
Coherent probability 1

Running head: COHERENT PROBABILITY FROM INCOHERENT JUDGMENT

Coherent probability from incoherent judgment

Daniel Osherson David Lane Peter Hartley Richard R. Batsell

August 8, 2000



Coherent probability 2

Abstract

People often have knowledge about the chances of events but are unable to express
the knowledge in the form of coherent probabilities. We propose to correct incoherent
judgment via an optimization procedure that seeks the (coherent) probability distri-
bution nearest to the judge’s estimates of chance. Our method was applied to the
chances of simple and complex meteorological events, as estimated by college under-
graduates. No judge responded coherently but our optimization method found close
(coherent) approximations to their estimates. Moreover, the approximations were
reliably more accurate than the original estimates, as measured by the quadratic
scoring rule. Methods for correcting incoherence facilitate the analysis of expected
utility, and allow human judgment to be more easily exploited in the construction of
expert systems.
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Coherent probability from incoherent judgment

Introduction

Suppose you think the probability that the internet will expand next year is .90. Suppose
you also think the probability that the internet will expand and PC makers will be profitable
is .91. Then you have assigned a greater chance to a conjunction than to one of its conjuncts,
hence your judgments are incoherent. You may nonetheless prove to be more insightful than
someone with the coherent opinion that internet expansion next year has probability .2 and
that both expansion and PC profitability has probability .1. This example indicates that
judgments may be rich in information without being probabilistically coherent. This is
reassuring since it is well known that maintaining coherence is a daunting task both for
computers and for human judges.1

Three responses to incoherent estimates of chance may be envisioned. They are:

(a) Do nothing. Live with incoherence.

(b) Prevent incoherent judgment through a structured elicitation technique.

(c) Repair incoherence after-the-fact by adjusting numerical estimates of chance.

The first response is risky since incoherent judgments lead to systematic losses (“Dutch
Books”) when spotted by an adversary (provided the judge is willing to accept bets s/he
deems fair). Specifically, it has been proven that a set of judgments is incoherent if and only
if there are monetary bets with the following properties: (a) each bet has zero expected
monetary value according to the judgments, i.e., each bet seems fair to the judge; but
(b) the net outcome of the bets for the judge is negative no matter which events in the
bets occur.2 Incoherent assessments of chance are also inimical to the analysis of expected
utility, which relies on genuine estimates of probability (see Kleindorfer, Kunreuther and
Schoemaker, 1993; for the role of coherence in standard justifications of utility theory, see
Jeffrey, 1983, Chapter 4). In addition, incoherent judgment cannot be incorporated into
Bayesian networks, one of the most popular approaches to automated reasoning (Castillo,
Gutiérrez and Hadi, 1998). Methods for avoiding or correcting incoherent judgments of
probability therefore represent a potential contribution to individual decision-making and
to other disciplines (e.g., economics, computer science).

Approach (b) stamps out incoherence at the source by monitoring the successive esti-
mates emitted by the judge. Probabilities of a given event are required to be drawn from
an interval of coherent possibilities, calculated from earlier judgments. Variations on this
idea have produced important innovations in elicitation methods.3 Eliminating incoherence
during elicitation can be a tedious procedure, however, and may alter the judge’s opinions.
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Some arbitrariness is also to be expected, since the final set of estimates will likely depend
on the order in which judgments are elicited. Structured elicitation, moreover, does not
apply to situations in which judges are polled by written questionnaire, or brief interview.
It would be desirable to have a method for adjusting estimates of chance after-the-fact,
bringing them into coherence even if the judge has left the scene. Such an off-line approach
to coherence is envisioned in (c), and explored in the present paper.

So far as we know, the first schemes of kind (c) were described in Lindley, Tversky and
Brown (1979). These authors conceive the judge’s estimates as arising via error from an
underlying source of coherent probabilities (not consciously accessible to the judge herself).
The task of an observer is to infer the coherent probabilities from the incoherent stated
ones. This is achieved on the basis of the observer’s prior distribution over the potential
coherent beliefs the judge might secretly harbor, along with another prior distribution that
gives the probability of stated beliefs given (coherent) underlying ones. An application of
Bayes’ theorem then allows calculation of the most likely underlying assessments of chance
given the stated ones. Various simplifying assumptions allow the desired calculations to
be formulated perspicuously, but reaching a solution ultimately requires nonlinear opti-
mization. A second approach described in the same paper relies on a similar set of prior
distributions, exploited somewhat differently.

Lindley et al.’s (1979) approach is pathbreaking and ingenious, but it requires specifying
prior distributions that are difficult to interpret and to evaluate, a point raised by the
authors themselves as well as by commentators on the paper. Since the specification of
these distributions does not obviate a complex optimization step, it strikes us as simpler to
forgo the former and proceed at once to the latter. We shall therefore conceive of off-line
correction as the search for a (coherent) probability distribution that best approximates
the incoherent probabilities in hand.

An algorithm for finding coherent approximations will be proposed below. It rests on
the following hypothesis about the probability judgment of well-informed human agents.

(i) Hypothesis of sparse distributions: If the agent’s judgments can be approximated
by any probability distribution, they can be approximated by a distribution that
assigns positive probability to a relatively small number of potential states-of-affairs.

To illustrate, suppose that an agent is considering the ranks of ten teams at the conclusion
of a tournament. There are millions of possible orderings but Hypothesis (i) predicts
that the agent’s judgments can be approximated by a distribution that assigns positive
probability to only a few of them. The remainder are “edited” out of consideration via the
assignment of zero probability. The hypothesis is based on the observation that human
reasoners seem to hold only a few alternative possibilities in mind (see Manktelow, 1999,
chapter 10, for discussion). It receives support from the generally successful performance of
our algorithm. Note that the hypothesis is intended to apply only to knowledgeable agents.
Ignorance might lead to the adoption of the uniform distribution, which is not sparse.
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As a final preliminary, we note that only point probabilities are at issue in the present
discussion. Point probabilities are typically elicited in the construction of decision trees and
influence diagrams (as in the popular program DATA 3.5 by TreeAge Software). Moreover,
allowing judges to offer probability intervals or distributions over probabilities introduces
complexities that are best set aside in a preliminary study like this one. (For analysis of
imprecise estimates of chance, see Walley, 1991, 1996).

To proceed, we first define the concept of probabilistic coherence. Next we describe
our method for calculating a (coherent) distribution that approximates an input set of
probability estimates. We then turn to an experimental test of the method, involving the
collection of probabilistic weather forecasts from undergraduates. It will be seen that the
judgments were indeed incoherent, but well approximated by the optimization method we
employ. Moreover, the coherent approximations provide reliably more accurate forecasts
than the original estimates.

Theoretical background
Probability

The conception of probability summarized in the present section is due to de Finetti
(1972). Nilsson (1986) provides more ample discussion than possible here. In overview,
we let 2n states be generated by n binary variables. The states are assigned probabilities,
which are extended to events (sets of states) in the usual way. Formulas of sentential logic
are used to name events, and inherit the latters’ probabilities. The formulas are translated
into event-descriptions of English. Conditional probability is handled in parallel manner.
We now provide details.

Assume that all the events under consideration can be represented as boolean combi-
nations of n variables. Each variable takes one of the two truth values true (t) and false
(f). By a state is meant any map of the n variables into {t, f}. A state is thus a potential
“state-of-affairs” which determines the truth-value of every variable. The n variables yield
2n states. By a (probability) distribution for the n variables is meant any mapping Pr of
the states into [0, 1] such that

∑{Pr(s) : s is a state} = 1. To illustrate, suppose that
there are just three variables, p, q, r. Then one distribution over the 8 resulting states is
as follows.

(ii)

state p q r Pr
(1) t t t .15
(2) t t f .15
(3) t f t .10
(4) t f f .10
(5) f t t .10
(6) f t f .10
(7) f f t .15
(8) f f f .15
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Each row in (ii) corresponds to a state, e.g., the one in which all three of p, q, r are true.
There are 8 states since each of the 3 variables can independently assume either truth-
value. The last column of (ii) represents a distribution because it associates a nonnegative
number with each state in such a way that the numbers sum to unity.

We now consider how a given distribution imposes probabilities on statements. The
statements in question are described by the kind of formal language familiar from sentential
logic. Specifically, our language includes the n variables as formulas, and is then built up
using the sentential connectives in the usual way. Thus, it consists of negations (e.g., ¬p),
conjunctions (e.g., p∧ r and p∧¬q), disjunctions (e.g., r∨ q and (r∧ q)∨¬p), among other
types of formulas. We presuppose the concept (familiar from sentential logic) that a given
state makes true a given formula. For example, states 1 - 4 make true p, states 2, 6 make
true q ∧ ¬r, and states 1, 2, 5 - 8 make true ¬p ∨ q. A given formula represents the event
consisting of the states that make it true. Intuitively, to assert formula ϕ is to claim that
one of the states making ϕ true is the actual state-of-affairs. Thus, to assert p is to claim
that the world conforms to one of the states 1 - 4.

Since states are mutually exclusive, and each formula represents a set of them, it is
clear how to extend a given distribution Pr to the formulas of our sentential language. For
every formula ϕ,

Pr(ϕ) =
∑

{Pr(s) : s is a state that makes ϕ true}.
That is, the probablity of a formula is the sum of the probabilities of the states that make
it true. For example, if Pr is shown in (ii), then Pr(p) = .15 + .15 + .10 + .10 = .5,
Pr(q ∧ ¬r) = .15 + .10 = .25, and Pr(¬p ∨ q) = .10 + .10 + .15 + .15 + .15 + .15 = .8.

For conditional probabilities, Pr is extended again, this time to pairs of formulas. The
pair of formulas consisting of ϕ followed by ψ is standardly written (ϕ, ψ). When writing
conditional probabilities, however, it is customary to use the symbol | in place of a comma
to separate two formulas in a pair. Thus, when the probability function is applied, the
foregoing pair of formulas is written (ϕ | ψ). The pair can be read “ϕ assuming that ψ.”
This translation is revealing of the intended interpretation of pairs of formulas but there
is an important caveat. Although “assuming that” behaves like a sentential connective in
English, it is well known that the symbol | cannot be interpreted as a sentential connective
analogously to ∧ or ∨ (Lewis, 1976; Bradley, 1999). We can now say what number a given
distribution Pr assigns to a pair of formulas. For formulas ϕ, ψ with Pr(ψ) > 0,

Pr(ϕ | ψ) =
∑{Pr(s) : s is a state that makes both ϕ and ψ true}

∑{Pr(s) : s is a state that makes ψ true}
.

For example, Pr(q ∧ ¬r | p) = .15
.15+.15+.10+.10 = .3. Since a state makes a conjunction true

just in case it makes true both conjuncts, the definition of conditional probability implies
the familiar fact that for formulas ϕ, ψ with Pr(ψ) > 0,

Pr(ϕ | ψ) =
Pr(ϕ ∧ ψ)

Pr(ψ)
.
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Observe that Pr makes no assignment of probability to a pair (ϕ, ψ) if it assigns zero
probability (impossibility) to the conditioning event ψ.

Coherence

Consider a judge who is estimating the probabilities of various events represented in our
sentential language. We write Prob(ϕ) = x to indicate the judgment that the probability of
ϕ is x, and Prob(ϕ | ψ) = y for the judgment that the conditional probability of ϕ assuming
ψ is y. It is important to distinguish Prob from the kind of function denoted by Pr. Prob is
no more than a mapping of some formulas and pairs of formulas into numbers. Its domain
will represent whatever (possibly disparate) collection of statements were evaluated by the
judge, and hence be finite (unlike the domain of Pr, which embraces every formula of our
sentential language). In particular, Prob need not conform to any of the properties that
apply to genuine probability distributions like Pr. This is why the judge’s estimates are
not written with the symbol Pr, which is reserved for genuine distributions. To illustrate,
Prob might be the following set of judgments.

(iii)

Prob(p) = .5
Prob(q ∧ ¬r) = .25
Prob(¬p ∨ q) = .8
Prob(q ∧ ¬r | p) = .3.

We call Prob probabilistically coherent just in case there is a probability distribution Pr
that agrees with it. Officially:

(iv) Definition: Suppose we are given a sentential language over a given set of variables.
Let Prob map formulas ϕ1 · · ·ϕk, and pairs of formulas (χ1, ψ1) · · · (χj, ψj), into
numbers. Then Prob is coherent just in case there is a distribution Pr (over the
states arising from the variables) such that for all i ≤ k,

Prob(ϕi) = Pr(ϕi),

and for all i ≤ j,

Prob(χi | ψi) = Pr(χi | ψi).

If there is no such distribution, then Prob is incoherent.

For example, the judgments in (iii) are coherent. This is because they agree with the
distribution Pr shown in (ii). In contrast, the following modification of the judgments is
incoherent.
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Prob′(p) = .5
Prob′(q ∧ ¬r) = .25
Prob′(¬p ∨ q) = .20
Prob′(q ∧ ¬r | p) = .3.

It should be clear that every state that makes true q∧¬r also makes true ¬p∨q (since q∧¬r
implies ¬p ∨ q). It is therefore impossible for a distribution to assign lower probability to
the latter than to the former. Hence, no distribution agrees with Prob′.

The optimization problem

Assume that we are given a set of judgments represented by a mapping Prob from
formulas, and pairs of formulas, to numbers. If Prob is incoherent, we seek to replace its
values with coherent probabilities. Moreover, we seek replacements that best approximate
the original values, so as to minimally distort the judge’s opinions. The rationale behind
the policy of minimal distortion is respect for the judge. Albeit incoherent, her assessments
of chance might harbor insight into the uncertainty present in the environment. Minimally
changing her numbers is the most plausible route to coherent judgment that still embodies
her knowledge.

We measure the distance between two assessments of chance by their absolute difference,
since this is the simplest and most interpretable measure. Other potential measures include
the squared difference, or some version of relative entropy (which is not, however, a true
distance; Cover and Thomas, 1991). None of the results reported below are substantially
affected by use of these alternative measures. We thus have the following optimization
problem.

(v) Optimization Problem: Let Prob map formulas ϕ1 · · ·ϕk, and pairs of formulas
(χ1, ψ1) · · · (χj, ψj), into numbers. Find a map Prob∗ with the same domain as Prob
such that Prob∗ is coherent, and

∑

i≤k

| Prob(ϕi)− Prob∗(ϕi) | +
∑

i≤j

| Prob(χi | ψi)− Prob∗(χi | ψi) |

is minimized.

Note that this formulation assigns equal importance to approximating absolute and condi-
tional probability judgments.

It is possible for there to be no minimum distance between Prob and a coherent ap-
proximation Prob∗ to it. Consider, for example, the incoherent judgments Prob(p | q) = .5,
Prob(q) = 0. (They are incoherent because the conditioning event q for (p | q) has been
assigned zero probability.) They can be approximated by setting Prob∗(p | q) = .5 and
Prob∗(q) arbitrarily close to 0, but not 0 itself so there is no best approximation. In all
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cases, however, the minimum is bounded by zero. So we interpret (v) as requesting a
coherent approximation Prob∗ to Prob that is as close as possible within some positive
tolerance.

Optimization via genetic algorithm

The main difficulty in solving the optimization problem (v) is combinatorial explosion.
With n variables there are 2n states, all of which may potentially interact with the coherence
of a proposed approximation to Prob. The simplest means of handling large numbers of
states is to limit the search to sparse distributions, i.e., to distributions in which many
states have probability zero. Sparse distributions have compact representations since it
is only necessary to encode the states with positive probability. They are thus easy to
manipulate. This search strategy is the natural counterpart to the psychological hypothesis
(i), which credits human reasoners with the ability to manipulate relatively few potential
states-of-affairs at one time.4

We now describe a simple technique for finding a sparse distribution that approximates
an input set of probability assessments. For concreteness, suppose the situation to be
modeled involves 3 variables, p, q, r. Let M be any 3 ×m matrix all of whose entries are
drawn from {t, f} (truth and falsity). Then every column i of M represents a state, namely,
the one that assigns M(1, i) to p, M(2, i) to q, and M(3, i) to r. (The same state can be
represented by more than one column.) Letting m = 12, one such matrix M is as follows.

(vi)

1 2 3 4 5 6 7 8 9 10 11 12
p t f t f t f t f t f t f
q f f t f t f f f t f f f
r t t t f t f t t t t t t

In this example, column (1) of M represents the state in which p and r are true, and q
is false. Column (4) represents the state in which all three variables are false. For each
of the eight possible states s, we take M to assign s the probability n/m, where n is the
number of columns of M that code s (and m is the total number of columns). Thus, in
example (vi), the state in which all three variables are false has probability 2/12 since just
columns (4) and (6) represent it. Similarly, the state in which p, r are true and q false is
assigned probability 3/12. The state in which p is false and q, r are true has zero probability
since it is not represented in the matrix. This way of interpreting M defines a (coherent)
distribution over p, q, r. The same idea applies to any number of variables and columns.

Why does the distribution represented by M tend to be sparse? The number of states
increases exponentially in the number n of variables. When the number of columns in M
is modest, there will necessarily be states that do not correspond to a column and are thus
assigned zero probability. Conversely, the greater the number of columns in M , the more
states can receive nonzero probability, and hence the more distributions can potentially be
represented within it.
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In searching for a distribution that best approximates a corpus of judged probabilities,
we limit attention to distributions that can be represented by matrices like (vi), using a
fixed number of columns whose value is chosen to keep the problem feasible. Even for a
modest number of columns, a large search space remains. (For just 3 variables and 12
columns, as in (vi), there are more than 68 billion possible matrices.) We propose to ex-
plore the space by interpreting a matrix M as a two-dimensional binary genome within the
context of genetic algorithms (Michalewicz, 1994; Mitchell, 1996). Such algorithms include
a population of chromosomes, each of which represents a potential solution to the search
problem. They also rely on a scheme for evaluating the “fitness” of chromosomes in terms
of their value as potential solutions. Fitness determines the probability that a given chro-
mosome will participate in reproduction and thus help constitute the successor population
of chromosomes (the “next generation”). The reproductive act includes crossover between
the two chromosomes at a randomly determined point, as well as random mutation.

These concepts take the following form in our search context. With respect to a target
corpus of judgments, M ’s genetic fitness is measured in terms of the summed, absolute
deviation between the probabilities that M assigns to the judged events (or pairs of events)
and the original estimates of the judge, as stated in (v). A genetic algorithm designed to
breed the matrix of greatest fitness will thus seek to construct a matrix-defined-distribution
that best approximates the original judgments. Cross-over between two matrices exchanges
sequences of columns (rather than rows). This allows each chromosome to be conceived
as a string of states. Mutation flips a given cell of the matrix from one truth-value to
the other. More details will be provided after we discuss the data on which the genetic
algorithm was designed to operate.

Experimental test of the method

To determine the accuracy and computational feasibility of our approximation scheme,
we elicited probability estimates from undergraduates and then brought them into coher-
ence via a genetic algorithm.

Materials

Since weather and climate are common topics of conversation, they provide a domain in
which many people can reveal insight (if not coherence). Our questions about this domain
were built from the following sentential variables, 10 in all. Each sentence represents a
weather forecast for noon, one week from the day on which the question is answered.
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(vii)

(a) It is overcast in New York.

(b) It is at least 56 degrees in New York.

(c) It is overcast in Philadelphia.

(d) It is at least 58 degrees in Philadelphia.

(e) It is overcast in Houston.

(f) It is at least 80 degrees in Houston.

(g) It is overcast in Galveston.

(h) It is at least 78 degrees in Galveston.

(i) It is overcast in Los Angeles.

(k) It is at least 68 degrees in Los Angeles.

Galveston is a Gulf Coast city 40 miles south of Houston, known to all participants in
the study. Based on these ten variables, there are ninety complex events of each of the
following six types, excluding cases in which the same variable is repeated.

(viii)

(a) Conditional statements of form p assuming-that q, such as “It is at least 78
degrees in Galveston assuming that it is overcast in Houston.”

(b) Conditional statements of form p assuming-that ¬q, such as “It is at least 58
degrees in Philadelphia assuming that it is not overcast in New York.”

(c) Conjunctions of form p ∧ q, such as “It is overcast
in Galveston and it is overcast in Houston.”

(d) Conjunctions of form p ∧ ¬q, such as “It is overcast in New York and it is less
than 58 degrees in Philadelphia.”

(e) Disjunctions of form p ∨ q, such as “It is at least 78 degrees in Galveston or it
is overcast in Los Angeles.”

(f) Disjunctions of form p ∨ ¬q, such as “It is overcast in Houston or it is less than
80 degrees in Houston.”

Note that the negation of “at least x degrees” is expressed as “less than x degrees.” All
the probability estimates requested in the study were drawn from the 10 elementary events
in (vii), and the 6× 90 = 540 complex events described in (viii).

Participants

Thirty-eight Rice University undergraduates participated in the study. They were un-
paid volunteers, fulfilling a course requirement.
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Procedure

It was explained to each student that they were to provide probability estimates for
various meteorological events. The time of occurrence of all events was noon, one week
from the day of the experiment, local time (e.g., noon in Los Angeles). All the events
would involve the ten statements shown in (vii), which were presented. A map of the
United States was also presented, with the five cities indicated.

It was pointed out that “overcast” meant either cloudy, partly cloudy, rainy, or snowy,
but not hazy. Examples of complex events were then presented, and the intuitive meaning
of conditional probability (embodied by the expression “assuming that”) was reviewed. It
was further noted that “or” was used in the inclusive sense; for example, (viii)e would be
true if either it is at least 78 degrees in Galveston or it is overcast in Los Angeles, or both.
Students were then directed to a website on which they would enter their probability
estimates sometime during the day. It was stated that the accuracy of their forecasts
would be computed (using a “standard measure”) and the most accurate forecaster would
be given a prize. Forecasts would be verified by recourse to the CNN weather webpage on
the day in question. Finally, subjects were advised that there would be 46 estimates, and
to pace themselves to avoid fatigue.

The website reminded the student of the points raised at the earlier meeting, then pre-
sented 46 events for probability estimation. The first ten were an individually randomized
ordering of the elementary events (vii). For each of the six classes of complex events shown
in (viii), six events (or pairs of events in the conditional cases) were randomly chosen in-
dividually for each participant. The resulting 36 complex events were then presented in
individually randomized order with the restriction that the six events in each class be pre-
sented as a block. All responses were constrained by the electronic questionnaire to fall in
the interval [0, 1].

The study was completed during October and the first part of November, 1999. From
one to five students forecast weather for the same day (typically, the number was two or
three).

Results

Incoherence of judgment

The third column of Table 1 shows the mean and standard deviation of the average
probability estimates for each of the seven types of events, averaging over all 38 participants.
In conformity with the probability calculus, the estimates made for elementary events tend
to be greater than those for conjunctions and less than those for disjunctions. Nonetheless,
the students’ judgments showed marked incoherence, as we will now see.

Suppose that Prob represents the assessments of a given subject. It is easy to show the
following fact.
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(ix) Let p and q be sentential variables. Then necessary conditions on the coherence of
Prob include:

(a) Prob(p) + Prob(q)− 1 ≤ Prob(p ∧ q) ≤ min{Prob(p), Prob(q)}
(b) Prob(p)− Prob(q) ≤ Prob(p ∧ ¬q) ≤ min{Prob(p), 1− Prob(q)}
(c) max{Prob(p), Prob(q)} ≤ Prob(p ∨ q) ≤ Prob(p) + Prob(q)

(d) max{Prob(p), 1− Prob(q)} ≤ Prob(p ∨ ¬q) ≤ 1 + Prob(p)− Prob(q)

(e) Prob(p | q) = Prob(p ∧ q) / Prob(q)

(f) Prob(p | ¬q) = Prob(p ∧ ¬q) / Prob(¬q).

Every student had six occasions to violate each of (ix)a-d. Of these six occasions, the mean
number of violations of (ix)a-d was 2.97, 3.00, 2.08, and 2.95, respectively.

There were fewer occasions to violate (ix)e,f because conjunctions and conditional prob-
ability items were sampled independently for each participant. Thus, it was possible for a
given student to supply Prob(p | q) but not Prob(p∧ q). The same is true for Prob(p | ¬q)
and Prob(p ∧ ¬q). Across all 38 students, there were 55 occasions to violate either (ix)e
or (ix)f. Such violation occurred 51 times. These results are summarized in the first three
columns of Table 2.

Incoherence may be due in part to numerical imprecision in judgment. This is especially
true for violations of conditions (ix)e,f, which are equalities. Incoherencies were therefore
retabulated, this time loosening the constraints by a tolerance of .01. For example, in place
of (ix)a, an estimate was considered coherent if it satisfies:

Prob(p) + Prob(q)− 1.01 ≤ Prob(p ∧ q) ≤ min{Prob(p), Prob(q)}+ .01.

Similarly, to be counted as coherent, conditional probabilities had to be within .01 of their
defining quotient. Such tolerance had little effect on assessed incoherence, as shown in the
fourth column of Table 2. The last column of the table reveals that increasing the tolerance
to .05 also has small effect.

Accuracy of the students’ estimates

Quadratic score

If a given meteorological event comes true, it is natural to assign it probability 1, and
to assign it 0 otherwise. A qualification is needed in the case of conditional events like
“overcast in Houston assuming at least 56 degrees in New York.” If the conditioning event
is false (i.e., it is less than 56 degrees in New York) then no value should be assigned to
the conditional. Probabilistic forecasts can then be compared to these numbers in order
to determine forecast accuracy. A common metric of comparison is the “quadratic score”
(von Winterfeldt and Edwards, 1986), defined as follows.
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(x) Definition: Suppose that Prob represents the assessments of a given judge. Let E
be an event in the domain of Prob, and let (G,F ) be a pair of events in the domain
of Prob.

(a) The quadratic score incurred by Prob for E is (1 − Prob(E))2 if E is true. It
is Prob(E)2 if E is false.

(b) The quadratic score incurred by Prob for the pair (G,F ) is (1−Prob(G | F ))2

if both G and F are true. It is Prob(G | F )2 if G is false and F is true. It is
not defined if F is false.

The quadratic score of Prob is the average of all the penalties incurred by Prob for
events and pairs of events in its domain. (Pairs of events for which the quadratic
score is not defined do not figure in this average.)

To illustrate, suppose a judge assigns .3 probability to the disjunction “either overcast in
Philadelphia or overcast in New York.” If it is overcast in either of the cities, the disjunction
is true so the score is (1 − .3)2. If it is overcast in neither city, the disjunction is false so
the score is .32. Suppose Prob(It is overcast in Galveston | It is overcast in Houston) = .4,
and it turns out not to be overcast in Houston. Then the score associated with this pair
of events is not defined. Note that the score is a penalty. Hence, lower scores reveal more
insight than higher ones.

The quadratic score is a popular measure of judgmental accuracy for the following
reasons. When judges make a conscious effort to minimize their score, the quadratic rule
encourages honest assessments of chance (unlike the use of absolute difference, which yields
lower expected penalties if estimates are sharpened towards 0 and 1).5 It also decomposes
in a revealing way into coefficients that can be extracted from many assessment contexts
(Murphy, 1973; for discussion, see Yates, 1990).

A judge who feels entirely ignorant about a specific assessment will likely respond with
.5. Systematic use of this strategy leads to incoherence, since not all of p∧q, p∧¬q, ¬p∧q,
¬p ∧ ¬q can have probability .5. We may nonetheless conceive of a totally ignorant judge
faced with just one assessment, and average the resulting penalties over all such estimates.
The average quadratic score of a judge who responds .5 is .25, so .25 serves as an appealing
threshold of ignorance for this score. A judge with lower score gives evidence of insight
into the events under scrutiny; higher scores indicate lack of insight, or worse (scores close
to 1 reflect inverted insight).

For each of the 38 participants, we determined the relevant meteorological events for
the day whose weather was to be probabilistically forecast. We then calculated individual
quadratic scores. Of the 46 estimates provided by each student, 12 were conditional prob-
abilities. The conditioning events were not always true, so the scores of a given participant
was not always based on 46 estimates. In fact, the average number of estimates on which
the quadratic score was computed is 39.6 (s.d. = 1.58).
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The mean quadratic score for the 38 students is .231 (s.d. = .056). By t-test, this value
is reliably less than the .25 ignorance threshold (p < .05, two-tailed). Twenty-four of the 38
participants had a score below .25. Mean penalties are broken down by type of judgment
in the third column of Table 3.

On the average, the students showed insight about the weather. The insight is limited,
but nonetheless impressive because it bears on meteorological events one week hence (too
long to favor prediction). Moreover, their insight shines through the ample incoherence seen
above, which limits accuracy. Despite the incoherence, the students’ judgments provide a
guide to the weather that is reliably better than retreating to the estimate of .5 for a given
event.

Slope of the judgments

For each subject we isolated the cases in which the judged event came true (or, in the
conditional case, both the conditioning event and the target event came true). The average
probability assigned to these cases was compared to the average probability assigned to
events that did not come true (or, in the conditional case, assigned to target events that
did not come true even though the conditioning event did). The difference between these
means is called the slope of the judgments, and measures the judge’s ability to distinguish
the truth and falsity of predictions (high slope reflects prescience; see Yates, 1990, Ch. 3).

The mean slope over the 38 subjects was .154 (s.d. = .135), reliably greater than zero
(t(37) = 7.03, p ≤ .001). This mean will shortly be compared to the slopes obtained from
the coherent approximations of the students’ judgments.

Coherent approximations

Two indices will be used to measure how well a given distribution approximates a set
of probability estimates. One measure is the mean absolute deviation (MAD) between the
judge’s estimate of the chance of a given event and the distribution’s value for the same
event. The second measure is the Pearson correlation between these numbers, once again
taken over all 46 assessed events. A good approximation to a judge is a distribution that
generates a low MAD and a high correlation. Incoherent estimates cannot be perfectly
approximated by coherent substitutes. The considerable incoherence shown by our stu-
dents thus imposes a lower bound on the MAD that can be achieved by an approximating
distribution.

Uniform distribution

The crudest means of approximating a set of incoherent judgments is to take no account
of the particularities of the judge, and simply replace her assessments with the probabilities
of some fixed distribution. As a baseline measure of performance, we carried out this pro-
cedure with the uniform distribution, which assigns the same probability (namely, 1/1024)
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to every state generated by our 10 variables. According to the uniform distribution, the
probability of each elementary event is 1/2, conditional probabilities are 1/2, conjunctions
have probabilities 1/4, disjunctions 3/4. Over the 38 participants, the average MAD pro-
duced by uniform approximation is .183 (s.d. = .044). The average correlation between
the subjects’ judgments and those issuing from the uniform approximation is .434 (s.d.
= .221). This level of correlation is reliably greater than zero (N = 46, p ≤ .01). The low
level of correlation suggests that the judges were appropriately sensitive to more than the
logical structure of the events they were evaluating (since the uniform distribution assigns
probabilities solely on the basis of logical structure).

Distributions based on independence

The uniform distribution is one of a family of distributions that enforce independence
among the variables. That is, it conforms to:

(xi) Independence Property: For variables p, q, r, Pr(p ∧ q ∧ r) = Pr(p)× Pr(q)× Pr(r),
and similarly for other conjunctions.

If a distribution satisfies (xi), it is determined by specifying the probabilities of the elemen-
tary events; all remaining probabilities and conditional probabilities may be derived on this
basis. For each participant there is thus a unique distribution satisfying (xi) and agreeing
with her estimates of elementary events. Use of this distribution to approximate a set of
estimates has the merit of sensitivity to at least some of the judge’s opinions (namely, for
elementary events). Since it pays no attention to the remaining assessments, the distribu-
tion is the crudest approximation that is individually tailored to the judge. It thus serves
as a second baseline for the accuracy of coherent approximations.

For each of the 38 participants we calculated the MAD and the correlation associated
with the distribution that satisfies (xi) and agrees with the probabilities assigned to elemen-
tary events. The average MAD obtained was .144 (s.d. = .049). The average correlation
was .625 (s.d. = .193). A correlated t-test reveals the new approximations to be reli-
ably better than those based on the uniform distribution (t(37) = 6.9, 8.2, respectively,
p ≤ .001). That judgments were not perfectly correlated with the independent distribution
shows that the judges were appropriately sensitive to the interdependence of meteorological
events.

Distributions constructed by genetic algorithm

For each student we constructed a population of 200 chromosomes. Each chromosome
consisted of 10 rows (representing the 10 variables) and 100 columns (representing some
of the 1024 states); see the earlier discussion. The 1000 cells of a given chromosome were
randomly filled with t and f (truth and falsity) under the constraint that the percentage of
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t’s in row i equal the probability that the student assigned to variable i (except for round-
ing error). Thus, every chromosome in the starting population reflected the probabilities
the student assigned to the elementary events. The 200 chromosomes were then evolved
through 500 generations. Fitness of a given chromosome was measured by 1/(MAD+ .01),
where MAD is the mean absolute deviation between the student’s estimates and those
embodied by the chromosome (adding .01 prevents division by zero). Between two genera-
tions, the probability of being selected for mating was proportional to fitness. One hundred
such pairs were selected (with replacement) on this basis. With probability .5 the pair un-
derwent “crossover” at a randomly chosen column. Whether crossed or not, the pair then
underwent “mutation” in the form of a .001 probability of flipping any given cell. The
pair of chromosomes then entered the next generation (again yielding a population of 200).
In this procedure, fitness was calculated 100, 000 times (i.e., 200 times per generation).
The chromosome with highest fitness (lowest MAD) was retained, and its distribution was
used to approximate the student’s 46 assessments of chance. The entire procedure is per-
formed for one subject at a time (there is no interaction between chromosomes generated
for different students).

The average MAD achieved on this basis was .114 (N = 38, s.d. = .043). A correlated
t-test reveals this performance to be reliably better than that achieved with distributions
based on independence (t(37) = 13.45, p ≤ .001). (Hence, it is also better than use of
the uniform distribution.) Indeed, for all 38 students, the MAD for the genetic algorithm
was less than that using independence. The average correlation achieved via the genetic
algorithm is .711 (N = 38, s.d. = .185; each correlation involves 46 pairs). The correlations
of the genetic algorithm are reliably higher than for distributions based on independence
(t(37) = 8.67, p ≤ 001). This improvement was seen for 37 of the 38 students.

The fourth column of Table 1 shows the mean probabilities assigned by the 38 coherent
approximations to judgments of different types.

Accuracy of the reconstructed estimates

For each participant we calculated the quadratic score for the 46 estimates derived
from her best-approximating chromosome. Overall, the mean score for the reconstructed
estimates is .204 (s.d. = .047) compared to .231 (s.d. = .056) for the original estimates,
as reported earlier. By a correlated t-test, the difference is reliably different from zero
(t(37) = 6.92, p ≤ .001). (The difference from the ignorance threshold of .25 is also reliable.)
For 33 of the 38 participants, the reconstructed estimates had a lower quadratic score than
did the original estimates. The coherent revisions improve the accuracy of forecasts for each
of the seven types of events in the study. Table 3 compares the average mean quadratic
score for the students versus their coherent approximations with respect to each type of
judgment. Improvements are seen in every case, reaching statistical significance about half
the time (by correlated t-test). It should be borne in mind that improving accuracy via
coherent approximation to judgment is not a mathematical necessity. For any objective
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state of affairs, many coherent approximations to a given set of judgments make their
quadratic score worse.

The coherent approximations also improved the discrimination of true from false state-
ments. Across the 38 subjects, the average slope of the coherent approximations was .203
(s.d. = .106). By correlated t-test this is reliably higher than the .154 slope achieved by
the original judgments (t(37) = 5.82, p ≤ .001).

The accuracy improvements reported above are reliable but modest. For example, the
average reduction of quadratic score corresponds to assigning a probability of .45 rather
than .48 to a false proposition. The point of the analysis, however, is only to show that
our coherent approximations do not diminish the accuracy of the judge. This seems to be
the case inasmuch as both accuracy and slope reliably increased.

Discussion
A judge whose estimates are incoherent is likely to demand two things of a coherent

revision. First, the distortion of her original estimates should be minimal. Second, no loss
of predictive accuracy should result from the revision.

Regarding the first desideratum, use of the genetic algorithim yields coherent approx-
imations to the students’ judgments that were reliably closer than either of our baseline
techniques. The latter were (a) use of the uniform distribution over states for every par-
ticipant, and (b) construction of an individually tailored distribution starting from the
student’s probabilities for elementary events and assuming independence. Using our al-
gorithm, the average MAD achieved was .114, and the average correlation between orig-
inal and revised assessments was .711. These results were achieved despite considerable
incoherence in the participants’ assessments, which limits the closeness of any coherent
approximation. The relative success of our method supports the hypothesis of sparse dis-
tributions (i) according to which good coherent approximations to human judgment can be
found among distributions assigning positive probability to few potential states-of-affairs.
This is because the genetic algorithm delivers only sparse distributions of probability as
(coherent) approximations to judgment.

It is noteworthy that computing the 500 generations produced by our genetic algorithm
took only a few minutes per student on a personal computer. Most of the progress occurred
within the first two hundred generations, further descent occurring more and more intermit-
tently thereafter. (When only a few generations or a small population of chromosomes are
employed, the genetic algorithm delivers a coherent approximation that is no closer to the
original judgments than the distribution based on independence.) The ease-of-computation
seen in the present study bodes well for scaling our technique to larger problems, involving
more than 10 variables.

Judges might be more confident about certain estimates compared to others, and desire
greater fidelity to them in a coherent revision. For example, conditional probabilities are
often more psychologically accessible than absolute ones. (It seems easier to estimate the
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chance of rain in Minneapolis given rain in St. Paul than to estimate the chance of either
event alone.) In the genetic algorithm, fitness can be defined to take account of preferences
among estimates. For example, the absolute distance between input probabilities and those
coded by a chromosome may be weighted by a coefficient reflecting the judge’s confidence
in the estimate. For simplicity in the present study, no such weighting was imposed.

The chromosomes of our genetic algorithm were evaluated for fitness by comparing them
to numerical estimates of probability and conditional probability. A variety of alternative
judgments can also be used to evaluate fitness. For example, judges might specify (a)
inequalities among the chances of events, (b) conditional independence among variables,
(c) correlation among events. Provided that a given distribution can be evaluated for its
proximity to an input judgment, the method of genetic algorithms allows the judgment to
guide the search for a coherent approximation.

The judge’s second desideratum is that her revised estimates be no less accurate than
the original ones. Accuracy was measured via the quadratic score. Not only was accu-
racy undiminished, the coherent approximations had reliably better scores compared to
the original judgments (see Table 3). This phenomenon is similar to “bootstrapping” in
the prediction of quantitative variables like college grades. A linear model of the judge’s
estimates is often a better predictor than the judge herself.6 Bootstrapping probabilities
has an aspect not found in the context of linear models, however. Whereas there are no
normative grounds for using a linear model to predict college grades from SATs, high school
grades, etc., there are persuasive reasons to prefer one’s probabilities to be coherent (see
the earlier discussion about utility analyses and susceptibility to “Dutch books”).

Probabilistic bootstrapping is most useful when the events in question cannot be easily
assimilated to a large class of similar instances. Geopolitical forecasting is an example of
such a situation since the probability, e.g., of Switzerland entering the European Union
before 2020 cannot be extrapolated from a class of similar historical moments. Human
judgment must be relied upon to estimate the chances of these kinds of events, which opens
the door to incoherence. In the contrary case, when probabilities can be extrapolated from
past data, the resulting set of estimates is guaranteed to be coherent (provided that relative
frequencies are calculated from the same dataset for all the events in play).

Finally, we note that the present technique offers a method of aggregating the opinions
of a panel of experts asked to assess the chances of the same events. (For an overview of
issues and methods for aggregating judgment, see Ferrell, 1985; Rowe, 1992.) This problem
is typically studied in the context of elementary events, like (vii) (see, for example, Ariely
et al., 2000). In a more general context, experts may be asked to assess overlapping sets
of complex and elementary events. Even if the assessments of a given expert are coherent,
the union (i.e., combined set) of two experts’ asessments is unlikely to be so. To extract a
single set of coherent estimates from the panel, one approach is to take the union of all the
judgments and find the best coherent approximation using a genetic algorithm (or some
other approximation method). The result will be a compromise distribution that takes
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everyone’s views into account, and distorts them minimally. If some members of the panel
have better credientials than others, their estimates can be weighted more heavily in the
process.
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Notes

(1) The computational complexity of probabilistic coherence is discussed in Georgakopou-
los, Kavvadias and Papadimitriou (1988). The human tendency to stray into incoherent
estimates of chance is reviewed in Yates (1990), Baron (1994), and Osherson (1995). It is
striking to observe, for example, how few people realize that it is inconsistent to attribute
probabilities of .8 to each of two sentences, and probability .5 to their conjunction; see
(ix)a, below.
(2) For discussion of coherence and Dutch Books, see Osherson (1985), Resnik (1987),
Coletti (1990), Coletti, Gilio and Scozzafava (1993), Gustason (1994). In fact, if judgments
are incoherent, then bets can be chosen so that each has positive expected value according
to the judge yet are collectively guaranteed to lead to a loss.
(3) See Alpert and Raiffa (1982), Holtzman and Breese (1986), von Winterfeldt and Ed-
wards (1986), Henrion (1987), Morgan and Henrion (1990), Klayman and Brown (1993),
Druzdzel and van der Gaag (1995). The latter paper, for example, describes how elicitation
techniques can be extended to nonnumerical judgments of independence and conditional
independence. A separate issue from ensuring coherence is improving the accuracy of prob-
ability estimates. Elicitation techniques that decompose simple probabilities via the law of
total probability have been shown to sometimes lead to more accurate estimates of chance.
See Kleinmuntz, Fennema and Peecher (1996) for experimental results and discussion.
(4) We note that sparse distributions are not the only means of compactly encoding coherent
probabilities. Some non-sparse distributions, for example, can be factored into smaller
subdistributions that interact via multiplication; see Pearl (1988), Neapolitan (1990). This
approach relies on assumptions about conditional independence, however, that may not
be realistic in practice. Yet other classes of distributions can be compactly described via
algebraic decision diagrams, in the sense of Bahar et al. (1997). It is also worth noting that
the use of a quadratic objective function in place of (v) does not render the optimization
problem any easier. For example, it can be shown that the quadratic counterpart to (v) is
nonconvex on its domain.
(5) That is, if a judge believes that the probability of an event is p, and announces the
probability as q, then she minimizes her expected quadratic score— namely [p× (1− q)2]+
[(1− p)× q2] — by setting q = p (see Bernardo and Smith, 1994, Section 2.7). In contrast,
setting q = p does not minimize the expected absolute score, namely, [p×(1−q)]+[(1−p)×q].
Of course, our subjects were not informed about any scoring procedure, and had no reason
whatsoever to falsify their probability estimates.
(6) See Dawes (1979), Dawes and Corrigan (1974), Camerer (1981). Extension of the
bootstrapping concept to probabilistic estimates is discussed in Osherson, Shafir, Krantz
and Smith (1997). See also Osherson, Shafir and Smith (1994).
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Table 1:
Mean and Standard Deviation for the Seven Types of Estimates.

Subject Coh. approx.
Type N Mean (s.d.) Mean (s.d.)
p 380 .547 (.088) .529 (.064)
p | q 228 .451 (.127) .488 (.090)
p | ¬q 228 .473 (.152) .500 (.097)
p ∧ q 228 .411 (.140) .311 (.104)
p ∧ ¬q 228 .367 (.143) .263 (.038)
p ∨ q 228 .687 (.157) .769 (.069)
p ∨ ¬q 228 .639 (.139) .735 (.041)
overall 1748 .514 (.071) .515 (.052)

Table legend: The first column shows the type of event whose probability was
estimated. Elementary events are first, followed by the types listed in (viii). The
second column shows the total number of judgments of each type evaluated by
the subjects. The third column gives the mean for the subjects’ average judg-
ment. Thirty-eight subjects figure in this mean. The fourth column provides
the same information for the subjects’ approximating coherent distributions.
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Table 2:
Average Number of Incoherent Weather Forecasts by the 38 Judges.

N 0 tol .01 tol .05 tol
p ∧ q 6 2.97 2.89 2.68
p ∧ ¬q 6 3.00 2.55 2.42
p ∨ q 6 2.08 2.08 1.87
p ∨ ¬q 6 2.95 2.55 2.34
p |±q 1.44 1.34 1.32 1.24

Table legend: The first column specifies a constraint on coherence, in the sense
of (ix). The expression p |±q signifies the combination of constraints (ix)e,f,
namely, Prob(p | q) = Prob(p ∧ q) / Prob(q) and Prob(p | ¬q) = Prob(p ∧
¬q) / Prob(¬q). The second column shows the average number of occasions on
which the test can be made. The average number of incoherent judgments is
given in the third column. The fourth column provides the same information
when incoherence of .01 is tolerated. A tolerance of .05 yields the data in the
last column.
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Table 3:
Quadratic scores for students and for their coherent approximations.

# of Student Coh. approx.
Type students Mean (s.d.) Mean (s.d.) signif.
p 38 .247 (.075) .240 (.051) .231
p | q 36 .270 (.156) .265 (.114) .748
p | ¬q 36 .257 (.158) .234 (.122) .157
p ∧ q 38 .243 (.107) .192 (.090) .001
p ∧ ¬q 38 .201 (.092) .156 (.095) .001
p ∨ q 38 .207 (.141) .187 (.139) .278
p ∨ ¬q 38 .212 (.105) .178 (.097) .053
all 38 .231 (.056) .204 (.047) .001

Table legend: The first column shows the type of event being judged. The
second column shows the number of participants figuring in the mean. The
number is less than 38 for conditional judgments since the conditioning event
occasionally failed to be satisfied on any of the six occasions. The last column
shows the two-tailed p-value associated with a correlated t-test of the hypothesis
of equal means for students versus their approximations.


