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Abstract 

This talk proposes a very simple “baseline architec- 
ture” for a learning agent that can handle stochas- 
tic, partially observable environments. The archi- 
tecture uses reinforcement learning together with 
a method for representing temporal processes as 
graphical models. I will discuss methods for leam- 
ing the parameters and structure of such representa- 
tions from sensory inputs, and for computing pos- 
terior probabilities. Some open problems remain 
before we can try out the complete agent; more 
arise when we consider scaling up. 
A second theme of the talk will be whether rein- 
forcement learning can provide a good model of 
animal and human learning. To answer this ques- 
tion, we must do inverse reinforcement learning: 
given the observed behaviour, what reward signal, 
if any, is being optimized? This seems to be a very 
interesting problem for the COLT, UAI, and ML 
communities, and has been addressed in econo- 
metrics under the heading of structural estimation 
of Markov decision processes. 

1 Learning in uncertain environments 
AI is about the construction of intelligent agents, i.e., sys- 
tems that perceive and act effectively (according to some 
performance measure) in an environment. I have argued 
elsewhere Russell and Norvig (1995) that most AI research 
has focused on environments that are static, deterministic, 
discrete, and fully observable. What is to be done when, 
as in the real world, the environment is dynamic, stochastic, 
continuous, and partially observable? 
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In recent years, reinforcement learning (also called neu- 
rodynamic programming) has made rapid progress as an ap- 
proachfor building agents automatically (Sutton, 1988; Kael- 
bling et al., 1996; Bertsekas & Tsitsiklis, 1996). The basic 
idea is that the performance measure is made available to the 
agent in the form of a rewardfunction specifying the reward 
for each state that the agent passes through. The performance 
measure is then the sum of the rewards obtained. For exam- 
ple, when a bumble bee forages, the reward function at each 
time step might be some combination of the distance flown 
(weighted negatively) and the nectar ingested. 

Reinforcement learning (RL) methods are essentially on- 
line algorithmd for solving Markovdecisionprocesses (MDPs). 
An MDP is defined by the reward function and a model, that 
is, the state transition probabilities conditioned on each pos- 
sible action. RL algorithms can be model-based, where the 
agent learns a model, or model-free-e.g., Q-learning cite- 
Watkins: 1989, which learns just a function Q(s, a) specifying 
the long-term value of taking action a in state s and acting 
optimally thereafter. 

Despite their successes, RL methods have been restricted 
largely tofully observable MDPs, in which the sensory input 
at each state is sufficient to identify the state. Obviously, 
in the real world, we must often deal with partially observ- 
able MDPs (POMDPs). Astrom (1965) proved that optimal 
decisions in POMDPs depend on the belief state b at each 
point in time, i.e., the posterior probability distribution over 
all possible actual states, given all evidence to date. The 
functions V and Q then become functions of b instead of 
s. Parr and Russell (1995) describes a very simple POMDP 
RL algorithm using an explicit representation of b as a vec- 
tor of probabilities, and McCallum (1993) shows a way to 
approximate the belief state using recent percept sequences. 

Neither approach is likely to scale up to situations with 
large numbers of state variables and long-term temporal de- 
pendencies. What is needed is a way of representing the 
model compactly and updating the belief state efficiently 
given the model and each new observation. Dynamic Bayesian 
networks (Dean & Kanazawa, 1989) seem to have some of 
the required properties; in particular, they have significant 
advantages over other approaches such as Kalman filters and 
hidden Markov models. Our baseline architecture, shown in 
Figure 1, uses DBNs to represent and update the belief state 
as new sensor information arrives. Given a representation 
for b, the reward signal is used to learn a Q-function rep- 
resented by some “black-box” function approximator such 
as a neural network. Provided we can handle hybrid (dis- 
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Figure 1: A baseline architecture for learning agents in un- 
certain environments 

crete+continuous) DPNs, and provided we have a learning 
algorithm that can construct an approximately correct DBN 
model from scratch, then this baseline architecture has the 
capacity, in principle, to be thrown into more or less any 
environment and to learn to behave reasonably.* 

The talk will cover a variety of research topics arising 
from this proposal: 

Parametric learning in DBNs (Binder, Koller, Russell, 
& Kanazawa, 1997a). 

Structural learning in DBNs (Friedman, Murphy, & Rus- 
sell, 1998). 

Approximate inference in DBNs (Kanazawa, Koller, & 
Russell, 1995; Boyen & Koller, 1998). 

Space-efficient inference in DBNs (Binder, Murphy, & 
Russell, 1997b). 

Reinforcement learning with DBN models-that is, how 
to do Q-learning with the belief state information pro- 
vided by the DBN. Some tentative ideas will be pre- 
sented but as yet there are no convincing solutions. 

Scaling up the environment will inevitably overtax the re- 
sources of the baseline architecture. There are several obvi- 
ous directions for improvement, including hierarchical and 
first-order models, hierarchical representations of behaviour (Parr 
& Russell, 1998), and model-based lookahead methods for 
decision making. Which of these is important in any partic- 
ular class of environments can only be ascertained by exper- 
iment. 

2 Inverse reinforcement learning 
Reinforcement learning is a powerful method for adaptive 
control in real tasks, so it is natural to seek analogous mecha- 
nisms in nature. Connections have been made between rein- 
forcement learning and operant conditioning models of ani- 
mal learning (see, e.g., Schmajuk & Zanutto, 1997; Touretzky 
& Saksida, 1997). There is also neurophysiological evidence 
that reinforcement learning occurs in bee foraging (Montague 
et al., 1995) and in songbird vocalization (Doya & Sejnowski, 
1995). 

In this work, it is generally assumed that the reward func- 
tion is fixed and known. For example, in experiments on 
bees it is assumed to be the rate of nectar ingestion: Mon- 
tague et al. (1995) cite evidence of a “neuron with widespread 
projections to odour processing regions of the honeybee brain 

‘We say “more or less” because full generality require dealing 
with game-theoretic issues requiring stochastic decision making. 

whose activity represents the reward value of gustatory stim- 
uli.” 

It seems clear, however, that in examining animal and 
human behaviour we must consider the reward function as 
an unknown to be ascertained. The reasons for this are 
straightforward: 

l The specification of a given reward function is an em- 
pirical hypothesis and may turn out to be wrong. For 
example, it was assumed initially that horses’ gait se- 
lection for a given speed was determined by energetic 
economy (Hoyt & Taylor, 1981); this turns out not to be 
the case (Farley & Taylor, 1991). 

l The parameters of a multiattribute reward function can 
surely not be determined a priori; e.g., for running, 
attributes might be speed, efficiency, stability against 
perturbations, wear and tear on muscles, tendons, and 
bones, etc. How are these to be weighted and combined? 

Therefore, to model natural learning using reinforcement 
learning ideas, we must first solve the following computa- 
tional task, which we call inverse reinforcement learning: 

Given 1) measurements of an agent’s behaviour over time, 
in a variety of circumstances, 2) measurements of the 
sensory inputs to that agent; 3) a model of the physical 
environment (including the agent’s body). 

Determine the reward function that the agent is optimizing. 

Given an assumption of optimization, this computational task 
is well-defined. Notice that is the dual of unsupervised re- 
inforcement learning, where the task is to determine optimal 
behaviour given the reward inputs. 

To our knowledge, this computational task has not been 
studied in any generality in computer science, control theory, 
psychology, or biology. The closest work is in economics, 
where the task of multiattribute utility assessment has been 
studiedin depth-that is, how does a person actually combine 
the various attributes of each available choice when making 
a decision. The theory is well-developed (Keeney & Raiffa, 
1976), and the applications numerous. However, this field 
studies only one-shot decisions where a single action is taken 
and the outcome is immediate. The sequential case was not 
considered until a seminal paper by Sargent (1978) tried to 
ascertain the effective hiring cost for labor by examining a 
firm’s hiring behaviour over time, assuming it to be rational. 
In the last decade, the area of structural estimation of Markov 
decision processes has grown rapidly in econometrics (Rust, 
1994). Many of the basic results carry over to our setting, 
although virtually nothing has been done on computational 
aspects, experimentation, or control-type applications. The 
open research problems are many: 

What are efficient algorithms for solving the inverse 
reinforcement learning problem? What is its computa- 
tional complexity? Are there closed-form solutions for 
some parametric forms? 

Under what circumstances can we determine the exis- 
tence of a consistent reward function? To what extent is 
the reward function uniquely recoverable? 

What effect do sensor and process noise have on robust- 
ness of the determination? What are appropriate error 
metrics for fitting? 
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If behaviour is strongly inconsistent with optimality, 
can we identify “locally consistent” reward functions 
for specific regions in state space? 

Can we determine the reward function by observation 
during rather than after learning? 

How much observation is required to determine an esti- 
mated reward function that is within E of the true reward 
function? 

How can experiments be designed to maximize the iden- 
tifiability of the reward function? 

Considering the design of possible algorithms, one can 
take maximum-likelihood approach to fit a parametric form 
for the reward functionas is commonly done in economet- 
rics. That is, one defines a function L,(w)(B), the likelihood 
of observing behaviour B if the true reward function is r(w). 
From this, one can compute dWdw. One important question 
will be how to compute this gradient efficiently; presumably, 
it can be done in an obvious way by carrying the differ- 
ential operator through the optimization algorithm for the 
behaviour. More elegant closed-form solutions may exist 
in special cases (e.g., linear-quadratic regulators). One may 
also be able to show that in some cases (e.g., linear reward 
functions) a globally optimal estimate can always be found. 

The solution of inverse reinforcement learning problems 
may also be an effective way to learn from observing ex- 
perts. For tasks such as walking, diving, and driving, the 
designer of an artificial system may have only an intuitive 
idea of the appropriate reward function to be supplied to an 
RL algorithm in order to achieve “desirable” behavior. In- 
stead of learning direct control functions from observation of 
experts (as in Pomerleau’s ALVINN driging system), it may 
be better to solve the inverse reinforcement learning problem. 
The reward function should usually be a simple monotonic 
function of the current sensory inputs, and thus may be much 
simpler than the direct decision mapping itself. That is, the 
most compact and hence robustly learnable representation of 
expert behavior may be the reward function. 
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