2)

Æ

diag((P>)3P 3)

v1

... ...− − · · · =
Â Ä

...

w

...

Â ÃÁ Å Æ

−

Â Ä Å ÆÀ

=

À Á Ã

... ...

Li et al.’s SimRank S̃

Ä

Jeh and Widom’s SimRank S∆S

P>diag(w)Pdiag(w)

È ÊÇ É

diag(P>diag(P>P)P)

È Ê É Ê

diag(P>diag((P>)2P 2)P)

diag((P>)2diag(P>P)P 2)

Ê

+

diag(P>diag(P>diag((P>)P)P)P)

...

Ç

v2

Fig. 7. Key Intuition Behind Conversion from Li et al. ’s SimRank S̃ to Jeh and Widom’s SimRank S

an appropriate way. As a result, w tallies all the non-degenerate “special” cycles in P(S̃) − P(S)
as specified by Corollary 2, that is, each pair of paths in w has exactly 2 self-intersecting nodes
(i.e., only the start and end nodes in the pair of paths can repeat). Therefore, ∆S in Eq.(55) tallies
the pair of paths with at least 2 self-intersecting nodes, meaning that two surfers, starting from
two distinct nodes (resp. the same node) and moving against incoming edges, will meet more than
(resp. at least) once. Since Li et al. ’s SimRank S̃ counts all the meeting times of the two surfers,
subtracting ∆S from S̃ will result in Jeh and Widom’s SimRank S , in which only the first meeting
time of the two surfers is counted.

6 “COSINE-BASED” SIMRANK BETWEEN TWO GRAPHS
In Section 3, our “cosine-based” SimRank in Eq.(30) is designed for assessing the similarity between
two nodes in one graph. In many real applications, there is a pressing need to evaluate pairwise sim-
ilarities for the nodes of two different graphs. Examples include pattern matching in protein-protein
interaction networks (bioinformatics), chemical compounds identification (cheminformatics), and
bilingual translation (NLP). These inspire us to study the problem of graph similarity search:
Problem (“Cosine-based” SimRank Similarity Search across Two Graphs).
Given two graphsGA andGB , we want to assess the similarity s(a,b) with a ∈ GA and b ∈ GB ,

such that node a in graph GA and node b in graph GB are assessed to be similar if their respective
multi-hop neighbouring structures within GA and GB are similar.
To address the problem, in this section, we generalise the idea of our “cosine-based” SimRank

model (Eq.(30) in Section 3), and propose a new variation for our graph similarity model that can
effectively measure the “cosine-based” similarity for the nodes of two distinct graphs.

6.1 Limitation of Existing “Cosine-Based” SimRank Model Applied to Two Graphs
It is important to note that, if our “cosine-based” SimRank model Eq.(30) is directly applied to
measure the similarity across two graphs, it would produce meaningless scores, as explicated in
the following example:

Example 6. Consider two graphs GA and GB in Figure 8. We want to evaluate the similarities
{s(a,b)}a∈GA ,b ∈GB between each node a in GA and each node b in GB . If we regard GA and GB as
two disconnected components of the whole graph G := GA ∪GB and directly apply our “cosine-based”

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 25

a

b c

a′

b′ c′

d′ e′

GA GB

a

b c

a′

b′ c′

d′ e′

G := GA ∪GB




a b c a′ b′ c′ d′ e′

a 0 1 1 0 0 0 0 0
b 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0
a′ 0 0 0 0 1 1 0 0
b′ 0 0 0 0 0 1 1 0
c′ 0 0 0 0 0 0 1 1
d′ 0 0 0 0 0 0 0 1
e′ 0 0 0 0 0 0 0 0




Adjacency Matrix of G

Disconnected
Components

Fig. 8. Limitation of “cosine-based” SimRank model to assess similarity of nodes across graphs GA and GB .
For any node x ∈ GA and y ∈ GB , since there are no connected paths between x and y, the “cosine-based”
SimRank model applied to G := GA ∪GB would always produce s(x,y) = 0, which is rather counterintuitive.

SimRank model Eq.(30) (or Jeh and Widom’s SimRank model Eq.(45)) to the entire graphG , then these
models would produce zero similarities, i.e., s(a,b) = 0 for all a ∈ GA and b ∈ GB . The reason is that
there are no connected paths between nodes a and b. Mathematically, for example, since

e⊤a

[
(A⊤)k 0
0 (B⊤)k

] [
Ak 0
0 Bk

]
eb = e⊤a

[
(A⊤)kAk 0

0 (B⊤)kBk

]
eb = 0 (∀k ≥ 0, ∀a ∈ GA, ∀b ∈ GB)

our “cosine-based” SimRank model Eq.(30), when applied to G, becomes

s(a,b) = (1 − γ)
∞∑
k=0

γ k
e⊤a

([A
B
]⊤)k [

A
B
]k
eb

[A B

]k
ea

2

[A B

]k
eb

2

= 0 (∀a ∈ GA, ∀b ∈ GB)

which leads to meaningless similarity results. Jeh andWidom’s SimRank implies a similar problem. □

Example 6 indicates that, when nodes a and b are in two disconnected components (i.e., there are
no connected paths between a and b), it is imperative to make modifications to our “cosine-based”
SimRank model Eq.(30) to evaluate similarity for the nodes of two different graphs.

6.2 Generalised “Cosine-Based” SimRank Between Graphs
Before illustrating our generalised “cosine-based” SimRank model to two graphs, we first introduce
the notion of in- and out-linkage matrices between two graphs.

Definition 4. Given two digraphs GA and GB , let nA (resp. nB) be the number of nodes in GA
(resp. GB). The in-linkage matrix E− (resp. out-linkage matrix E+) between GA and GB is a matrix of
the size nA × nB , whose each (i, j)-entry (i ∈ GA, j ∈ GB) is defined as follows:

(E−)i , j = f (|N −i |, |N
−
j |) and (E

+)i , j = f (|N +i |, |N
+
j |),

with f (x,y) =

{ x+y
2×max(x ,y) , if (x,y) , (0, 0);
1, if (x,y) = (0, 0).

(59)

where |N −i | and |N
+
i | denote the in-degree and out-degree of node i , respectively.

Example 7. Recall the two graphs GA and GB in Figure 8. Since |N −c | = 2 and |N −b′ | = 1, it follows
from Eq.(59) that

(E−)c ,b′ =
|N −c |+ |N

−
b′ |

2×max(|N −c |, |N −b′ |)
= 2+1

2×max(2,1) =
3
4 . □

It is worth noticing that the function f (x,y) defined by Eq.(59) has some key properties, as
indicated by Lemma 4.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

26 Yu et al.

ba

(|N−a |, |N−b |) = (3, 3)

ba

E−a,b = 1

(|N−a |, |N−b |) = (4, 2)

E−a,b = 0.75

b

(|N−a |, |N−b |) = (5, 1)

E−a,b = 0.6

a

(|N−a |, |N−b |) = (6, 1)

E−a,b = 0.583

a b

(|N−a |, |N−b |) = (7, 1)

E−a,b = 0.571

a b

Fig. 9. Illustrative examples of Properties 3 and 4 in Lemma 4. The first (resp. last) three subfigures depict
Property 3 for |N−a | + |N

−
b | ≡ 6 (resp. Property 4 for fixing |N−b | = 1 and varying |N−a |). The more symmetric

the in-neighboring structure between nodes a and b, the higher the initial in-linkage similarity value E−a,b .

Lemma 4. For any integers x = 0, 1, 2, · · · and y = 0, 1, 2, · · · , the function f (x,y) defined by
Eq.(59) has the following properties:

(1) f (x,y) is nonnegative, i.e., 0 ≤ f (x,y) ≤ 1. Particularly, f (x,y) = 1 if and only if x = y.
(2) f (x,y) is symmetric, i.e., f (x,y) = f (y, x).
(3) When x + y (= constant) is fixed, f (x,y) is increasing as |x − y | is decreasing.
(4) When x is fixed, f (x,y) is increasing w.r.t. y on the interval y ∈ [0, x], and decreasing w.r.t. y

on the interval y ∈ [x,+∞).

The properties of f (x,y) in Lemma 4 indicate that the in- and out-linkage matrices (E−)i , j and
(E+)i , j in Definition 4 can be regarded as a rudimentary measure of the (local) similarity between
node i ∈ GA and j ∈ GB that is based on i’s and j’s 1-hop in- and out-neighborhood structures only.
For example, as depicted in Figure 9, Properties 3 and 4 imply that (E−)i , j (resp. (E+)i , j) will assess
nodes i and j as similar if their 1-hop in- (resp. out-) neighborhood structures (i.e., the in-degrees
(resp. out-degrees) of i and j) are similar. However, if we simply rely on (E−)i , j and (E+)i , j to evaluate
the similarity between nodes i and j in two different graphs, the multi-hop neighborhood structures
of i and j will be ignored. Therefore, in what follows, we will regard (E−)i , j and (E+)i , j as the
(1-hop) seed similarity values, and propagate them iteratively through our “cosine-based” SimRank
model that can effectively capture the multi-hop neighborhood information.

Utilising in- and out-linkage matrices E− and E+, we next generalise our “cosine-based” SimRank
model to evaluate the similarity of nodes between two graphs.

Definition 5. Let A (resp. B) be the adjacency matrix of graphGA (resp.GB), and E+ (resp. E−) be
the out- (resp. in-) linkage matrix betweenGA andGB defined by Eq.(59). The generalised “cosine-based”
SimRank similarity S̃a,b between node a in GA and node b in GB is defined by

S̃a,b = (1 − γ)
∞∑
k=0

γ k

(
β ×

e⊤a (A
⊤)

kE+Bkeb

Akea

1

Bkeb

1 + (1 − β) × e⊤aA

kE−(B⊤)keb

(A⊤)kea

1

(B⊤)keb

1
)

(60)

where β ∈ [0, 1] is a user-controlled weight factor that balances the importance of in- and out-links.
By default, β is set to 0.5, indicating the contributions from in- and out-links are of equal importance.

Definition 5 effectively quantifies the similarity between nodes of different graphs, which is a
generalisation of Definition 2 that measures the similarity between nodes in the same graph. Similar
to Definition 2, our extension in Definition 5 also considers multi-hop neighbourhood information
of nodes a and b to evaluate the similarity between a and b. If we set β = 1,A = B, E+ = E− = I
and replace L2-norm ∥ ∗ ∥2 with L1-norm ∥ ∗ ∥1 in Eq.(60), then S̃a,b reduces to Ŝa,b in Eq.(30). The
differences between the model in Definition 2 and our extension in Definition 5 are three-fold:

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 27

(1) To connect each k-hop neighbour of node a with that of node b, Definition 2 directly con-
catenates e⊤a (A⊤)

k and Akeb , which can be viewed as using identity matrix I to link them:

e⊤a (A
⊤)

k
Akeb =

(
e⊤a (A

⊤)
k)︸ ︷︷ ︸

hopk (a)

·I ·
(
Akeb

)︸ ︷︷ ︸
hopk (b)

=
∑
i ∈G

(
Akea

)
i ·

(
Akeb

)
i

whereas Definition 5 utilises in-linkage matrix E+ (resp. out-linkage matrix E−) to concatenate
e⊤a (A

⊤)
k and Bkeb (resp. e⊤aAk and (B⊤)keb), e.g.,(

e⊤a (A
⊤)

k)︸ ︷︷ ︸
hopk (a)

·E+ ·
(
Bkeb

)︸ ︷︷ ︸
hopk (b)

=
∑
i ∈GA

∑
j ∈GB

(
Akea

)
i · (E

+)i , j ·
(
Bkeb

)
j

This subtle difference enables our extended model in Definition 5 to avoid producing zero
similarity even if there are no connected paths between a and b, which is due to the intro-
duction of E+ (resp. E−) that allows e⊤a (A⊤)

kE+Bkeb (resp. e⊤aAkE−(B⊤)keb) not being zero
even if there is no intersection between a’s and b’s k-hop neighbourhoods, as will be shortly
shown by Theorem 11.

(2) To normalise the terms e⊤a (A⊤)
kE+Bkeb and e⊤aAkE−(B⊤)keb , Eq.(60) utilises L2-norm ∥ ∗ ∥2

as opposed to Eq.(30) using L1-norm ∥ ∗ ∥1. The reason is that the in- and out-linkage matrices
E− and E+ would maximally become two matrices of all 1s. Consequently, E+ ≤ 1 · 1⊤ implies

e⊤a (A
⊤)

k
E+︸︷︷︸
≤1·1⊤

Bkeb ≤
(
e⊤a (A

⊤)
k1

)︸ ︷︷ ︸
=
∑
i∈GA (Aea)i

·
(
1⊤Bkeb

)︸ ︷︷ ︸
=
∑
j∈GB (Beb)j

= ∥Akea ∥1 · ∥B
keb ∥1 (61)

Similarly, it follows from E− ≤ 1 · 1⊤ that

e⊤aA
kE−(B⊤)

k
eb ≤

(
e⊤aA

k1
)
·
(
1⊤(B⊤)keb

)
= ∥(A⊤)kea ∥1 · ∥(B

⊤)keb ∥1 (62)

Note that the equality signs “=” in Eqs.(61) and (62) are attainable when E+ and E− are two
matrices of all 1s, i.e.,GA andGB are two identical complete graphs. Thus, L1-norm ∥ ∗ ∥1 is a
tight bound for our extended model in Definition 5. In comparison, Definition 2 uses L2-norm
∥ ∗ ∥2 for normalisation since the identity matrix I is used for concatenating e⊤a (A⊤)

k and
Akeb . As a result, according to the Cauchy–Schwarz inequality, we have(

e⊤a (A
⊤)

k)
· I ·

(
Akeb

)
=

(
e⊤a (A

⊤)
k)
·
(
Akeb

)
≤ ∥Akea ∥2 · ∥A

keb ∥2 (63)

The “=” sign in the last inequality of Eq.(63) is attainable when Akea = Akeb (∀k), i.e., a = b.
(3) S̃a,b considers the contributions from both incoming and outgoing multi-hop neighbourhoods

by introducing a user-specified weight factor β that balances the importance between in- and
out-links, as opposed to Definition 2 that hinges only on incoming multi-hop neighbourhoods.

Based on the above analysis, we next provide the following theorem, which highlights the key
advantage of our extended model in Definition 5 over its counterpart in Definition 2.

Theorem 11. To evaluate the similarity between nodes of two different graphs, our generalised
“cosine-based” SimRank similarity model in Eq.(60) will alleviate the “zero-similarity” problem of the
existing “cosine-based” SimRank model in Eq.(30).

Proof. For any graph G and node x in G, we denote by

hop−k (x |G) = {i ∈ G |(A
kex)i > 0} and hop+k (x |G) = {i ∈ G |((A

⊤)kex)i > 0}

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

28 Yu et al.

the k-hop in- and out-neighbor set of node x in graph G, respectively. Let GA and GB be two
graphs, and a and b be two nodes in GA and GB , respectively. Applying hop−k (x |G) and hop+k (x |G)
to Definition 5 yields

e⊤a (A
⊤)kE+Bkeb =

∑
i ∈GA

∑
j ∈GB

(
hop−k (a |GA)

)
i · (E

+)i , j ·
(
hop−k (b |GB)

)
j

e⊤aA
kE−(B⊤)keb =

∑
i ∈GA

∑
j ∈GB

(
hop+k (a |GA)

)
i · (E

−)i , j ·
(
hop+k (b |GB)

)
j

From the above equations, it can be discerned that hop−k (a |GA)∩hop−k (b |GB) = � does not imply that∑
i ∈GA

∑
j ∈GB

(
hop−k (a |GA)

)
i · (E

+)i , j ·
(
hop−k (b |GB)

)
j = 0. Thus, even if there are no connections

between a and b, the terms e⊤a (A⊤)kE+Bkeb and e⊤aAkE−(B⊤)keb could be non-zeros.
In contrast, setting G := GA ∪GB and applying hop−k (x |G) to Definition 2 yields

e⊤a (
[
A

B

]⊤
)k

[
A

B

]k
eb =

∑
i ∈G

(
hop−k (a |G)

)
i ·

(
hop−k (b |G)

)
i

=
��hop−k (a |GA) ∩ hop−k (b |GB)

�� = 0

The last equality holds because a and b are in two different connected componentsGA andGB ofG .
Therefore, Eq.(60) alleviates the “zero-similarity” problem of Eq.(30). □

6.3 Efficient Computation of Generalised “Cosine-Based” SimRank Similarity
To compute our generalised “cosine-based” SimRank S̃a,b in Eq.(60), we can use the following
iterative method:

S̃ (k)a,b = S̃ (k−1)a,b + (1 − γ)γ k
(
β(u(k))⊤E+v(k) + (1 − β)(u ′(k))⊤E−v ′(k)

)
with S̃ (0)a,b = 0 (64)

where the auxiliary vectors u(k) and v(k) are iteratively obtained by{
u(0) = ea

u(k) = Au (k−1)
∥Au (k−1) ∥1

{
v(0) = eb
v(k) = Bv (k−1)

∥Bv (k−1) ∥1

{
u ′(0) = ea

u ′(k) = A⊤u′(k−1)

∥A⊤u′(k−1) ∥1

{
v ′(0) = eb

v ′(k) = B⊤v ′(k−1)

∥B⊤v ′(k−1) ∥1

(65)

It can be readily verified that the k-th iterative similarity S̃ (k)a,b in Eq.(64) converges to the exact
solution Ŝa,b in Eq.(60) as k → +∞. The computational complexity of the above iterative method
in Eqs.(64) and (65) is bounded byO(K(|E | + |V |)) time andO(|E | +K |V |) memory for K iterations,
which is comparable to our “cosine-based” SimRank computation via Eqs.(34) and (35).

Example 8. Recall the two graphs GA and GB in Figure 8, with the in-linkage matrix E− and
out-linkage matrix E+ obtained in Example 7. Then, setting decay factor γ = 0.8 and weight factor
β = 0.5, we leverage Eqs.(64) and (65) to iteratively compute our generalised “cosine-based” SimRank
similarity, e.g., S̃a,c ′ = 0.284, between node a in GA and node c ′ in GB as follows:

k v(k) u(k) v ′(k) u ′(k) s(k)(a, c ′)
0 [1, 0, 0]⊤ [0, 0, 1, 0, 0]⊤ [1, 0, 0]⊤ [0, 0, 1, 0, 0]⊤ 0
1 [0, 0, 0]⊤ [.5, .5, 0, 0, 0]⊤ [0, .5, .5]⊤ [0, 0, 0, .5, .5]⊤ 0.150
2 [0, 0, 0]⊤ [1, 0, 0, 0, 0]⊤ [0, 0, 1]⊤ [0, 0, 0, 0, 1]⊤ 0.220
3 [0, 0, 0]⊤ [0, 0, 0, 0, 0]⊤ [0, 0, 0]⊤ [0, 0, 0, 0, 0]⊤ 0.284

It is discerned that, after 3 iterations, the auxiliary vectors v(3),u(3),v ′(3),u ′(3) become zeros. Thus, the
resulting similarity score S̃ (3)a,c ′ = 0.284 is convergent, being the exact solution.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 29

Similarly, the similarities for the remaining pairs of nodes across the two graphs GA and GB are

Ŝ =


a′ b′ c ′ d ′ e ′

a .334 .284 .284 .195 .1
b .195 .335 .310 .335 .195
c .1 .195 .284 .284 .334

 □

Due to commonality of the algebraical structure between our original “cosine-based” SimRank
(Eqs.(34) and (35)) and our extension (Eqs.(64) and (65)), our optimization techniques proposed
in Section 4 for partial-pairs “cosine-based” SimRank computation can also be slightly modified
to adapt to our generalised “cosine-based” SimRank model. We omit the details here and will
demonstrate in Section 7 the efficiency of our Krylov-subspace based accelerative techniques when
they are incorporated into our generalised “cosine-based” SimRank model.

7 EXPERIMENTAL STUDIES
7.1 Experimental Settings
We use both real-life datasets (WikiV, CaD, CitH, WebN, ComY, SocL) and synthetic data (SYN).
(1) Real-life Data.We use 8 real-life datasets. Six datasets are taken from Stanford Large Network
Collection (SNAP)6, and two large datasets are crawled at .uk and .it domains, which are publicly
available from The Laboratory for Web Algorithmics (LAW)7. Their details are described below:

Datasets (Abbr.) |V | |E | |E |/|V | Type
Wikipedia (WikiV) 8,297 103,689 12.49 Directed

small DBLP Co-authorship (CaD) 15,683 55,064 5.31 Undirected
HEP Citation Graph (CitH) 34,546 421,578 12.20 Directed

Web Graph (WebN) 325,729 1,497,134 4.59 Directed
medium Youtube Graph (ComY) 1,134,890 2,987,624 2.63 Undirected

LiveJournal Friendship (SocL) 4,847,571 68,993,773 14.23 Directed

large .uk Domain Crawled in 2002 (UK02) 18,520,486 298,113,762 16.09 Directed
.it Domain Crawled in 2004 (IT04) 41,291,594 1,150,725,436 27.86 Directed

(2) Synthetic Data. To produce SYN, we adopt a scale-free graph generator based on the Barabasi-
Albert model8, including growth and preferential attachment. (a) Growth means that the number
of nodes in the network increases over time; (b) Preferential attachment means that the more
connected a node is, the more likely it is to receive new links. This generator takes as input two
parameters: (|V |, |E |).
(3) Query Generator. (i) To evaluate partial pairs of similarities {s(x,y)}x ∈A,y∈B , we select the set
of queries (A,B) based on two criteria:

(a) Importance coverage is to ensure the selected (A,B) to comprehensively contain a broad range
of any possible pairs. To this end, we first sort all nodes in V in descending order by PageRank
(PR), and split them into 10 buckets: nodes with PR ∈ [0.9, 1] are in the first bucket; nodes with
PR ∈ [0.8, 0.9) the second, etc. We next randomly select ⌈ 110 |A|⌉ (resp. ⌈

1
10 |B |⌉) nodes from each

bucket to A (resp. B). Thus, (A,B) covers both important and non-important pairs.
(b) Overlapping coverage is to guarantee that (A,B) contains node-pairs with many multi-hop

in-neighbors overlapped. To achieve this, we first sort node-pair (a,b) in descending order via a
scoring function:9 fa,b :=

∑5
k=1

|hopk (a)∩hopk (b) |
|hopk (a)∪hopk (b) |

. We then split all pairs into 5 buckets: pairs with
6http://snap.stanford.edu/data/index.html
7http://law.di.unimi.it/index.php
8http://graphstream-project.org/doc/Generators/
9All paths of length up to 10 between a and b can be tallied by our queries, ensuring results accurate to 2 decimal places.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

30 Yu et al.

fa,b ∈ [4, 5] are in the first bucket; pairs with fa,b ∈ [3, 4) the second, etc. For each bucket, we next
sort node-pair (a,b) in descending order based on the value of дa,b :=

∑5
k=1 |hopk (a) ∩ hopk (b)|,

and select top ⌈ 15 |A| |B |⌉ node-pairs from each bucket. Hence, (A,B) covers node-pairs with many
multi-hop in-neighbors in common. (ii) Similarly, to evaluate single-source s(⋆,q), the query set
for q can be sampled as “importance coverage”.
(4) Algorithms. We implement the following algorithms:

Algorithms Description
SR# our “cosine-based” SimRank scheme (in Section 3.2)
PSR# our enhanced SR# using Krylov subspace (in Section 4)
GSR# our generalised SR# to assess node similarity across two graphs (in Section 6)
AGSR# our generalised SR# using Krylov subspace (in Section 6.3)
MSR Kusumoto’s scalable SimRank search algorithm [25]
SMAT single-source SimRank (matrix decomposition) [11]
OIP all-pairs SimRank (fine-grained clustering) [47]
PSUM all-pairs SimRank (partial sums memoization) [34]
JSR Jeh and Widom’s SimRank [19]
LSR Li et al.’s SimRank [29]
SR∗ SimRank* (tally asymmetric paths) [49]
SR++ SimRank++ (revised “evidence factor”) [1]
RS RoleSim (automorphism equivalence) [22]
RWR Random Walk with Restart
COS classic cosine similarity

(5) Parameters. We set the following parameters by default, unless stated otherwise: (a) decay
factor γ = 0.6, as suggested in [34]. (b) number of iterations k = 10, which guarantees the
resulting output S (k) accurate to at least 2 decimal places. (c) weight factor β = 0.5, indicating the
contributions from in- and out-links of GSR# are of equal importance, as suggested in Definition 5.
(6) Evaluation Metrics. To evaluate the quality of similarity search, we use the following metrics:

(a) Normalized Discounted Cumulative Gain (NDCG) at position p is defined as follows:

NDCGp := 1
IDCGp

∑p
i=1

2reli −1
log2 (1+i)

,

where reli is the graded relevance at position i , and IDCGp is the ideal DCG ranking.
(b) Spearman’s ρ rank-order correlation is defined by ρ := 1 − 6

n(n2−1)
∑n

i=1 d
2
i , where di is the

difference of two ranks at position i , and n is the number of elements.
(c) Kendall’s τ coefficient measures the ordinal association between two rankings, given by

τ := 1
0.5n(n−1) × [(# of concordant pairs) − (# of discordant pairs)].

where 0.5n(n − 1) =
(n
2
)
is the binomial coefficient for the number of ways of selecting two items

from n items.
(7) Ground Truth. (a) To label ground truth for similar users on WikiV, a manual evaluation
is carried out by 50 professional members who have accumulated a long history of activity on
Wikipedia. Each pair of users is considered by an evaluator, and is assigned a score on a scale from
1 to 4, with 1 meaning irrelevant, 4 meaning completely relevant, and 2 and 3 meaning “somewhere
in between”. The judgement is based on evaluator’s knowledge and public votes on promotion of
individuals to adminship. (b) To mark ground truth labels for similar authors on CaD, 30 members
from 5 database groups are invited. Each pair of authors is given a score based on the collaboration
distance between authors. The judgement relies on evaluator’s knowledge and “separations” of

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 31

SR# PSR# LSR (MSR) JSR SR++ RS COS RWR SR∗

WikiV CitH CaD
0.5

0.6

0.7

0.8

0.9

1

A
v
e.

N
D
C
G

2
0
0

WikiV CitH CaD
0.2

0.4

0.6

0.8

1

A
v
e.

S
p
ea
rm

a
n
’s
ρ

WikiV CitH CaD
0.2

0.4

0.6

0.8

1

A
v
e.

K
en
d
a
ll
’s
τ

(a) Retrieval Quality over Real Datasets (Measured by NDCG, Spearman’s ρ, Kendall’s τ)

SR# PSR# LSR JSR SR++ RS COS RWR SR∗

0.4

0.6

0.8

1
300 Sample Queries

Q
u
er
y
C
o
v
er
a
g
e
(%

)

WikiV
CitH
CaD

(b) Query Coverage

SR# PSR# LSR (MSR) JSR SR++ RS COS RWR SR∗

WikiV CitH CaD
0.5

0.6

0.7

0.8

0.9

1

A
ve
.
N
D
C
G

2
0
0

WikiV CitH CaD
0.2

0.4

0.6

0.8

1

A
ve
.
S
p
ea
rm

an
’s
ρ

WikiV CitH CaD
0.2

0.4

0.6

0.8

1

A
ve
.
K
en
d
al
l’
s
τ

WikiV CitH CaD
0

0.2

0.4

0.6

0.8

1

300 Sample

Queries

%
of

C
om

m
on

M
u
lt
i-
h
op

s
In
-n
ei
gh

b
or
s
C
ov
er
ag
e

(c) Overlapping Coverage

5 4-5 3-5 2-5
0

0.2

0.4

0.6

0.8

1

300 Sample Queries

of Hops of In-neighbors (Depths)

%
o
f
S
a
m
p
le

Q
u
er
ie
s

(d) Depth Coverage

Fig. 10. Quantitative Results on Retrieval Quality over Real-life Datasets

Co-Author Path in Microsoft Academic Search.10 (c) To establish the ground truth of similar articles
on CitH, 28 research associates from the School of Physics are hired. Each pair of articles is assigned
a score based on evaluator’s knowledge on paper abstracts and citation relations.
All experiments are run with an Intel Core(TM) i7-4700MQ CPU @ 2.40GHz CPU and 64GB

RAM, on Windows 8.

7.2 Evaluation on RetrievalQuality
7.2.1 Quantitative Results on Retrieval Quality. We first evaluate the high search quality of SR#

and PSR# against SR++, JSR, LSR11, RS, COS, RWR, SR∗ on realWikiV, CitH, CaD. For each dataset,
we randomly issue 300 queries for s(∗,q) and s(∗, ∗) via importance coverage criterion, and use 3
metrics (NDCG, Kendall, Spearman) to evaluate each method, respectively. Figure 10a shows the
average quantitative results. (1) In all cases, SR# exhibits higher semantic quality than the other
methods. This is because SR# can avoid “connectivity trait” issue by utilizing a “cosine” kernel
recursively in a SimRank-like style, whereas COS considers only direct overlapped in-neighbors,
and JSR and LSR both have a “connectivity trait” problem. (2) In several cases, the NDCG200 of SR++
(on CitH) and RS (on CaD) may even worse than that of JSR and LSR. This is because, for SR++, its
evidence factor will be 0 whenever there are no common direct in-neighbors; for RS, automorphism
equivalence has priority over connectivity in similarity assessment. Thereby, SR++ and RS may not
resolve the “connectivity trait” problem. SR∗ is capable of resolving the zero-similarity problem of
SimRank. Thus, its NDCG200 is higher than JSR and LSR. However, SR∗ also has the “connectivity
trait” problem of SimRank, leading to its retrieval quality lower than SR# and PSR#.

Figure 10b compares the percentage of queries from the 300 queries sample (based on importance
coverage criterion) that SR#, SR++, JSR, LSR, RS, COS, RWR, SR∗ provide similarities for on real
WikiV, CitH, CaD, respectively. For each dataset, SR# substantially improves the coverage of
JSR/LSR (∼0.73) and SR++/RS/SR∗ (∼0.81) to ∼0.95. This can be considered as expected, since (a)
the “connectivity trait” problem of JSR and LSR will downgrade similarities of node-pairs with
10http://academic.research.microsoft.com/VisualExplorer
11For semantics evaluation, MSR produces the same similarity values as LSR, since [25] approximates D by (1 − γ)I .

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

32 Yu et al.

SR# / PSR# JSR LSR SR++ COS RWR RS

1 Jens Graupmann Sergej Sizov Ioannis Aekaterinidis Sergej Sizov Jens Graupmann Martin Theobald Wolfgang Bock
2 Michael Biwer Ioannis Aekaterinidis Sergej Sizov Michael Biwer Michael Biwer Matthias Bender Peter H. Cramer
3 Patrick Zimmer Michael Biwer Jens Graupmann Patrick Zimmer Patrick Zimmer Christian Zimmer Thomas Licht
4 Sergej Sizov Patrick Zimmer Michael Biwer Jens Graupmann Matthias Bender Sebastian Michel Gerd Pttjer
5 Matthias Bender Jens Graupmann Patrick Zimmer Matthias Bender Christian Zimmer Jens Graupmann Bernd Wallat
6 Christian Zimmer Matthias Bender Christian Zimmer Christian Zimmer Sergej Sizov Ralf Schenkel Peter Weging
7 Dimitrios Mavroeidis Christian Zimmer Matthias Bender Stefan Siersdorfer Peter Triantafillou Peter Triantafillou Michael Weigt
8 George Tsatsaronis Stefan Siersdorfer Stefan Siersdorfer Sebastian Michel Martin Theobald Surajit Chaudhuri Martin R. Frank
9 Peter Triantafillou Sebastian Michel Sebastian Michel Peter Triantafillou Dimitrios Mavroeidis Michael Biwer Xiaofeng Meng
10 Stefan Siersdorfer Peter Triantafillou Peter Triantafillou Ralf Schenkel George Tsatsaronis Patrick Zimmer Tok Wang Ling

(a) Top-10 Similar Authors w.r.t.Query = “Gerhard Weikum”

SR# / PSR# JSR / LSR SR++ COS RWR RS

1 Nitin Thaper SungRan Cho SungRan Cho Amit Marathe Nick Koudas Xiaofeng Meng
2 Piotr Indyk Amit Marathe Amit Marathe Nitin Thaper S. Muthukrishnan Shahram Ghandeharizadeh
3 Amit Marathe Nitin Thaper Nitin Thaper Piotr Indyk Sudipto Guha Dimitrios Georgakopoulos
4 Sudipto Guha Piotr Indyk Piotr Indyk Sudipto Guha Graham Cormode Michael Stonebraker
5 SungRan Cho P. G. Ipeirotis P. G. Ipeirotis SungRan Cho Flip Korn Mikal Ziane
6 Ting Yu David Toman David Toman Ting Yu H. V. Jagadish Achim Pick
7 David Toman Luis Gravano Luis Gravano P. G. Ipeirotis Sihem Amer-Yahia Alexandra Poulovassilis
8 P. G. Ipeirotis Irina Rozenbaum Irina Rozenbaum David Toman Ting Yu Martin R. Frank
9 Luis Gravano Yunyue Zhu Ting Yu Rui Zhang Y. Papakonstantinou Jeanette P. Schmidt
10 Tianqiu Wang Ting Yu Yunyue Zhu Luis Gravano Amit Marathe Charles T. Melson
...
...

...
...

...
...

...
13 Michael Rabinovich Sudipto Guha Sudipto Guha Andrey Balmin Theodore Johnson Mary Ann Walker
...
...

...
...

...
...

...
39 N. Wiwatwattana Michail Vlachos Xiaosong Ma Monica Scannapieco Nitin Thaper Rory Patterson

(b) Top-10 Similar Authors w.r.t.Query = “Divesh Srivastava”

Fig. 11. Qualitative Comparison: Retrieval Quality on DBLP Coauthorship Dataset

high connectivity, and (b) SR++ can only partially fix the “connectivity trait” issue within 1-hop in-
neighborhood. Note that SR∗ also has the “connectivity trait” problem of SimRank, but its coverage
is not as low as JSR/LSR. This is because SR∗ fixes the zero-similarity problem of JSR/LSR, thereby
enhancing its retrieval quality to ∼0.81.
Figure 10c depicts the percentage of queries with overlapped multi-hop in-neighbors from

the 300 queries sample (via overlapping coverage criterion) that SR#, SR++, JSR, LSR, RS, COS,
RWR, SR∗ are able to identify on real WikiV, CitH, CaD, respectively. (1) For each dataset, SR#

significantly achieves∼0.95 coverage of commonmulti-hop in-neighbors, much superior to JSR/LSR
(∼0.20), SR++(∼0.51), COS(∼0.41), and SR∗(∼0.6). The reason is that our “cosine” kernel provides
an appropriate normalization factor ∥ ∗ ∥2 that can recursively fix the “connectivity trait” problem.
In contrast, the ∥ ∗ ∥1 normalization factor of JSR/LSR excessively squeezes the range of similarity
[0, 1]. (2) Under overlapping coverage criterion, COS (∼0.41) outperforms JSR/LSR (∼0.20) since
COS is not limited by the “connectivity trait” problem.
To further evaluate the search depth of SR#, SR++, JSR, LSR, RS, COS, RWR, SR∗, we first

apply overlapping coverage criterion to generate 2,000 queries, and then generate 300 queries via
importance coverage criterion, and classify them into 4 groups, e.g., “4-5” collects queries (a,b)
whose path length between a and b is 8–10. Figure 10d depicts the search depth of all the methods
onWikiV. (1) For each group, SR++ and COS have the lowest quality of depth search among all the
methods, since they cannot capture the paths of length > 2 between nodes. (2) SR# achieves the
highest quality, and its superiority is more pronounced in the groups that have longer paths. This
tells us that the “connectivity trait” issue has a large influence on node-pairs with long paths.

7.2.2 Qualitative Case Study: Retrieval Quality on DBLP. Figure 11 illustrates the retrieval quality
for finding the top-K most similar coauthors with respect to any given query on DBLP collaboration
graph (CaD). We use different similarity models for ranking. Due to space limitations, we just detail

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 33

the qualitative results on top-15 coauthors with respect to the query (Gerhard Weikum, and Divesh
Srivastava), respectively.
When the query is “Gerhard Weikum”, the qualitative ranking results of SR#, PSR#, SR++, JSR,

LSR, RS, COS, RWR are shown in Figure 11a. We discern that (1) for top-10 rankings, SR# and PSR#

produce the same results, implying the accuracy loss of our Krylov subspace-based method PSR#

for dimensionality reduction is negligibly small for top-K rankings as it compromises only a little
(or no) accuracy for achieving substantial speedups. (2) Moreover, the most similar coauthors of
Gerhard Weikum are effectively captured by SR# and PSR#, highlighting the better search quality
of these ranking models. For instance, Jens Graupmann is ranked 1st by SR# and PSR#, which is
consistent with the fact that Jens has many common coauthors with Gerhard as they had close
collaborations on the development of the SphereSearch Engine at the Max Planck Institute for
Informatics in 2005. (3) Jens ranks lower in JSR and LSR, since both Jeh’s and Li et al. ’s SimRank
models adopt an unreasonable weight factor in the denominator for normalising the common
coauthors in the nominator, leading to the “connectivity trait” problems for similarity ranking.
(4) Jehs ranks slightly higher in SR++ than in JSR, indicating that SR++ partially alleviates the
“connectivity trait” problem by introducing an evidence factor in the one-hop neighbourhood. In
comparison, SR# and PSR# can well resolve the “connectivity trait” problem of SimRank by refining
the weight factor for the neighbourhood of multiple hops, thereby exhibiting more reliable search
quality than SR++. (5) Sergej ranks lower than Martin Theobald by RWR since Sergej had fewer
papers co-authored with Gerhard. However, there are many multi-hop common co-authored papers
between Sergej and Gerhard, which can be effectively evaluated by SR#. (6) Sergej ranks lower in
COS than in SR#, LSR, and JSR as COS captures only one-hop common neighbouring information
between Sergej and Gerhard. (7) RS is based on automorphically structural equivalence of nodes
for similarity assessment rather than connectivity of paths between nodes. Therefore, the top-K
ranking results of RS differ from all other ranking models, which reflects the “role-based” similarity
information.
When the query is “Divesh Srivastava”, the results are illustrated in Figure 11b. We notice that

(1) Nitin Thaper and Divesh have many one-hop and multi-hop coauthors in common, which can
be well taken into consideration by SR#, highlighting its better search quality for ranking. (2) The
rankings of Nitin in JSR and LSR are lower than in SR#, due to the “connectivity trait” problems of
JSR and LSR in noramlising the number of common coauthors. (3) Nitin ranks higher in COS but
lower in RWR. This is because Nitin and Divesh have more one-hop common coauthors but fewer
coauthored papers. (4) For the query “Divesh”, the top-30 rankings of JSR and LSR are the same,
indicating that Kusumoto et al.’s strategy of approximating D with (1 − γ)I for SimRank, in a few
cases, may get good approximation results for the purpose of top-K rankings. However, this is not
always the case. For example, when the query is “Gerhard”, even the top-10 rankings of JSR and
LSR are different. In this case, our varied-D model proposed in Section 2.3 provides an accurate way
of evaluating Jeh and Widom’s SimRank model, which makes JSR scalable on any sizable graphs.
(5) The ranking of SR++ is almost the same as LSR except a slightly ranking difference in the 9th
and 10th places, due to the evidence factor used by SR++ that can in part alleviate the “connectivity
trait” problem of SimRank. However, the effect of evidence factor on ranking quality improvement
is not as obvious as SR# because the evidence factor of SR++ is only effective for one-hop common
neighbours.

7.2.3 Effects of m on Retrieval Quality of PSR#. Figure 12 depicts the accuracy of PSR# under
different low dimensionalitym ∈ {5, 10, 15} on six real datasets, as compared with SR#. We fix the
number of iterationsk = 40 and randomly pick up (|A|, |B |) = (100, 50) queries for small andmedium
datasets (CitH, WebN, ComY, SocL), and (|A|, |B |) = (100, 10) queries for large datasets (UK02 and

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

34 Yu et al.

m = 5 m = 10 m = 15

CitH WebN ComY SocL UK02 IT04

10−1

10−3

10−5

10−7

of Iterations

k = 40

E
rr
o
r
o
f
P
S
R
#

Fig. 12. Varyingm for PSR#

on Six Real Datasets

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Query Graph Size |GB |

Ja
cc
ar
d
In
d
ex

GSR#

AGSR#

COS/JSR/SR∗

Fig. 13. Varying |GB | for
GSR# and AGSR# on CaD

WebN SocL ComYWikiV CaD CitH
10−10

10−6

10−2

E
rr
or

of
A
G
S
R
#

(mA,mB)
(15 , 5)
(20 , 5)
(25 , 10)
(25 , 15)

Fig. 14. Varying (mA,mB) for AGSR#

on Six Real Datasets

IT04). The error of PSR# is measured by the maximum difference of similarities between PSR# at
low dimensionalitym and SR# over the query sets (A,B). From the results, we can discern that (1)
on each dataset, the error of PSR# decreases when the dimensionalitym is growing. Particularly, on
WebN and ComY, whenm increases to 15, the error of PSR# drops to 0, which implies that PSR#

can produce the exact SR# similarity scores without any loss of accuracy by resorting to only a
15-dimensional Krylov subspace, highlighting the effectiveness of our dimensionality reduction
techniques. (2) Moreover, whenm increases from 5 to 15, we see that the errors of PSR# reduced
on medium and large datasets (e.g., ComY, UK02) are more apparent than those on small datasets
(CitH). Hence, on large datasets, the accuracy of PSR# is more sensitive tom.

7.2.4 Effects of |GB | on Retrieval Quality of GSR# and AGSR#. Next, we are going to evaluate the
search quality of (1) our generalised “cosine-based” SimRank similarity algorithm GSR# across
two graphs GA and GB , and (2) its accelerative version AGSR# which is based on our Arnoldi
dimensionality reduction techniques. We regard the graph in each real dataset asGA, and randomly
sample a subgraph from GA, denoted as GB . To obtain good (unbiased) sample graph GB , our
sampling strategy follows the “forest fire” evolutionary approach [28]. We pick a seed node at
random, and start “burning” its outgoing edges and the corresponding nodes. If an edge gets burned,
the node at the other endpoint has a chance to burn its own edges, and so on recursively till the
size of each sample graph meets our expectations.

Figure 13 compares the semantic accuracy of our generalised “cosine-based” SimRank similarity
algorithms (GSR# and AGSR#) with that of other models (e.g., COS, JSR, SR∗) for assessing pairwise
similarities across two graphsGA andGB . For each graphGA in the real datasets, we sample several
graphs for GB , with their vertex sizes ranging varying from 20 to 100. The results on CaD are
reported in Figure 13. Note that the results on other real datasets are similar and omitted here. To
measure the semantic accuracy among the different algorithms, we regard the node setVB of graph
GB as the ground truth, and expect to find the node subset P(J) in graph GA that best pairs all
nodes in VB through the scoring results of each search algorithm J . If the retrieved set P(J) is
close to the ground truth VB , it indicates that the algorithm J has good semantics in producing
reliable similarity scores for pairing nodes between GA and GB . To be specific, we run GSR# and
AGSR# to evaluate the pairs of similarities SA,B := {Sa,b }a∈GA and b ∈GB

across graphs GA and GB ,
and perform other algorithms (COS, JSR, SR∗) to assess SA,B between two node sets A and B in
the union graph (GA ∪GB). Based on the similarity results SA,B (J) from each algorithm J , we
first construct a complete bipartite graph B(J) = (VA ∪VB, E) with nodes ofGA (denoted asVA) on
one side and nodes of GB (denoted as VB) on the other side. Each edge (a,b) in the bipartite graph
B(J) carries a weight value of Sa,b (J), which is the similarity score Sa,b returned by algorithm J .
We then apply the Hungarian algorithm on B(J) to find a matching of maximum weight in B(J)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 35

that pairs each node in GB with a node in GA, which produces a node subset of VA, denoted as
P(J) := {x ∈ VA | x is paired with node in VB via the maximum weight matching of B(J)}

We finally use Jaccard index, defined by Jaccard
(
P(J),VB

)
:= |P (J)∩VB |
|P (J)∪VB |

, to measure the closeness
between the set P(J) and the ground truth VB . The higher Jaccard similarity, the larger overlap
between P(J) and VB , meaning that SA,B (J) returned by algorithm J is more reliable since the
maximum weight matching over SA,B (J) can better pair the nodes between GA and GB .

From the results in Figure 13, we discern that (1) with the increasing size of the query graph GB
from 20 to 100, the Jaccard indices of GSR# and AGSR# also increase and are stable between 0.8 and
1, being consistently much higher than the other competitors. This indicates that our generalised
“cosine-based” SimRank similarity model yields semantically meaningful scoring results across two
graphs. (2) The semantic accuracy of GSR# is slightly higher than that of AGSR#. This is because
AGSR# is a dimensionality reduction algorithm which would sacrifice a little accuracy for fast
speedup. (3) The other similarity search algorithms (COS, JSR, SR∗) always produce zero Jaccard
scores regardless of the size of the query graphGB , implying that the similarity scores produced
by these algorithms cannot find the best matching to better pair the pairwise nodes across two
graphs. These undesirable semantic results are due to the fact that COS, JSR, SR∗ always produce
zero similarity values between two nodes if they belong to two different disconnected components.

7.2.5 Effects of (mA,mB) on RetrievalQuality of AGSR#. Figure 14 depicts the maximum error of the
similarity values computed by AGSR# relative to those evaluated by GSR# over all the query pairs
on every real dataset. Varying low dimensionalitymA for graphGA from 15 to 25 andmB for graph
GB from 5 from 15, we observe that (1) for allmA andmB , the errors of AGSR# are consistently
below 0.01, being acceptably small in practice. This indicates our Arnoldi-based dimensionality
reduction techniques, when applied to GSR#, compromise only a little accuracy for a dramatic
increase (up to over one order of magnitude) in the speed of similarity retrieval. (2) On each dataset,
a mild increase in (mA,mB)may also result in orders-of-magnitude decrease in the error of AGSR#.

7.2.6 Effects of k on RetrievalQuality of PSR#. Figure 15 analyses the sensitivity of retrieval quality
relevant to k for ranking top-100 similar authors w.r.t. a given query on DBLP (CaD). Due to space
limitations, we only report the resultsw.r.t. two queries (“GerhardWeikum” and “Divesh Srivastava”)
since tendencies for other queries and datasets are similar. For each query, we vary k from 5 to 20 for
PSR#, and compare their top-100 similarity rankings with those using the baseline SR#. To ensure
the similarity scores of SR# to be accurate enough as a baseline, we set the maximum number of
iterations for SR# to 100 so that SR# values can achieve a high precision of γ 100+1 = 0.6100+1 < 10−22.
In the ranking tables, the authors highlighted in red mean that their ranking positions in PSR#

for a given k are perturbed from the baseline SR#, where the numbers in the bracket of each red
cell represent the relative deviation of the ranking positions of PSR# with different k w.r.t. SR#. We
notice that (1) for query “Gerhard Weikum” (resp. “Divesh Srivastava”), when k increases from
5 to 20, the top-30 (resp. top-15) rankings of PSR# are exactly the same as the baseline SR#. This
indicates that k is insensitive to the quality of top-K ranking particularly when top-K is very
small (e.g., top-15). (2) However, for the rankings below 30, the deviation in PSR# rankings is more
sensitive to k . Generally, the smaller k , the more ranking positions deviated in PSR#. For example,
for query “Gerhard Weikum” in Figure 15a, in PSR#, there are more than 15 red cells for k = 5, 4
for k = 10, and only 2 for k = 20, respectively. This is consistent with our intuition since a small
number of iterations k achieve less accurate scores for PSR#, thereby leading to more perturbations
in the ranking quality. Similar trends hold for query “Divesh Srivastava” in Figure 15b.

The choice of k often depends on the dataset, our requirements for accuracy and computational
time, and the size of top-K ranking. For example, from our DBLP experiments in Figure 15, if we

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

36 Yu et al.

PSR#
SR#

k = 5 k = 10 k = 20
1 Nitin Thaper Nitin Thaper Nitin Thaper Nitin Thaper
2 Piotr Indyk Piotr Indyk Piotr Indyk Piotr Indyk
.
30 H. V. Jagadish H. V. Jagadish H. V. Jagadish H. V. Jagadish
31 Xiaosong Ma Jungchul Woo [↑ 1] Xiaosong Ma Xiaosong Ma
32 Jungchul Woo Chulyun Kim [↑ 1] Jungchul Woo Jungchul Woo
33 Chulyun Kim Xiaosong Ma [↓ 2] Chulyun Kim Chulyun Kim
34 Theodore Johnson Theodore Johnson Theodore Johnson Theodore Johnson
.
43 V. Shkapenyuk V. Shkapenyuk V. Shkapenyuk V. Shkapenyuk
44 Fang Du A. K. H. Tung [↑ 6] Fang Du Fang Du
45 E. D. Lazowska Tamraparni Dasu [↑ 2] Stelios Paparizos [↑ 1] Stelios Paparizos [↑ 1]
46 Stelios Paparizos Stelios Paparizos E. D. Lazowska [↓ 1] E. D. Lazowska [↓ 1]
47 Tamraparni Dasu Fang Du [↓ 3] Tamraparni Dasu Tamraparni Dasu
48 Cinda Heeren E. D. Lazowska [↓ 3] Cinda Heeren Cinda Heeren
49 Leonard Pitt Cinda Heeren [↓ 1] Leonard Pitt Leonard Pitt
50 A. K. H. Tung Leonard Pitt [↓ 1] A. K. H. Tung A. K. H. Tung
51 Alin Deutsch Alin Deutsch Alin Deutsch Alin Deutsch
.
111 Shyh-Kwei Chen Shyh-Kwei Chen Shyh-Kwei Chen Shyh-Kwei Chen
112 S. Seshadri Elaine Qing Chang [↑ 5] S. Seshadri S. Seshadri
113 Srinivas Ashwin Terence Ho [↑ 5] Srinivas Ashwin Srinivas Ashwin
114 Varun Kacholia Beng Chin Ooi [↑ 13] Varun Kacholia Varun Kacholia
115 Rushi Desai S. Seshadri [↓ 3] H. Karambelkar [↑ 1] Rushi Desai
116 H. Karambelkar Srinivas Ashwin [↓ 3] Rushi Desai [↓ 1] H. Karambelkar
117 Elaine Qing Chang R. Ramakrishnan [↑ 7] Elaine Qing Chang Elaine Qing Chang

(a) Query = “Gerhard Weikum”

PSR#
SR#

k = 5 k = 10 k = 20
1 Jens Graupmann Jens Graupmann Jens Graupmann Jens Graupmann
2 Michael Biwer Michael Biwer Michael Biwer Michael Biwer
.
16 A. P. Buchmann A. P. Buchmann A. P. Buchmann A. P. Buchmann
17 Andreas Thor Daniel A. Keim [↑ 1] Andreas Thor Andreas Thor
18 Daniel A. Keim Andreas Thor [↓ 1] Daniel A. Keim Daniel A. Keim
19 Michael Gillmann Gautam Das [↑ 5] Michael Gillmann Michael Gillmann
20 Wolfgang Wonner Peter Muth [↑ 5] Wolfgang Wonner Wolfgang Wonner
21 Harald Schning Achim Pick [↑ 5] Harald Schning Harald Schning
22 Peter Zabback Michael Gillmann [↓ 3] Peter Zabback Peter Zabback
23 Erhard Rahm Wolfgang Wonner [↓ 3] Gautam Das [↑ 1] Gautam Das [↑ 1]
24 Gautam Das Harald Schning [↓ 3] Erhard Rahm [↓ 1] Erhard Rahm [↓ 1]
25 Peter Muth Peter Zabback [↓ 3] Martin L. Kersten [↑ 2] Martin L. Kersten [↑ 2]
26 Achim Pick Erhard Rahm [↓ 3] Peter Muth [↓ 1] Peter Muth [↓ 1]
27 Martin L. Kersten Martin L. Kersten Achim Pick [↓ 1] Achim Pick [↓ 1]
28 Patrick Valduriez Patrick Valduriez Patrick Valduriez Patrick Valduriez
.
88 Utkarsh Srivastava Prasanna Ganesan [↑ 3] Utkarsh Srivastava Utkarsh Srivastava
89 Bin Chen Panagiotis Karras [↓ 21] Bin Chen Bin Chen
90 Kyuseok Shim Shawn R. Jeffery [↑ 2] Kyuseok Shim Kyuseok Shim
91 Prasanna Ganesan Hans-Peter Kriegel [↓ 11] Y. Papakonstantinou [↑ 2] Prasanna Ganesan
92 Shawn R. Jeffery Bryan Smith [↓ 7] Prasanna Ganesan [↓ 1] Peter A. Boncz [↑ 3]
93 Y. Papakonstantinou Meikel Pss [↓ 6] Peter A. Boncz [↑ 2] Y. Papakonstantinou

(b) Query = “Divesh Srivastava”

Fig. 15. Sensitivity Analysis of Retrieval Quality w.r.t. k on DBLP Dataset

want to retrieve top-30 most similar authors, we can choose k = 10 because (1) when k increases
from 5 to 10, the accuracy of PSR# is significantly increased. (2) However, when k continues to
grow from 10 to 20, there is only a slight improvement in PSR# accuracy (e.g., for query “Gerhard

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 37

0.5

0.6

0.7

0.8

0.9

1

|GA| = 10

S
im

il
ar
it
y
s(
G

A
,G

B
)

GSR#

MSR/COS

5 10 50 100 500 1K 5K
0

Size of |GB |

Fig. 16. Similarity of GSR# on
Graphs with Different Scales

SR# MSR PSUM OIP SR∗ SMAT

WebN SocL ComY WikiV CaD CitH
0.01

101

104
of Iterations

k = 10

× × × ×E
la
p
se
d
T
im

e
(S
ec
)

Fig. 17. Time for Single-Source
Similarity Search on Real Datasets

WebN
(50000

cols)

SocL
(1000

cols)

ComY
(10000

cols)

WikiV CaD CitH

101

103

105 # of Iterations

k = 10

× × ×

E
la
p
se
d
T
im

e
(S
ec
)

Fig. 18. Time for Partial-Pairs &
All-Pairs Search (WikiV, CaD, CitH)

Weikum”, there are 4 red cells for k = 10 and 2 for k = 20), but more computational time is required
as the number of iterations k is doubled.

7.2.7 Case Study of GSR# on Two Graphs with Different Scales. We next provide a case study,
showing the effectiveness of GSR# for dealing with the situation where “two nodes may not
share a similar local structure, but GSR# is capable of assessing them as similar”. Formally, let us
experimentally consider the following case: “Two fully connected graphsGA andGB are of different
scales, but GSR# is able to effectively capture their similarity.”

We fix the number of nodes inGA with |VA | = 10, and vary the number of nodes inGB with |VB |
ranging from 5 to 5K. SinceGA andGB are fully connected graphs, the generalised “cosine-based”
SimRank matrix betweenGA andGB , denoted as S(GA,GB), is of size |VA | × |VB | whose elements are
of the same similarity scores. Thus, Figure 16 reports the same value of S(GA,GB) for every pair of
graphs (GA,GB), where x-axis denotes the node size ofGB , and y-axis denotes the similarity value
of S(GA,GB). From the results, we see that GSR# can effectively capture the similarity between two
graphs of different scales, as opposed to the existing SimRank that assesses them as totally dissimilar.
This is because GSR# introduces the in- and out-linkage matrices as the seed similarity scores, and
propagates them iteratively through our “cosine-based” SimRank model. In contrast, SimRank only
relies on the local connectivity structure of two nodes. Moreover, for the fixed |VA | = 10, when
|VB | varies from 10 to 5K, the similarity score S(GA,GB) decreases from 1 to 0.5; When |VB | varies
from 5 to 10, the similarity score S(GA,GB) increases from 0.75 to 1. This is consistent with our
basic intuition - the more noticeable the difference in scales betweenGA andGB , the less similarity
scores they will have. The highest similarity is reached when GA and GB are of the same size
(i.e., |VA | = |VB | = 10).

7.3 Evaluation on Time Efficiency
7.3.1 Computational Time of SR#. Figure 17 illustrates the running time of SR#, MSR, PSUM, OIP,
SR∗, SMAT for single-source s(∗,q) on 6 real datasets. (1) In all cases, SR# always substantially
outperforms the other methods. This is because SR# can eliminate duplicate computations for
maximal sharing, whereasMSR computes each term separately. (2) PSUM, OIP, SR∗, SMAT will
crash on large WebN, SocL, ComY, due to the memory allocation. On WikiV and CaD, they are
3-4 orders of magnitude slower than SR#, since their iterative models to compute s(∗,q) rely on
all-pairs outputs of the previous iteration.
Figure 18 shows the time of SR#, MSR, PSUM, OIP, SR∗ for all-pairs s(∗, ∗) on 6 real datasets.

(1) Only SR# andMSR survive on all datasets, whereas PSUM, OIP, SR∗ fail on largeWebN, SocL,
ComY, due to the memory allocation. Notice that, forWebN, SocL, ComY, we report the time for
50K,1K,10K columns (randomly chosen from the entire similarity matrix), respectively, though
SR#, MSR can potentially run for weeks. (2) MSR is slower than others as it sacrifices speed for

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

38 Yu et al.

5 10 15 20 25 30
0

1K

2K

3K

4K

of Iterations k

E
la
p
se
d
T
im

e
(s
ec
)

SR#

MSR

Fig. 19. Time vs. # of
Iterations k on SocL

2 5 10 15 20 25
0

100

200

300

|V | = 1M

k = 10

Graph Density (|E|/|V |)
E
la
p
se
d
T
im

e
(s
ec
)

SR#

MSR

Fig. 20. Time vs. Graph
Density |E |/|V | on SYN

CitH WebN ComY SocL UK02 IT04
0.01

101

104

of Iterations

k = 40

T
im

e
P
er

P
a
ir

(S
ec
)

PSR# (m = 5)
PSR# (m = 10)
PSR# (m = 15)
SR#

Fig. 21. Average Time Per Node-Pair for
PSR# and SR# on Real Datasets

scalability. In contrast, SR# not only scales well on large graphs, but also has comparable speed to
those of PSUM, OIP, SR∗.

Figure 19 presents the impact of the number of iterations k on the time of SR# and MSR. When
k grows from 5 to 30, the time of SR# does not increase significantly (just from 42s to 301s), as
opposed to the time of MSR growing from 152s to 3744s. The reason is thatMSR contains many
duplicate computations among different iterations, whereas SR# can merge these results after
rearranging the computation order. It is consistent with our analysis in Subsection 2.4.

Figure 20 demonstrates the impact of network density on the computational time of SR# andMSR
on synthetic data. Fixing |V | = 1, 000, 000 and k = 10, we generate a synthetic dataset by increasing
the graph density from 2 to 25. (1) When the density increases, the time of both algorithms will
increase. (2) For dense graphs, the speedup for SR# is significantly higher than MSR, due to the
number of iterations with a huge influence on MSR compared with SR#. This is in agreement with
the complexity of SR# andMSR.

7.3.2 Computational Time of PSR#. To evaluate the high efficiency and scalability of our enhanced
version PSR# for partial-pairs similarity assessment on large-scale graphs, we conduct the following
additional experiments, and adopt more sizable real datasets (e.g.,UK02 and IT04) with up to billions
of edges. Since our experiments in Subsection 7.3.1 have demonstrated that SR# outperforms the
existing competitors (SR++, JSR, LSR, RS, COS, RWR, SR∗), we only compare PSR# with SR# (the
best-known competitor) in our additional experiments.

Figure 21 compares the computational time of SR# and PSR# on 6 real datasets. For each medium
(resp. large) dataset, we randomly choose (|A|, |B |) = (100, 50) (resp. (|A|, |B |) = (100, 10)) pairs as
queries for partial-pairs similarity search. On each dataset, fixing the number of iterations k = 40,
we vary low dimensionalitym ∈ {5, 10, 15} for PSR#, and compare their average CPU time required
for retrieving the similarity of each pair of nodes. Our results show that (1) on each dataset, for any
low dimensionalitym ∈ {5, 10, 15}, PSR# is consistently 2–8 times faster than SR#. For instance,
PSR# (m = 5) is 8.2 times faster than SR# on SocL. This is because PSR# constructs a low-order
Krylov subspace (2m × 2m, with m ≪ n) for efficient “cosine-based” SimRank search through
Arnoldi iterations, which substantially reduces the search time, as opposed to SR# that performs all
the iterations in the original space (n × n). (2) On every dataset, whenm increases from 5 to 15, the
running time of PSR# also grows, due to the increasing size of the Krylov subspace. This is well
consistent with our time complexity analysis of Algorithm 3 in Section 4.3.
Figure 22 shows the impact of low dimensionality (m) and the number of iterations (k) on the

computational time of PSR# over real datasets, as compared with the time of SR#. Fixing the size of
the query sets (|A|, |B |) on each dataset, we vary the number of iterations k from 40 to 100. Due to
similar trends, we report the results only on three datasets (WikiV, WebN, and UK02). It can be
discerned that (1) on each dataset, with the growing number of iterations k , the computational

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 39

PSR# (m = 5) PSR# (m = 10) PSR# (m = 15) PSR# (m = 20) SR#

40 60 80 100
0

50

100

150

200
|A| = 100

|B| = 50

Varying k on WikiV

E
la
p
se
d
T
im

e
(S
ec
)

40 60 80 100
0

1K

2K

3K

4K

5K

6K
|A| = 100

|B| = 50

Varying k on WebN

E
la
p
se
d
T
im

e
(S
ec
)

40 60 80 100
0

8

16

24

32
|A| = 100

|B| = 10

>32 hours

Varying k on UK02

E
la
p
se
d
T
im

e
(H

o
u
r)

Fig. 22. Effects of Iteration Number k and Low Orderm for PSR# on CPU Time over Real-life Datasets

PSR# (m = 5) PSR# (m = 10) PSR# (m = 15) SR#

50 100 150 200
0

50

100

150 k = 40

|A| = 50

Varying |B| on WikiV

E
la
p
se
d
T
im

e
(S
ec
)

50 100 150 200
0

1K

2K

3K

4K

5K
k = 40

|A| = 50

Varying |B| on WebN

E
la
p
se
d
T
im

e
(S
ec
)

50 100 150 200
0

4

8

12 k = 40

|A| = 50

>13 hours

Varying |B| on UK02

E
la
p
se
d
T
im

e
(H

o
u
r)

Fig. 23. Effects of Query Size |A| × |B | and Low Orderm for PSR# on CPU Time over Real-life Datasets

time of PSR# for any fixedm increases quite gently, and remains almost stable whenm is small,
whereas the time of SR# increases rapidly in particular when k becomes large. This is because the
iterations performed by PSR# are in the small Krylov subspace, whose low dimensionality (m) is far
less than the number of nodes (n) of the graph. As a result, the time for performing the iterations
on the small Krylov subspace (2m× 2m) is much smaller than the time for iteratively generating the
Krylov space on the original space (n × n), leading to insensitivity of k to the computational time
of PSR#. In comparison, the time of SR# is more sensitive to k because more iterations performed
by SR# are on the large original space (n × n). (2) On each dataset, given the number of iterations k ,
PSR# becomes slower with the growth of dimensionalitym, but for anym ∈ {5, 10, 15, 20}, PSR#

still runs much faster than SR#. The larger k , the bigger difference of time between PSR# and SR#.
This conforms to our time complexity analysis of Algorithm 3 in Section 4.3. (3) With the increasing
size of the datasets, the superiority of PSR# over SR# becomes more noticeable. For instance, when
k = 60, on large UK02, the gap of the running time between PSR# (m = 5) and SR# is far more than
27.4 hours because PSR# (m = 5) only spends 4.7 hours, whereas SR# does not stop running after
32 hours. In comparison, on small WikiV, the time difference between PSR# (m = 5) and SR# is
dramatically decreased to only 1.4 minutes. This highlights the scalability of PSR# on the growing
number of iterations k over massive graphs. (4) Whenm = 20 and k = 40, we can see from each
dataset that PSR# is even slower than SR# as expected because PSR# not only requires 40 iterations
to create the Krylov subspace that is not small, but also performs additional iterations on this Krylov
subspace to get the results. If m was increased above ⌈k/2⌉, this would make PSR# establish a
“high-dimensional subspace” to approximate the (low) original space, leading to the “dimensionality
expansion” efficacy of PSR#. In practice,m is often set to be moderately smaller than ⌈k/2⌉.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

40 Yu et al.

WebN SocL ComYWikiV CaD CitH
0.001

0.01

0.1

1

10

102

k = 30
mA = 15
mB = 5

T
im

e
P
er

P
a
ir

(S
ec
)

GSR#

AGSR#

Fig. 24. Time of GSR# and
AGSR# on Real Datasets

SR# MSR PSUM OIP SR∗

WebN
(50000

cols)

SocL
(1000

cols)

ComY
(10000

cols)

WikiV CaD CitH

100

102

104
k = 10

× × ×M
em

o
ry

(M
B
)

Fig. 25. Memory of SR# for Single Source &
All-Pairs Search on Real Datasets

5 10 15 20 25

0.5

1

1.5

of Iterations k

M
em

o
ry

(G
B
) SR#

MSR

Fig. 26. Effects of k on
Memory of SR# over SocL

To evaluate partial-pairs similarities {s(a,b)}∀a∈A and ∀b ∈B between two query sets A and B,
Figure 23 investigates how the computational time of PSR# is affected by the size of queries
(|A| × |B |) and low dimensionality (m). We fix the size of the query set |A| = 50 and the number of
iterations k = 40, and vary the size |B | of the query set from 50 to 200, and low dimensionalitym
from 5 to 15 for PSR#. Due to similar trend, we report the results on three datasets (WikiV, WebN,
and UK02). It is observed that (1) on each dataset, whenm is fixed, the computational time of PSR#

increases linearly when the query size |B | is growing. This agrees well with our computational
complexity analysis of Algorithm 3 in Section 4.3. (2) More importantly, the largerm, the more rapid
growth rate of the time for PSR#, highlighting the higher scalability and computational efficiency
of our Krylov subspace-based approach for smaller setting of low dimensionalitym. (3) In all cases,
when |B | increases, the growth rate of the time for SR# is the fastest as compared with those of
PSR# for any m ∈ {5, 10, 15}. Therefore, SR# is not scalable well to sizable query sets on large
graphs, as expected. (4) On large datasets, the disparity of the time between PSR# and SR# is more
pronounced. This indicates the effectiveness of our dimensionality reduction techniques that make
PSR# highly scalable over sizable graphs.

7.3.3 Computational Time of GSR# and AGSR#. Figure 24 compares the computational time of
GSR# and AGSR# on real datasets. We randomly pick 150 pairs {(a,b)}a∈GA and b ∈GB

across two
graphsGA andGB for similarity assessment through GSR# and AGSR#, respectively. For AGSR#,
since |GA | > |GB | on every real dataset, we set low dimensionalitymA = 15 for GA andmB = 5
forGB . For each graph GA in the real datasets, we sample several graphs forGB , with their vertex
sizes ranging over {10, 30, 100, 300, 1000, 3000}. Due to similar tendency of the performance over
different GB , we just report the results of GSR# and AGSR# in the case of |GB | = 30. The results on
average time for each node-pair taken by GSR# and AGSR# are reported in Figure 24, respectively.
We see that (1) both GSR# and AGSR# scale well on each dataset. The larger dataset, the more
running time required, which conforms with our time complexity analysis in Section 6.3. Even on
large dataset SocL with 68 million edges, it takes only 4.2 seconds for AGSR# and 43.9 seconds for
GSR#, highlighting the scalability of our generalised “cosine-based” SimRank algorithms on large
graphs. (2) AGSR# is constantly 5.1–10.4 times faster than GSR#, which is due to the effectiveness of
our Arnoldi dimensionality reduction method. Noticeably, the speedup achieved by AGSR# is more
apparent on larger datasets. For instance, on small CaD and CitH, AGSR# is about 6.1–6.7 times
faster than GSR#, whereas on large ComY and SocL, the speedup of AGSR# increases to 8.9–10.4
times. This is because, with an increase in graph size, GSR# spends more time for every iteration
on the graph with the original dimension, in contrast with AGSR# that only iteratesmA andmB
times on the original graph to construct a low-dimensional Krylov subspace and performs the rest
of the iterations in the small Krylov subspace, thereby saving much computational cost.

7.4 Evaluation on Memory Efficiency

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 41

PSR# (m = 5) PSR# (m = 10) PSR# (m = 15) SR#

CitH WebNComY SocL UK02 IT04
106

108

1010 # of Iterations
k = 40

Real Datasets

M
em

or
y
(B

y
te
s)

50 100 150 200
106

107

108

|A| = 50

k = 40

Varying |B| on WebN

M
em

or
y
(B

y
te
s)

40 60 80 100
106

108

1010

|A| = 100

|B| = 10

Varying k on UK02

M
em

or
y
(B

y
te
s)

Fig. 27. Memory of PSR# on Real-life Datasets

7.4.1 Memory Efficiency of SR#. Figure 25 shows the memory of SR#, MSR, PSUM, OIP, SR∗
on six real datasets. The results are quite similar for both single-source and all-pairs similarity
computations. (1) For large WebN, SocL and ComY, only SR# and MSR survive, highlighting their
scalability. (2) For each dataset, SR# requires slightly more memory thanMSR because it requires to
store the iterative diagonal correction matrix Dk . This additional memory is negligible, as compared
with the memory requirements for these datasets.

Figure 26 reports the impact of the iteration number k on the memory of SR# and MSR on SocL.
The results on other datasets are similar, and thus are omitted here. (1) When k varies from 5 to 25,
the memory requirements of SR# andMSR increase, since they need to memorize the k intermediate
vectors from previous iterations, as expected. (2) The disparity in the memory between SR# and
MSR is due to storing Dk .

7.4.2 Memory Efficiency of PSR#. Figure 27 depicts the memory of SR# with PSR# under different
settings of low dimensionalitym ∈ {5, 10, 15} on real datasets. We first compare the memory of
SR# and PSR# on six real datasets. Fixing the number of iterations k = 40, we randomly select
(|A|, |B |) = (100, 50) (resp. (|A|, |B |) = (100, 10)) pairs as queries for each medium (resp. large) real
dataset. The results are illustrated in Figure 27 (left). When increasing m from 5 to 15 for SR#

on each dataset, we can discern that (1) the memory of PSR# is slightly increasing, due to the
increasing size of the upper block Hessenberg matrix Hm that entails more space to be memorised
after Arnoldi decomposition. (2) In all cases, PSR# has consistently comparable memory usage with
SR#. With the growing size of datasets, the memory gap between PSR# and SR# becomes negligibly
small.
Next, on each real dataset, we vary the size of queries and see how this affects the memory

of PSR#. Due to the similar tendency on each dataset, we only report the results on WebN, as
shown in Figure 27 (middle). We can see that, when the query size |B | increases from 50 to 200,
the memory usage of PSR# (for each fixedm) remains quite stable. This is because the size of our
Krylov subspace is mainly determined by the low dimensionalitym and the number of nodes n
in the graph. When the similarity over each query is computed, the memory used by our Krylov
subspace w.r.t. to this query will be released for generating the Krylov space w.r.t. the next query.
Thus, no additional space is required to compute similarities for different queries.

Finally, on every dataset, we investigate the effect of the number of iterations (k) on the memory
of PSR#. We fixed query size (|A|, |B |) = (100, 10) and report the results on UK02 only. The results
on other datasets are similar, and omitted here for space interests. It can be observed that, when k
grows from 40 to 100, the memory of PSR# for any fixedm is insensitive to the increasing number
of iterations, as expected. The reason is that, once constructed, our Krylov subspace can be reused
for all the subsequent iterations. Consequently, increasing k leads to extra time to perform more
iterations w.r.t. the upper block Hessenberg matrix Hm on the small Krylov subspace, which is
insensitive to memory space.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

42 Yu et al.

WebN SocL ComYWikiV CaD CitH
100

105

1010

k = 30
mA = 15
mB = 5

M
e
m
o
ry

(B
y
te
s)

GSR#

AGSR#

Fig. 28. Memory of GSR# and
AGSR# on Six Real Datasets

WebN SocL ComY WikiV CaD CitH
0.6

0.7

0.8

0.9

1

K
en
d
a
ll
’s
τ

top 50
top 200
top 500

Fig. 29. Ranking Comparison of
Relative Order Between LSR and JSR

Fig. 30. Top-30K Rankings
by LSR and JSR on WikiV

7.4.3 Memory Efficiency of GSR# and AGSR#. Figure 28 reports the memory consumption required
by GSR# and AGSR#, respectively, on each real dataset. It is discerned that (1) when the size of the
graph is growing, the memory requirement for each algorithm also increases. This agrees well with
our space complexity analysis in Section 6.3. (2) Moreover, on each dataset, the memory required
by GSR# is always a bit smaller than that by AGSR#. The additional space consumed by AGSR# is
due to the temporary storage of the generated Krylov subspace. In comparison, GSR# takes less
memory space but entails far more time for similarity search as it performs all the iterations in the
original space, with no need of the extra memory to build the Krylov subspace.

7.5 Evaluation of Semantic Difference Between LSR and JSR
7.5.1 Relative Order Comparison. Figure 29 compares the relative order between LSR and JSR for
the top K results on 6 real datasets (K = 50, 200, 500). The order gap is measured by Kendall’s τ .
(1) For different graphs, the quality of the relative order is irrelevant to top K size. For instance,
on SocL, top 500 (0.94) is better preserved than top 200 (0.91) and top 50 (0.9), whereas on CaD,
top 500 (0.84) is worse than both top 200 (0.9) and top 50 (0.92). (2) On each dataset, the average
Kendall’s τ for top 50 is 0.77–0.92, which indicates that LSR does not maintain the relative rank of
JSR, even for top 50. Thus, approximating D by (1 − γ)I would adversely affect the top K ranking.

Further, a qualitative result onWikiV is depicted in Figure 30, where x (resp.y) axis is the ranking
by JSR (resp. LSR). Other datasets also statistically exhibit similar phenomena. (1) Many points below
the diagonal imply that low-ranked node-pairs by JSR have greater likelihood to get promoted to a
high rank of LSR. This association does not imply a (near) linear relationship between the rankings
of JSR and LSR. (2) For high top-K ranking (e.g., K = 15), the top 15 of JSRmay be inconsistent with
those of LSR. Hence, the relative order preservation of JSR and LSR hinges on network structure.

7.5.2 Relative Error Comparison. To validate the correctness of our formulae in Theorem 10 that
effectively convert from Li et al. ’s SimRank similarity S̃ to Jeh and Widom’s SimRank similarity S ,
Figure 32 compares the k-th iterative error of our conversion formulae in Theorem 10 with that of
the naive iterative model performed by JSR. Note that the k-th iterative error of our formulae in
Theorem 10 arises from our replacement of the infinite sums with the first k-th partial sums when S
is converted from S̃ via Theorem 10. To measure the error, the exact solution S to Jeh and Widom’s
SimRank model is obtained by performing JSR after k = 100 iterations because the accuracy bound
proposed by Lizorkin et al. [34], |S(a,b) − Sk (a,b)| ≤ γ k+1 = 0.6101 = 3.91 × 10−23, implies that Sk
with k = 100 can guarantee similarity values accurate to at least 20 decimal places for γ = 0.6.
When varying the number of iterations k from 1 to 20 onWikiV, we notice that (1) the k-th iterative
errors of both methods decrease to 0, indicating the correctness of our conversion formulae in
Theorem 10. (2) Moreover, for each iteration k , the k-th iterative error of our conversion formulae
is consistently smaller than that of JSR. The reason that, unlike Theorem 10 that starts from Li

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 43

1 3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

of Iterations k

E
rr
o
r

MSR

SR#

Est. Bound γk+1

Fig. 31. Absolute Error of
(ϵdiag + ϵiter) vs. k

1 4 7 10 13 16 19
0

0.2

0.4

0.6

0.8

1
·10−2

of Iterations k
E
rr
or

Conv from LSR
JSR

Fig. 32. Relative Error to
Convert from LSR to JSR

WebNSocLComY CaD WikiV CitH
0

0.2

0.4

0.6

0.8

1
82.7%

62.3%

78.1%

41.5%44.4%

56.4%

%
o
f
D
u
b
io
u
s
P
a
ir
s

Fig. 33. % of Pairs with “Connectivity
Trait” Problems on Real Datasets

et al. ’s SimRank similarity S̃ to get Jeh and Widom’s solution S , JSR starts from the identity matrix
I which is less close to S than S̃ to S .

7.5.3 Absolute Error Comparison. Figure 31 tests (ϵdiag + ϵiter) of MSR and SR# w.r.t. k . When k
increases from 1 to 15, the error of each algorithm decreases. While the error of SR# approaches
0, MSR levels off at 0.28. The large disparity between their convergent solutions is due to the
approximation of D by (1 − γ)I in MSR; our “varied-D” iterative model can guarantee the error to
be 0 when k increases. The SR# curve is always below the Est. Bound curve, as expected.

7.5.4 Significance of The “Connectivity Trait” Problem. Figure 33 statistically shows the percentage
of node-pairs with the “connectivity trait” problem over all real datasets. From the results, we see
that the percentages are all high (e.g., 82.7% onWebN, 62.3% on SocL, 78.1% on ComY), showing the
seriousness of this problem in real scenarios. Fortunately, all these node-pairs having “connectivity
trait” problems can be resolved by SR#.

8 RELATEDWORK
8.1 SimRank Computation
In recent years, many efficient methods have been proposed for SimRank computation. There are
two ways to categorize them:

(a) According to accuracy, previous works can be classified into deterministic methods [1, 11, 15,
19, 25, 34, 47], and probabilistic methods [8, 9, 26, 37, 40, 43, 46]. Deterministic methods are accurate
yet cost-inhibitive, whereas probabilistic methods are scalable on large graphs but produce random
errors. Among the existing deterministic methods, Kusumoto et al. [25] is an efficient algorithm for
accurate SimRank similarity search, which is based on an appealing “linearized SimRank formula”.
However, this formula is based on an assumption that the exact value of the diagonal correction
matrix D is precomputed in advance. In practice, it is difficult to accurately obtain D, leading to the
superfluous error ϵdiag. In contrast, our “varied-D” iterative method does not need to obtain the
exact value of D while accurately computing similarities within linear memory.
(b) According to queries, existing similarity search algorithms can be categorized as follows:
• Single-Source [11, 21, 25, 26, 43]. Given a query i ∈ V , retrieve s(∗, i) := {s(x, i) | ∀x ∈ V }.
• All-Pairs [29, 34, 47, 50]. Retrieve all similarities s(∗, ∗) := {s(x,y) | ∀(x,y) ∈ V 2}.
• Single-Pair [9, 25, 30]. Given a pair of queries (i, j) ∈ V 2, retrieve s(i, j).
• Partial-Pairs [39, 51, 55]. Given two subsets (A,B) ⊆ V 2, retrieve s(A,B) := {s(i, j) | ∀(i, j) ∈ A × B}.

In Table 1, we summarize the accuracy, computational time, and memory space of the previous
deterministic methods for each type of SimRank search. Compared with the existing method [25],
our techniques not only well preserve the scalability of [25], but also achieve high accuracy and

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

44 Yu et al.

Type Algorithm Error Time Memory Core Techniques

single
source

Proposed γ k+1 O(k |E |) O(|E | + k |V |) “varied-D” linearization
Kusumoto et al. [25]

(γ k+1
1−γ

)
+ ϵdiag O(k2 |E |) O(|E | + k |V |) linearization

Fujiwara et al. [11] ϵrank-r + ϵdiag O(r |V |2 + r |V |) O(r |V |2) rank-r matrix decomposition
Lee et al. [26] γ k+1 O(d2k) O(d2k + |V |) random surfer pair (iterative)
Wang et al. [42] prob. O

(log |V |
ϵ 2 + |E | log(1ϵ)

)
O(|V | log(1ϵ) Monte-Carlo sampling

Lu et al. [35] prob. O(|E | + |E |+ |V |ϵ) O(|E |+ |V |ϵ) sampling + steepest decent
Tian et al. [40] prob. O(|E | log2(1ϵ) + |V | log(

|V |
δ)/ϵ) O(|E |+ |V |ϵ) sampling + indexing

all
pairs

Proposed γ k+1 O(k |V | |E |) O(|E | + k |V |) “varied-D” linearization
Kusumoto et al. [25]

(γ k+1
1−γ

)
+ ϵdiag O(k2 |V | |E |) O(|E | + k |V |) linearization

Yu et al. [47] γ k+1 O(kd ′ |V |2) O(|V |2) fine-grained partial sums memoization
Lizorkin et al. [34] γ k+1 O(k min{|V | |E |, |V |

3

log2 |V |
}) O(|V |2) partial sums memoization

Li et al. [29] ϵrank-r + ϵdiag O(r 4 |V |2) O(r 2 |V |
2
) tensor product + rank-r decomposition

Jeh et al. [19] γ k+1 O(k |E |2) O(|V |2) naive iteration

single
pair

Proposed γ k+1 O(k |E |) O(|E | + k |V |) “varied-D” linearization
Kusumoto et al. [25]

(γ k+1
1−γ

)
+ ϵdiag O(k |E |) O(|E | + k |V |) linearization

He et al. [16] γ k+1 O(k |E |2 − |E |) O(|V |2) random surfer pair + position matrix
Li et al. [30] γ k+1 O(kd2 min{dk , |V |2}) O(|V |2) random surfer pair (iterative)
Lu et al. [35] prob. O(|E | + |E |+1ϵ) O(|E |+ |V |ϵ) sampling + steepest decent

Table 1. A comparison of our apporach with previous methods for similarity search,
where r (≤ |V |) is the low rank, d = |E |/|V | is the average degree of the graph, and d ′ ≤ d

fast computational time. Furthermore, for achieving high accuracy, our methods not only remove
superfluous error ϵdiag but also attain a better bound on ϵiter than [25].
Recent years have witnessed an upsurge of interest in link-based pairwise similarity retrieval.

Lu et al. [35] devised a matrix sampling approach for fast single-pair and single-source SimRank
computation, which guarantees the number of nonzeros in the sparsified matrix is O(|V |/ϵ). On
top of that, a steepest descent method is employed to speed up the computation of single-source
SimRank inO(1/ϵ2) time. Wang et al. [42] suggests a probabilistic Monte-Carlo algorithm, ExactSim,
to retrieve top-K single-source SimRank on large graphs of 106 nodes quickly, with high probability
accuracy guaranteed. Recently, a variation of SimRank, namely SimRank* [49], is proposed to
address the undesirable zero-similarity problems of SimRank. Moreover, a scalable clustering
strategy via edge concentration is designed to accelerate similarity retrieval. Youngmann et al. [46]
presented SemSim, which enriches SimRank similarity with semantics. SemSim is applied on a
weighted attributed graph. Thus, our “cosine-based” SimRank model can be extended to attributed
graphs by integrating the idea of SemSim for achieving semantic richness. READS [21] provides
a random walk based scheme to dynamically compute SimRank. It precomputes

√
c-walks and

squeezes random walks into compact trees. In the query processing, READS searches the walks
starting at query node u, and retrieves all the

√
c-random walks that meet the

√
c-walks of u.

8.2 “Connectivity Trait” Problem
Fogaras et al. [9] is the first to notice one special case of the SimRank “connectivity trait” problem: “if
two nodes a andb have β common (direct) in-neighbors, then s(a,b) ≤ 1/β .” To address this problem,
they employed an unwieldy method that divides the entire search space into three probabilities:
|N −a ∩N

−
b |

|N −a ∪N −b |
, |N

−
a −N

−
b |

|N −a ∪N −b |
, and |N

−
b −N

−
a |

|N −a ∪N −b |
. However, this complicates the revised SimRank equation.

Recently, Antonellis et al. [1] gave an excellent revision, called SimRank++, by introducing the
“evidence factor” γ̃ . Unfortunately, γ̃ can only, in part, alleviate a special case of the “connectivity
trait” problem, since, if |N −a ∩ N −b | = 0, then γ̃ = 0 has no recursive impact on SimRank any more.
Jin et al. [22] also gave an excellent exposition on “role similarity”. Their proposed model,

namely RoleSim, has the advantage of utilizing “automorphic equivalence” to improve the quality

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 45

of similarity search in “role” based applications. Their initial intention, however, was not to deal
with the SimRank “connectivity trait” problem.

There is also a SimRank-like “connectivity trait” problem in other link-based similarity models,
such as Penetrating-Rank (P-Rank) [53], Random Walk with Restart (RWR) [41], ASCOS++ [2],
SimRank* [49], SimFusion [44]. Our proposed solutions for fixing the SimRank “connectivity trait”
problem are also extensible to these models.

8.3 Semantics between SimRank and Its Variant
There are some interesting works (e.g., [11, 15, 29, 48, 51]) based on Li et al. ’s model: S̃ = γP⊤S̃P +
(1 − γ)I . [25] argued that “the top-K rankings of S̃ and S in Eq.(1) are not affected much”. However,
we correct this argument, provide new mathematical insights into the subtle difference of S̃ and S .

9 CONCLUSIONS
In this article, we consider the problem of high-quality link-based similarity search. Firstly, we
devise a “varied-D” model to compute SimRank with no ϵdiag in linear memory. We also speed up the
computational time from quadratic [25] to linear in terms of k . Secondly, we devise a “cosine-based”
SimRank model for similarity search to circumvent the “connectivity trait” problem of SimRank.
Thirdly, we propose an efficient dimensionality reduction method via block Arnoldi–Ruhe iterations,
which drastically speeds up partial-pairs “cosine-based” SimRank similarity join on sizable graphs,
with provable guarantees on accuracy. Fourthly, we give new insights into the semantic difference
between Jeh and Widom’s SimRank and its variant, and correct an argument in [25]. Fifthly, we
also design a novel approach that allows us to make instant conversion from Li et al.’s SimRank to
Jeh and Widom’s SimRank, without any loss of accuracy, and provide key intuitions underpinning
our conversion formulae. Sixthly, we notice that, if two nodes are in two distinct graphs (or two
disconnected components), the existing SimRank model as well as the “cosine-based” model would
assess their nodes as completely dissimilar. To alleviate this problem, we propose our generalised
“cosine-based” SimRank model to effectively quantify the similarity for nodes across two distinct
graphs (or two disconnected components). Finally, our extensive experiments on a variety of real
datasets validate the superiority of our proposed approaches in terms of high accuracy, scalability,
and computational efficiency.
In our future work, we will extend the “cosine-based” model to retrieve the similarity between

subgraphs, where the query may not be a node in the given graph. Another avenue is incorporating
semantic and structural information of the graph through ontology matching and entity resolution
to design a more comprehensive similarity model.
Acknowledgments. This work was supported by the National Natural Science Foundation of
China (NSFC 61972203), and Natural Science Foundation of Jiangsu Province (BK20190442).

REFERENCES
[1] I. Antonellis, H. G. Molina, and C. Chang. SimRank++: Query rewriting through link analysis of the click graph.

PVLDB, 1(1), 2008.
[2] H. Chen and C. L. Giles. ASCOS++: an asymmetric similarity measure for weighted networks to address the problem

of simrank. ACM Trans. Knowl. Discov. Data, 10(2):15:1–15:26, 2015.
[3] P. Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection.

Data-Centric Systems and Applications. Springer, 2012.
[4] W. W. Cohen. Data integration using similarity joins and a word-based information representation language. ACM

Trans. Inf. Syst., 18(3):288–321, 2000.
[5] N. Craswell and M. Szummer. Random walks on the click graph. In ACM SIGIR, pages 239–246. ACM, 2007.
[6] P. Dey, K. Goel, and R. Agrawal. P-Simrank: Extending simrank to scale-free bipartite networks. In WWW, pages

3084–3090. ACM, 2020.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

46 Yu et al.

[7] S. Elsworth and S. Guttel. The block rational arnoldi method. SIAM Journal on Matrix Analysis and Applications,
41(2):365–388, 2020.

[8] D. Fogaras and B. Rácz. A scalable randomized method to compute link-based similarity rank on the web graph. In
EDBT Workshops, 2004.

[9] D. Fogaras and B. Rácz. Scaling link-based similarity search. InWWW, 2005.
[10] S. Fox, K. Karnawat, M. Mydland, S. T. Dumais, and T. White. Evaluating implicit measures to improve web search.

ACM Trans. Inf. Syst., 23(2):147–168, 2005.
[11] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka. Efficient search algorithm for SimRank. In ICDE, 2013.
[12] P. Ganesan, H. Garcia-Molina, and J. Widom. Exploiting hierarchical domain structure to compute similarity. ACM

Trans. Inf. Syst., 21(1):64–93, 2003.
[13] M. R. Hamedani and S. Kim. SimCC-AT: A method to compute similarity of scientific papers with automatic parameter

tuning. In ACM SIGIR, pages 1005–1008. ACM, 2016.
[14] M. R. Hamedani and S. Kim. Pairwise normalization in SimRank variants: problem, solution, and evaluation. In SAC,

pages 534–541. ACM, 2019.
[15] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank computation on large graphs with iterative aggregation. In KDD,

2010.
[16] J. He, H. Liu, J. X. Yu, P. Li, W. He, and X. Du. Assessing single-pair similarity over graphs by aggregating first-meeting

probabilities. Inf. Syst., 42:107–122, 2014.
[17] B. M. Hill and A. Debons. Bibliographic coupling. J. Am. Soc. Inf. Sci., 23(4):286, 1972.
[18] M. E. Houle, V. Oria, S. Satoh, and J. Sun. Annotation propagation in image databases using similarity graphs. ACM

Trans. Multim. Comput. Commun. Appl., 10(1):7:1–7:21, 2013.
[19] G. Jeh and J. Widom. SimRank: A measure of structural-context similarity. In KDD, 2002.
[20] G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages 271–279. ACM, 2003.
[21] M. Jiang, A. W. Fu, R. C. Wong, and K. Wang. READS: A random walk approach for efficient and accurate dynamic

simrank. PVLDB, 10(9):937–948, 2017.
[22] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of network role similarity. In KDD, 2011.
[23] I. M. Kloumann, J. Ugander, and J. M. Kleinberg. Block models and personalized PageRank. Proc. Natl. Acad. Sci. USA,

114(1):33–38, 2017.
[24] O. Kurland and L. Lee. PageRank without hyperlinks: Structural reranking using links induced by language models.

ACM Trans. Inf. Syst., 28(4):18:1–18:38, 2010.
[25] M. Kusumoto, T. Maehara, and K. Kawarabayashi. Scalable similarity search for SimRank. In SIGMOD, 2014.
[26] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k structural similarity search. In ICDE, 2012.
[27] R. Lempel and S.Moran. SALSA: The stochastic approach for link-structure analysis. ACMTrans. Inf. Syst., 19(2):131–160,

2001.
[28] J. Leskovec and C. Faloutsos. Sampling from large graphs. In SIGKDD, pages 631–636. ACM, 2006.
[29] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast computation of SimRank for static and dynamic information

networks. In EDBT, 2010.
[30] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair SimRank computation. In SDM, 2010.
[31] X. Li, Y. Chen, B. Pettit, and M. de Rijke. Personalised reranking of paper recommendations using paper content and

user behavior. ACM Trans. Inf. Syst., 37(3):31:1–31:23, 2019.
[32] Z. Lin, M. R. Lyu, and I. King. PageSim: A novel link-based measure of web page aimilarity. InWWW, pages 1019–1020.

ACM, 2006.
[33] Z. Lin, M. R. Lyu, and I. King. MatchSim: A novel similarity measure based on maximum neighborhood matching.

Knowl. Inf. Syst., 32(1), 2012.
[34] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov. Accuracy estimate and optimization techniques for SimRank

computation. VLDB J., 19(1), 2010.
[35] J. Lu, Z. Gong, and Y. Yang. A matrix sampling approach for efficient SimRank computation. Inf. Sci., 556:1–26, 2021.
[36] D. Rafiei and F. Deng. Similarity join and similarity self-join size estimation in a streaming environment. IEEE Trans.

Knowl. Data Eng., 32(4):768–781, 2020.
[37] J. Shi, T. Jin, R. Yang, X. Xiao, and Y. Yang. Realtime index-free single source simrank processing on web-scale graphs.

PVLDB, 13(7):966–978, 2020.
[38] H. Small. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am.

Soc. Inf. Sci., 24(4), 1973.
[39] W. Tao, M. Yu, and G. Li. Efficient top-k Simrank-based similarity join. PVLDB, 8(3):317–328, 2014.
[40] B. Tian and X. Xiao. SLING: A near-optimal index structure for simrank. In SIGMOD, pages 1859–1874, 2016.
[41] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and its applications. In ICDM, 2006.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs
(Full version) 47

[42] H. Wang, Z. Wei, Y. Yuan, X. Du, and J. Wen. Exact single-source SimRank computation on large graphs. In D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, SIGMOD, pages 653–663. ACM, 2020.

[43] Z. Wei, X. He, X. Xiao, S. Wang, Y. Liu, X. Du, and J. Wen. PRSim: Sublinear time SimRank computation on large
power-law graphs. In SIGMOD, pages 1042–1059. ACM, 2019.

[44] W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and D. Zhuang. SimFusion: Measuring similarity using unified
relationship matrix. In SIGIR, 2005.

[45] J. J. Xu and H. Chen. CrimeNet Explorer: A framework for criminal network knowledge discovery. ACM Trans. Inf.
Syst., 23(2):201–226, 2005.

[46] B. Youngmann, T. Milo, and A. Somech. Boosting SimRank with semantics. In EDBT, pages 37–48, 2019.
[47] W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank computation on large networks. In ICDE, 2013.
[48] W. Yu, X. Lin, and W. Zhang. Fast incremental SimRank on link-evolving graphs. In ICDE, pages 304–315, 2014.
[49] W. Yu, X. Lin, W. Zhang, J. Pei, and J. A. McCann. SimRank*: Effective and scalable pairwise similarity search based on

graph topology. VLDB J., 28(3):401–426, 2019.
[50] W. Yu and J. A. McCann. Sig-SR: SimRank search over singular graphs. In SIGIR, 2014.
[51] W. Yu and J. A. McCann. Efficient partial-pairs SimRank search for large networks. PVLDB, 8(5):569–580, 2015.
[52] W. Yu and J. A. McCann. High quality graph-based similarity search. In ACM SIGIR, pages 83–92. ACM, 2015.
[53] P. Zhao, J. Han, and Y. Sun. P-Rank: A comprehensive structural similarity measure over information networks. In

CIKM, 2009.
[54] W. Zheng, L. Zou, L. Chen, and D. Zhao. Efficient SimRank-based similarity join. ACM Trans. Database Syst.,

42(3):16:1–16:37, 2017.
[55] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient SimRank-based similarity join over large graphs. PVLDB,

6(7):493–504, 2013.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2021.

	Abstract
	1 Introduction
	1.1 Motivation: Undesirable Quality of SimRank Search
	1.2 Main Contributions

	2 Accurate and Fast SimRank
	2.1 Sensitivity of Diagonal Correction Matrix
	2.2 Formulating Diagonal Correction Matrix
	2.3 A ``Varied-D'' Iterative Model
	2.4 Efficiently Computing S(k)

	3 Enhancing SimRank Quality
	3.1 The ``Connectivity Trait'' Problem
	3.2 Our Kernel-Based SimRank Model

	4 Accelerative Techniques for Cosine-Based SimRank Similarity Join with Guaranteed Accuracy
	4.1 Dimensionality Reduction via Block Arnoldi–Ruhe Process
	4.2 Accelerating ``Cosine-based'' SimRank Search
	4.3 An Efficient Algorithm for Partial-Pairs ``Cosine-based'' SimRank Similarity Join

	5 Semantic Difference
	5.1 A Fly in the Ointment of Li2010, Kusumoto2014
	5.2 Semantic Comparisons Between S and
	5.3 Converting from to S

	6 ``Cosine-Based'' SimRank between Two Graphs
	6.1 Limitation of Existing ``Cosine-Based'' SimRank Model Applied to Two Graphs
	6.2 Generalised ``Cosine-Based'' SimRank Between Graphs
	6.3 Efficient Computation of Generalised ``Cosine-Based'' SimRank Similarity

	7 Experimental Studies
	7.1 Experimental Settings
	7.2 Evaluation on Retrieval Quality
	7.3 Evaluation on Time Efficiency
	7.4 Evaluation on Memory Efficiency
	7.5 Evaluation of Semantic Difference Between LSR and JSR

	8 Related Work
	8.1 SimRank Computation
	8.2 ``Connectivity Trait'' Problem
	8.3 Semantics between SimRank and Its Variant

	9 Conclusions
	References

