
Abstract – Dynamically reconfigurable systems offer the
potential for realising efficient systems as well as providing
adaptability to changing system requirements. Such systems are
suitable for future mobile multimedia systems that have limited
battery resources, must handle diverse data types, and must
operate in dynamic application and communication
environments. We propose an approach in which reconfiguration
is applied dynamically at various levels of a mobile system,
whereas traditionally, reconfigurable systems mainly focus at the
gate level only. The research performed in the CHAMELEON

project1 aims at designing such a heterogeneous reconfigurable
mobile system. The two main motivations for the system are 1) to
have an energy-efficient system, while 2) achieving an adequate
Quality of Service for applications.

Keywords – reconfigurable computing, energy efficiency,
mobile multimedia systems, dynamic reconfiguration

I. INTRODUCTION

We are currently experiencing an explosive increase in the
use of handheld mobile devices, such as cell phones, personal
digital assistants (PDAs), digital camera’s, global positioning
systems, and so forth. Advances in technology enable portable
computers to be equipped with wireless interfaces, allowing
networked communication even while on the move. Personal
mobile computing (often also referred to as ubiquitous
computing [16]) will play a significant role in driving
technology in the next decade. In this paradigm, the basic
personal computing and communication device will be an
integrated, battery-operated device, small enough to carry
along all the time. This device will be used as a replacement of
many items the modern human-being carries around. It will
incorporate various functions like a pager, cellular phone,
laptop computer, diary, digital camera, video game, calculator
and remote control. An important issue will be the user
interface: the interaction with its owner. To enable this, the
device will support multimedia tasks like speech recognition,
video and audio. Whereas today’s notebook computers and

1 This research is supported by the PROGram for Research on

Embedded Systems & Software (PROGRESS) of the Dutch
organization for Scientific Research NWO, the Dutch Ministry of
Economic Affairs and the technology foundation STW.

personal digital assistants (PDAs) are self contained,
tomorrow’s networked mobile computers are part of a greater
computing infrastructure. Furthermore, consumers of these
devices are demanding ever-more sophisticated features, which
in turn require tremendous amounts of additional resources.

The technological challenges to establishing this paradigm
of personal mobile computing are non-trivial. In particular,
these devices have limited battery resources, must handle
diverse data types, and must operate in environments that are
insecure, unplanned, and show different characteristics over
time [6].

Traditionally, (embedded) systems that have demanding
applications – those driven by portability, performance, or cost
– require the development of one or more custom processors or
application-specific integrated circuits (ASICs) to meet the
design objectives. However, the development of ASICs is
expensive in time, manpower and money. In a world now
running on 'Internet time', where product life cycles are down
to months, and personalization trends are fragmenting markets,
this inertia is no longer tolerable. Existing design
methodologies and integrated circuit technologies are finding it
increasingly difficult to keep pace with today's requirements.
An ASIC-based solution would require multiple design teams
running simultaneously just to keep up with evolving standards
and techniques.

Another way to solve the problems has been to use general
purpose processors, i.e. trying to solve all kind of applications
running a very high speed processor. A major drawback of
using these general-purpose devices is that they are extremely
inefficient in terms of utilising their resources.

To match the required computation with the architecture,
we apply in the CHAMELEON project an alternative approach in
order to meet the requirements of future low-power hand-held
systems. We propose a heterogeneous reconfiguration
architecture in combination with a QoS driven operating
system, in which the granularity of reconfiguration is chosen in
accordance to the model of the task to be performed. In the
CHAMELEON project [15] we apply reconfiguration at multiple
levels of granularity. The main philosophy used is that
operations on data should be done at the place where it is most
energy efficient and where it minimises the required
communication. Partitioning is an important architectural
decision, which dictates where applications can run, where

Reconfiguration in Mobile Multimedia Systems

Gerard J.M. Smit, Paul J.M. Havinga, Martinus Bos, Lodewijk Smit, Paul M. Heysters

University of Twente
department of Computer Science

Enschede, the Netherlands

 {smit, havinga, tbos, smitl, heysters}@cs.utwente.nl

2

data can be stored, the complexity of the mobile and the cost of
communication services. Our approach is based on a dynamic
(i.e. at run-time) matching of the architecture and the
application. Partitioning an application between various
hardware platforms is generally known as hardware/software
co-design. In our approach we investigate whether it is
possible and useful to make this partitioning at run-time,
adapting to the current environment of the mobile device.

A. Mobile multimedia systems

Today, the choice of mobile devices is largely limited to
simple wireless phones on the one hand, to complex and bulky
laptops with wireless communication capability on the other.
While these devices serve their purposes, they are neither the
most integrated nor the most general: their functionality is
often limited, they can operate for just a short time, and they
are incapable of fully exploiting the emerging integrated
wireless networks. Even while current devices have the ability
to communicate and process data, they are and by large
primarily either data processing devices or communication
devices. Simply shrinking the processing devices and
communication devices, and packaging them together does not
alleviate the architectural bottlenecks of integrated mobile
multimedia devices [12]. The real challenge is to design a
device where data processing and communication share equal
importance.

Multimedia functionality is a driving force for many
research challenges. For example, due to the size constraints
on a portable computer, the user interface must be small. The
shortage of area on a mobile device can cause us to trade
buttons in favour of recognising the user’s intention from
analogue input devices such as handwriting, gesture and voice.
Speech generation and recognition seem an ideal user interface
since they require no surface area and allow hands-free and
eye-free operation. However, general-purpose speech input
and output places substantial storage and processing demands
on a mobile device. Other research investigates the use of
head-mounted virtual reality displays.

The trend in mobile system architectures has been to shrink
a general-purpose desktop PC into a package that can be
conveniently carried. Even PDAs have not ventured far from
the general-purpose model, neither architectural nor in terms of
usage model. Both the notebook and the personal computer
generally use the same standard PC operating system such as
Windows (CE) or Unix, same applications, use the same
communication protocols and use the same hardware
architecture. The only difference is that portable computers are
smaller, have a battery, a wireless interface, and often use low
power components.

Even though battery technology is improving continuously
and processors and displays are rapidly improving in terms of
power consumption; battery life and battery weight are issues
that will have a marked influence on how hand-held computers
can be used. Energy consumption is becoming the limiting
factor in the amount of functionality that can be placed in these
devices. More extensive and continuous use of network

services will only aggravate this problem since communication
consumes relatively much energy.

Another key challenge of mobile computing is that many
attributes of the environment vary dynamically. Mobile
devices face many different types of variability in their
environment. Therefore, they need to be able to operate in
environments that can change drastically in short term as well
as long term in available resources and available services.
Merely algorithmic adaptations are not sufficient, but rather an
entirely new set of protocols and/or algorithms may be
required. For example, mobile users may encounter a
completely different wireless communication infrastructure
when walking from their office to the street. A possible
solution is to have a mobile device with a reconfigurable
architecture so that it can adapt its operation to the current
environment and operating condition. Adaptability and
programmability should be major requirements in the design of
the architecture of a mobile computer.

We are entering an era in which each microchip will have
billions of transistors. One way to use this opportunity would
be to continue advancing our chip architectures and
technologies as just more of the same: building
microprocessors that are simply more complicated versions of
the kind built today. However, simply shrinking the data
processing terminal and radio modem, attaching them via a
bus, and packaging them together does not alleviate the
architectural bottlenecks. The real design challenge is to
engineer an integrated mobile system where data processing
and communication share equal importance and are designed
with each other in mind. Just integrating current PC or PDA
architecture with a communication subsystem, is not the
solution. One of the main drawbacks of merely packaging the
two is that the energy-inefficient general-purpose CPU, with
its heavyweight operating system and shared bus, becomes not
only the centre of control, but also the centre of data flow in
the system and a main cause of energy consumption. Another
drawback is that highly optimised ASICs are inflexible, have a
relatively long development time, and can only be applied
optimally in a limited range of applications.

Clearly, there is a need to revise the system architecture of
a portable computer if we want to have a machine that can be
used conveniently in a wireless environment. A system level
integration of the mobile’s architecture, operating system, and
applications is required. The system should provide a solution
with a proper energy-efficient balance between flexibility and
efficiency through the use of a hybrid mix of general-purpose
and the application-specific approaches [6]. A system wide
approach that covers the whole spectrum between physical
layer and applications can provide significant energy savings
[6].

B. Why reconfigurability in mobile systems

A key challenge of mobile computing is that many
attributes of the environment vary dynamically. Mobile
devices operate in a dynamically changing environment and
must be able to adapt to the new environment. For example, a
mobile computer will have to deal with unpredicted network

3

outage or should be able to switch to a different network,
without changing the application. It should therefore have the
flexibility to handle a variety of multimedia services and
standards (like different video decompression schemes and
security mechanisms) and the adaptability to accommodate the
nomadic environment, required level of security, and available
resources. Mobile devices need to be able to operate in
environments that can change drastically in short term as well
as long term in available resources and available services.
Some short-term variations can be handled by adaptive
communication protocols that vary their parameters according
to the current condition. Other, more long-term variations
generally require a much larger degree of adaptation. They
might require another air interface, other network protocols,
and so forth. A software radio that allows flexible and
programmable transceiver operations is expected to be a key
technology for wireless communication. Reconfigurable
systems have the potential to operate efficiently in these
dynamic environments.

Reconfigurability also has another more economic
motivation: it will be important to have a fast track from
sparkling ideas to the final design. If the design process takes
too long, the return on investment will be less. It would further
be desirable for a wireless terminal to have architectural
reconfigurability such that its capabilities may be modified by
downloading new functions from network servers. Such
reconfigurability would also help in field upgrading as new
communication protocols or standards are deployed, and in
implementing bug fixes [12]. Summarising, the key issues in
the design of portable multimedia systems is to find a good
balance between flexibility and high-processing power on one
side, and area and energy-efficiency of the implementation on
the other side.

II. THE SPECTRUM OF SOLUTIONS

A. Solution domains

In general there is a whole range of possible solutions for a
certain problem. In a direct hardware implementation,
problems are solved by mapping an algorithm directly into
hardware. That is, the resulting hardware reflects the solution
directly. We call this fixed resources and fixed algorithms.
With a processor we have a way to implement almost any
algorithm using a fixed set of resources. The processor
provides fixed resources in the form of ALUs, floating-point
units, etc. The processor solves problems by providing limited,
fixed hardware resources and by sharing those resources over
time. In addition, the same hardware can support multiple
problems. The processor solution is one with fixed resources
and dynamic algorithms. These two problem solving
mechanisms have been competing with each other. There is a
trade-off between the flexibility of the processor and the
efficiency of the direct hardware implementation. If the
application requires the ultimate in performance and
efficiency, a direct hardware solution is preferred. But if the
problem is too expensive to solve with a direct hardware

approach, a processor-based solution is indicated. Between
these two extremes there is a large world of dynamic logic.
With dynamic logic the engineer can select both the resources
and the algorithm. Both the resources and the algorithms may
vary over time to solve the problem. Dynamic resources and
dynamic algorithms. Dynamic logic can be efficient because
the appropriate resources for the problem can be chosen to
exactly match the algorithm at any point in time.

B. Approaches

Figure 1 shows three different approaches in the spectrum
of applications and hardware implementations, and illustrates
the trade-off between efficiency and flexibility.

General-purpose processors

A trend in computer architecture is to focus on flexibility
with high performance general-purpose processors as this is
the area in which a semiconductor vendor can enhance its
status. Therefore, the architecture of a general-purpose
processor is most widely studied, and optimisations for
processor performance is the main goal. In general-purpose
processors it is possible to map a large set of applications on
the hardware simply by writing the right software for it.

While general-purpose processors and conventional system
architectures can be programmed to perform virtually any
computational task, they have to pay for this flexibility with a
high energy consumption and significant overhead of fetching,
decoding and executing a stream of instructions on complex
general-purpose data paths. The energy overhead in making
the architecture programmable most often dominates the
energy dissipation of the intended computation [11].

Application specific modules (ASIC)

The goal of application specific modules is to optimise the
overall cost-performance of the system, and not performance
alone. Application specific solutions present the most effective
way of reducing energy consumption and have shown to lead
to huge power savings. Performing complex multimedia-data
processing functions in dedicated hardware that is optimised
for energy-efficient operation reduces the energy-per-operation
by several orders of magnitude relative to software. However,
the disadvantage of dedicated hardware is the lack of
flexibility and programmability, their functionality is restricted
to the capabilities of the hardware.

The technological challenges in the design of custom
ASICs are usually significantly smaller than the design of
general-purpose circuits. This means that high-performance
custom chips can be designed and manufactured at relatively
low cost. However, this comes at the price of less flexibility,
and consequently a new (re)chip design is needed for even the
smallest change in functionality.

Application domain specific modules

From the discussion above, it is apparent that neither
general-purpose processors, nor ASICs will be capable of
satisfying the power and efficiency requirements of the future
mobile devices. A hybrid solution with application domain

4

specific modules could offer enough flexibility to be able to
implement a predefined set of (usually) similar applications,
while keeping the costs in terms of area, energy consumption
and design time to an acceptable low level [1]. The modules
are optimised for one specific application domain. A system
designer can use the general-purpose processor for portions of
algorithms for which it is well suited, and craft an application
domain specific module for other tasks. Unused parts of the
system must be switched off when not needed.

Summarising, an ASIC solution is too rigid, and a
processor solution is too inefficient. In fact, we want to make
the machine fit the algorithm as opposed to making the
algorithm fit the machine. This is the area of reconfigurable
computing systems.

C. Reconfigurable computing

Reconfigurable computing systems combine programmable
hardware with programmable processors to capitalise on the
strengths of hardware and software. The earliest configurable
computing machine was proposed, designed, and implemented
by Professor Gerald Estrin at UCLA in the early 1960s [4].
Estrin proposed the “Fixed plus variable structure computer”,
where some fixed hardware was dedicated to an inflexible
abstraction of a programmable processor and a flexible
component implemented digital logic. Today, the most
common devices used for reconfigurable computing are Field
Programmable Gate Arrays (FPGA). FPGAs present the
abstraction of gate arrays, allowing developers to manipulate
flip-flops, small amounts of memory, and logic gates.

Currently, many reconfigurable computing systems are
based on FPGAs. However, these systems have a number of
limitations:

• Limited functionality – Not all computations can be
implemented efficiently with today’s FPGAs: they are
well suited to algorithms composed of bit-level operations,
but they are ill suited to numeric operations, such as high-
precision multiplication or floating point calculations. No
circuit constructed with an FPGA can be as efficient as the
same circuit in dedicated hardware. General-purpose

processors (including digital signal processors) use
optimised function units that operate in bit-parallel fashion
on long data words. Compared with general-purpose
processors, FPGAs are inefficient in performing ordinary
arithmetic operations.

• Gate capacity – Available FPGAs provide an equivalent
of 10K to 1000K gates. These devices are often large
enough to experiment with the basic strategies, but limit
the scope of the designs. Future FPGAs will be much
larger and will have much broader application, including
highly complex communications and signal-processing
algorithms.

• Configuration speed – Most existing FPGAs use relatively
slow paths for device configuration, and few have the
ability to reconfigure only selective parts of the device.
The configuration speed determines the characteristics of
the computation model: it should change frequently
enough to take advantage of programmability, but slowly
enough to mask hardware configuration time. In general
purpose machines, task switches occur constantly, 10
millisecond time-slices are normal. With reconfigurable
hardware it is likely that task-switches are very expensive.
Whereas saving CPU state consists mostly of backing up
register contents, saving the state of a reconfigurable piece
of hardware includes saving all configuration bits.

• Memory structures and interface – FPGAs currently
provide little on-chip memory for storage of intermediate
results in computation; thus many reconfigurable
computing applications require large external memories.
The transfer of data to and from the FPGA increases
energy consumption and may slow down the
computations.

• Tools – FPGAs employ the same design tools and
methodologies as used for ASICs, including the use of
hardware description languages (HDLs). Although HDLs
are good at representing hardware, they are not
particularly efficient at describing algorithms. This means
that it is largely left to the designer to decide how to

application domain specific modules

General-
purpose

processor

Application specific modules

flexibility efficiency

application

Dynamic
logic ASIC

Computer module

Figure 1: The spectrum of applications and hardware implementations [11].

5

implement the algorithm in hardware, and then to describe
this proposed implementation using the HDL.

To address some of these concerns, various researchers
have proposed building a machine that tightly couples
reconfigurable hardware with a conventional microprocessor
[2][5]. The reconfigurable hardware is used to speed up what it
is good at, while the main processor takes care of all other
computations.

III. SYSTEM MODELLING OF RECONFIGURATION

In personal mobile devices, the system must meet the
conflicting demands of compute intensive algorithms,
communication intensive applications, and long battery life. In
general, a designer tries to design a system to be optimal for a
certain application and environment. The designer has to select
a particular algorithm, design or use an architecture that can be
used for it, and determine various parameters such as supply
voltage and clock frequency. However, energy efficiency in
mobile systems is not only a one-time design problem that
needs to be solved during the design phase. In a mobile
system, power management extents the notion of
hardware/software co-design, since we have to face a highly
dynamic application and communication environment. This
multi-dimensional design space offers a large range of possible
trade-offs.

A. Energy management

Adaptability and flexibility are two recurring items when
we mention energy efficiency and performance on mobile
multimedia computers. This leads to a key problem of energy
policy optimisation, which must be the central issue in any
energy management system. The policy is the algorithm that
decides what measures have to be taken to minimise the
energy consumption. Traditional power management schemes
only decides how and when to activate or shut down system
resources to minimise the energy consumption, depending on
usage patterns and performance constraints.

In the traditional design approach the designer needs to
select one of alternative solutions, either hardware or software,
for all parts of the system in the early phases of the design,.
However, in mobile systems energy efficiency is not only a
one-time problem that needs to be solved during the design
phase. When the system is operational, frequent adaptations to
the system are required to obtain an energy efficient system
that can fulfil the QoS requirements imposed. Finding the
energy management policy that minimises energy consumption
without compromising performance beyond acceptable levels
is already a complex problem. If the resources are also
flexible, and can adapt their functionality, this problem
becomes even bigger.

B. Mobile system functionality and partitioning

In a reconfigurable mobile system functions can be
dynamically migrated between functional modules such that an
efficient configuration is obtained. Functionality can be

partitioned inside a mobile system between a program running
on the general-purpose CPU, dedicated hardware components
(like a compressor or error correction device), and field
programmable hardware devices (like FPGAs).

The networked operation of a mobile system opens up
additional opportunities for decomposition to increase energy
efficiency. One opportunity is offloading computation
dynamically from the mobile system, where saving battery
energy is at a premium, to remote energy-rich servers in the
wired backbone of the network. In essence, energy spent in
communication is traded for computation. For example, when
we consider the transmission of an image over a wireless
network, there is a trade-off between image compression, error
control, communication, and energy consumption.

Partitioning of functions is an important architectural
decision, which indicates where applications can run, where
data can be stored, the complexity of the terminal, and the cost
of the communication service. The key implication for this
architecture is that the runtime hardware and software
environment on the mobile computer and in the network
should be able to support such adaptability, and provide
application developers with appropriate interfaces to control it.
Software technologies such as proxies and mobile agents, and
hardware technologies such as adaptive and reconfigurable
computing are likely to be the key enablers.

For multimedia applications in particular, a substantial
reduction in energy consumption is possible as the
computational complexity is high and their computation is
regular and spatially local. Also, the communication between
modules is significant. Improving the energy efficiency by
exploiting locality of reference and using efficient application-
specific modules therefore has a substantial impact on a mobile
system.

C. Granularity of programming model

The term reconfigurability has a strong association with
programmability. Programmability originates from the ’stored-
program’ concept used in the computer world. A program is
typically a set of instructions which modify dynamically the
behaviour of statically connected modules such as memories,
registers and datapaths. This has gradually been extended to
include the dynamic reconfiguration of interconnect networks
and logic functionality as well. Nowadays, reconfigurable
systems are often constructed from (arrays of) field-
programmable devices (FPGAs). These can give orders of
magnitude in performance improvement for specific
computational kernels over traditional computers by providing
programmability (reconfigurability) at the gate level. However,
this may come at the price of an increase in area, increase in
energy consumption, and lower programming ease.

It is arguable whether one should refer to the dynamic
loading of a hardware configuration as programming or
reconfiguration. The difference is indeed a bit subtle. Of
course, even in dynamic logic there will be static hardware that
will not change over time. Reconfiguration can be viewed as
an extra layer of abstraction between programming and

6

hardware. In programming, fixed instructions are used to solve
a problem. The characteristics and meaning of these
instructions is determined by the micro-program memory of
the device. The ’instruction set’ of the reconfigurable device is
changed to meet the requirements of the algorithm. In some
sense, there is a resemblance to dynamic micro-programming,
in which the instruction set of the computer is changed by
downloading microcode, rather than to run a single instruction
set for all algorithms.

Reconfigurability can actually be applied at many layers in
a system, and at multiple levels of granularity, in which each
has its own preferred and optimal application domain [13]. In
the CHAMELEON project we use the term reconfigurability to
denote all possible changes to solve a problem at various levels
of the system architecture. So we extend the traditional notion
of reconfiguration from being just the layer between
programming and hardware, to actually a vertical parameter
that involves many layers in the system.

As said before, in a mobile multimedia system many trade-
offs can be made concerning the required functionality of a
certain mechanism, its actual implementation, and values of
the required parameters. In an architecture with reconfigurable
modules and data streams, functions can be dynamically
migrated between functional modules such that an efficient
configuration is obtained. For example, when we consider the
transmission of an image over a wireless network, there is a
trade-off between image compression, error control,
communication, and energy consumption. Functionality can be
partitioned between a program running on the general-purpose
CPU, dedicated hardware components (like a compressor or
error correction device), and field programmable hardware
devices (like FPGAs). Of course, the actual trade-off will
depend on the particularities of the system, the nature of the
data sent, and so on.

The main philosophy used is that operations on data should
be done at the place where it is most energy efficient and
where it minimises the required communication. This can be
achieved by matching computational and architectural
granularity. In the system we have a hierarchical granularity
in which we differentiate multiple grain-sizes of operations.
These levels are illustrated in Figure 2, and will be discussed
in more detail in Section V.

At the gate level, we have the already mentioned
reconfigurable logic of which FPGAs are a typical example.
Other options for reconfiguration are at the reconfigurable
datapath, in which the modules have various functions like
multiplication and addition (the FPFA that will be introduced
in Section V is a typical example of this); at the reconfigurable
dataflow in which streams of data are dynamically configured
between various application domain specific modules; and at a
high level we can identify reconfiguration in the partitioning of
the load between the mobile and an external server.

To be able to handle this multi-level reconfigurability, a
model is needed to describe the functionality and
characteristics of the various processes, and also the interaction
between them.

add

multiply

mux

mux

add

register

CPU

Device 1

switch

Device 2

Device N

b) Reconfigurable data-path

c) Reconfigurable data-flow

Programmable
logic blocks

Programmable
interconnect

a) Reconfigurable logic gates

Base
station

External
servers

mobile

d) Load partitioning

Figure 2: Granularity levels of reconfiguration.

IV. CHAMELEON SYSTEM MODELLING

The reconfigurable system we envision consists of a
heterogeneous dynamically reconfigurable architecture that
spans many levels of the system. To deal with the hierarchical
granularity, a system model is used in which Quality of
Service and energy consumption play a crucial role. This
model is used to dynamically partition tasks of an application
such that an energy efficient configuration is established.

A. Overview

An important issue of the research is to deal with the
flexibility of the system. A trade-off has to be made where and
when to run which (part of the) algorithm. Therefore, a high-
level hierarchical – QoS based – model is needed to predict
the behaviour of modules in terms of energy consumption,
performance, cost etc., when running a certain set of
applications. Besides describing the functionality of the
modules and their ability to adapt (e.g. the effects on its energy
consumption when the image compressor changes its frame
rate, its resolution, or even its compression mechanism) this
model also includes the interaction between these modules.
Such a model is required to predict the overall consequences
for the system when an application or functional module
adapts its QoS, as in mobile systems, applications typically
will have to adapt dynamically to the changing operating
conditions. Using this model the inherent tradeoffs between for
example performance, communication and energy

7

consumption can be evaluated and a proper adaptation of the
whole system can be made.

Applications that users run on a mobile need several
functional resources of the system, such as processor, memory,
wireless network interface, compression/decompression logic
etc. In our architecture we assume that such modules are
programmable and can adapt to the demands of the
applications and to the state of the environment, e.g. available
bandwidth, bit error rate, available energy, etc. In general these
modules are not independent and choices for the setting of one
module may influence other modules. For example: when
video has to be transmitted it can be compressed, which
reduces the required bandwidth on the wireless network.
However, more compression requires not only more
processing power, it also needs better error-control. All these
functional modules often have contradictionary effects on the
resources needed, and a trade-off has to be made to find an
optimal solution. Not only the parameters can be changed as it
might also be profitable to migrate complete function from one
module to another, possibly even to another machine. A
complicating factor is that the dynamic nature of a mobile
environment also demands an architecture that allows adapting
to quickly changing conditions. The hardware and software
architecture should be able to support such adaptability and
should minimise the energy consumption by determining in
run-time, things like:

• Algorithm – the most suitable algorithm(s) to execute the
requested service(s).

• Partitioning – an appropriate partitioning of the
algorithms over the different heterogeneous parallel
processing units, which may include base stations, CPUs,
FPGAs and dedicated hardware.

• Parameters – the most optimal parameters for execution
of the algorithms.

• Power state – the suitable energy status mode of the
different hardware components.

These decisions are related to each other and are strongly
influenced by the environment, the current status of the system
and the given constraints such as minimum required
performance, real-time deadlines and minimum quality of
service (QoS) parameters. For making these decisions a trade-
off has to be made between computation, communication and
initialisation costs (both time and energy) to adapt the status of
the system dynamically to new circumstances in the best
suitable manner. Multiple hierarchical levels will be used to
hide complexity and achieve local adjustable systems when
possible. A flexible communication mechanism is required to
always offer the same communication interface independent of
a specific processing unit, so allocation of algorithms to
different processing units can be easily done.

B. System modelling

At all levels of abstraction, modern computing systems are
built in terms of components and communication (or, at least,
synchronisation) between components. Communicating

systems imply concurrency. Data dominated applications such
as multimedia usually consist of a number of different complex
sub-modules. In a high-level description (e.g. C) of the system
the different sub-modules correspond to procedures that
communicate to each other by exchanging several large array
signals. Many applications can be structured as a set of
processes or threads that communicate via channels. These
threads can be executed on various platforms (e.g. general
purpose CPU, DSP, FPGA, etc). In our research we apply
channels as a basic communication mechanism between
threads in a reconfigurable system. Channels first showed up
in Tony Hoare's Communicating Sequential Processes (CSP)
[9]. Occam is one language that includes them. More recently,
they appeared in the language Limbo, that comes with Inferno
[2] and also in reconfigurable systems [10]. In Inferno,
channels and threads are fully integrated into the system and
their use is really natural.

The creation of an abstract system model that will act as a
frame for run-time partitioning of the functions to be
performed using the available resources is of key importance
to be able to deal with the dynamic application and
communication environment of mobile systems.

We use a process graph model, which abstracts system
functionality into a set of processes represented as nodes in a
graph, and represents functional dependencies among
processes (states) with graph edges. The functionality of a
process graph will be referred to as task. This model
emphasises communication and concurrency between system
processes. Edge and node labelling are used to enrich the
semantics of the model. For instance, edge labels are used to
represent communication bandwidth requirements, while state
labels may store a measure of process computational
requirements. Process graph models may include structural
models, which describe systems as an assembly of tasks. The
root of such a hierarchy of tasks is called the application.
Figure 3 shows our system model with the process graph and
the implementation model of the tasks. The implementation
model describes characteristics and requirements of the
available implementations of the processes on devices.

��

��

�� ��

��

��
���

��

������

��

�	
�

��

���

��

�
��

���	
���
���� ����
�
�����������
�

Figure 3: System model.

The costs associated with a process graph in the context of
reconfiguration can be divided into communication costs
between the processes, computational costs of the processes
and initialisation costs of the task. The costs can be expressed

8

in energy consumption, resource usage, and aspects of time
(latency, jitter, etc). These costs are also described in the
implementation model.

C. Mapping

In practice, most systems are realised using libraries of
complex components. In a reconfigurable system, application
instantiation consists first of all of finding a suitable partition
of the system specification into the available resources of the
system (processors, memories, reconfigurable logic, and
ASICs) (mapping phase). The allocation of system functions
into hardware and software during the design phase is already
a complex task, to do it dynamically in run time, in response to
the changed environment, available resources, or demands
from the user, is an even more challenging task. The search of
the ’best’ mapping is typically a very hard problem, due to the
size of the search space. The costs associated with the mapping
cannot be ignored.

Mapping and algorithm selection assumes the existence of
a library with multiple implementations for the computation of
some (commonly used) processes. Furthermore, it is assumed
that the characteristics (e.g. energy consumption and
performance) of the library elements on a given architecture
are known beforehand (and described in the implementation
model like depicted in Figure 3). A characterisation of the
energy consumption for each library element can be specified
in a so called Power State Machine.

D. Operating system support

The life-time of an application in a reconfigurable system
has four major phases. At first, during the mapping phase, a
suitable partitioning of the system specification into the
available resources of the system is made. Then, the
constellation phase initialises the required hardware (loading
the programs), and builds the communication structure
required (setting up communication channels and if necessary
applying some plumbing to convert data formats). Then, the
program can be executed (execution phase). In our model we
do not assume that the mapping will be changed. So an
application will run unaltered until its termination. Note,
however that the application can use its resources in any way it
likes. Also partial reconfiguration of its logic should be
possible. In the termination phase all resources will be freed.
An application may be terminated when the environment has
changed in a way that a new mapping may be beneficial, or
that the original mapping and performance cannot be
maintained.

The research involves providing system level functions to
describe the setup of communicating threads, which may now
either run timeshared on a general CPU or in dynamically-
setup special purpose logic that runs on reconfigurable
hardware. The use of channels and processes running in
whatever implementation model (software or hardware), will
be made transparent for the application level programmers by
the system level functions.

By first describing the processes and how they are
connected and then letting the operating system decide on
’geographical’ placement of the processes and buffers,
multiprogramming will be supported and programs will be
able to run on different setups of hardware (i.e. different
amount of CPUs or available programmable logic).

QoS will be key factor in future hand-held multimedia
computers. A QoS driven operating system should integrate
QoS management into every (software or reconfigurable)
module, and all modules are responsible for the collection of
the QoS management information they require. In the design
of a module, it is important to express both the resources it
needs from other modules and the adaptation that is required
based on which resources the module actually gets. The design
of hardware/software modules for mobile terminal therefore
focuses on co-operation and adaptation issues rather than just
performance.

V. TARGET Chameleon ARCHITECTURE

In our model we have a number of modules that
communicate through a communication channel. The modules
can be a wide range of hardware devices, from general-
purpose processors, via reconfigurable logic to ASICs. The
communication channels can also be very diverse (e.g. ranging
from a shared memory, via a bus, to wireless channels).

In the following we will describe three levels of
reconfigurability that can be distinguished in the target
CHAMELEON architecture and that will be part of our model.

A. Reconfigurable data path: the FPFA

As a starting point of the reconfigurable datapath we take
the Field-Programmable Function Array (FPFA) architecture
[8], but the research is not restricted to this architecture only;
other reconfigurable architectures will be evaluated as well.

The operational environment of a FPFA is at a low level in
the hierarchy, executing fine grain computational intensive
processes. This exploits the ’law’ which states that most
execution time is spent on a small fraction of a program. We
call computational kernels the inner loops of a computation,
where most time is spent during execution. Each
computational kernel is optimised as a stand-alone application
and implemented on hardware that interfaces with the less
frequently executed sections of the algorithm.

FPFAs have resemblance to FPGAs, but have a matrix of
ALUs and lookup tables instead of Configurable Logic Blocks
(CLBs). Basically the FPFA is a low power, reconfigurable
accelerator for an application specific domain. Low power is
mainly achieved by exploiting locality of reference. High
performance is obtained by exploiting parallelism. A FPFA
consists of interconnected processor tiles. Multiple processes
can coexist in parallel on different tiles. Within a tile multiple
data streams can be processed in parallel. Each processor tile
contains multiple reconfigurable ALUs, local memories, a
control unit and a communication unit. Figure 4 shows a FPFA
tile with five ALUs.

9

interconnection crossbar

RAM RAM

ALU

RAM RAM

ALU

RAM RAM

ALU

RAM RAM

ALU

RAM RAM

ALU

Figure 4: FPFA tile with five ALUs.

The ALUs on a processor tile are tightly interconnected
and are designed to execute the (highly regular) inner loops of
an application domain. ALUs on the same tile share a control
unit and a communication unit. The ALUs use the locality of
reference principle extensively: an ALU loads its operands
from neighbouring ALU outputs, or from (input) values stored
in lookup tables or local registers. Each memory has 256 20-bit
entries. A crossbar-switch allows flexible routing between the
ALUs, registers and memories.

B. Reconfigurable dataflow: the Octopus switch

In a multimedia system various communication streams
(like audio and video) exist each with its specialised nature.
Typically, multimedia streams are both communication-
intensive and computation-intensive. In the MOBY DICK

project [14] we already developed a system in which we have
autonomous, reconfigurable modules such as network, video
and audio devices, interconnected by a switch rather than by a
bus.

CPU

Device 1

Octopus
switch

Device 2

Device N

Figure 5: Reconfigurable dataflow: the Octopus switch.

We offload as much work as possible from the CPU to
programmable modules placed in the data streams. In
particular we eliminate the active participation of the CPU in
media transfers between components such as network, display
and audio system. Thus, communication between components
is not broadcast over a bus but delivered exactly where it is
needed, work is carried out where and when the data passes
through, bypassing the memory. We use dynamic
programmable and adaptable devices that efficiently convert
incoming or outgoing data streams. Modules are autonomously
entering an energy-conserving mode and adapt themselves to
the current state of the resources, the environment and the
requirements of the user.

The interconnect of the architecture is based on a switch,
called Octopus [7], which interconnects a general-purpose
processor, (multimedia) devices, and a wireless network
interface.

C. Load partitioning

One important advantage of integrating wireless
communication with computing is that it facilitates user
mobility and connectivity to the network while carrying a
portable computer. The application layer in a mobile and
wireless system is responsible for such things as partitioning of
tasks between the fixed and mobile hosts, audio and video
source encoding and decoding, and context adaptation in a
mobile environment. A careful analysis of the data flow in the
system and decomposition of the system functions between
wireless terminal and network infrastructure can reduce energy
consumption considerably.

VI. CONCLUSION

Reconfigurable systems are suitable for the dynamic
application and communication environment of wireless
multimedia devices. Reconfigurable systems provides
flexibility to design new equipment that can adapt to changing
standards and algorithms once/year, add new features
once/month or adaptively modify the algorithm
once/microsecond based on the contents of the data stream.

Central in our approach is the matching between
granularity of computation and architecture. This by necessity
leads to a heterogeneous reconfigurable system that spans
many levels of the system. To deal with the hierarchical
granularity, a system model is used in which Quality of
Service and energy consumption play a crucial role. This
model is used to dynamically partition tasks of an application
such that an energy efficient configuration is established while
achieving a sufficient Quality of Service of the running
applications.

REFERENCES

[1] Abnous A., Rabaey J.: “Ultra-low-power domain-specific
multimedia processors”, VLSI Signal processing IX, ed. W.
Burleson et al., IEEE Press, pp. 459-468, November 1996.

[2] Chameleon Systems Inc., http://www.chameleonsystems.com.
[3] Dorward S., David Presotto, Howard Trickey, Rob Pike, Dennis

Ritchie, Phil Winterbottom: "Inferno", Proceedings of Compcon
1997.

[4] Estrin G.: “Organization of Computer Systems: The Fixed-plus
Variable Structure Computer”, Proceedings of the Western Joint
Computer Conference, pp. 33-40, 1960.

[5] Hauser J.R., Wawrzynek J., Garp: A MIPS Processor with a
Reconfigurable Coprocessor, Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM '97), April 16-18, 1997

[6] Havinga P.J.M., “Mobile Multimedia Systems”, Ph.D. thesis
University of Twente, February 2000, ISBN 90-365-1406-1,
www.cs.utwente.nl/~havinga/thesis.

10

[7] Havinga P.J.M., Smit G.J.M.: “Octopus: embracing the energy
efficiency of handheld multimedia computers” , proceedings fifth
annual ACM/IEEE international conference on mobile
computing and networking (Mobicom’99), pp.77-87, August
1999.

[8] Heysters P.M., Smit J., Smit G.J.M., Havinga P.J.M.: “Mapping
of DSP algorithms on Field Programmable Function Arrays”,
FPL ’2000 (Tenth International Workshop on Field
Programmable Logic and Applications), Villach, Austria,
August 28 - 30, 2000.

[9] Hoare C. A. R.: “Communicating Sequential Processes”, in
Proceedings of the Joint IBM University of Newcastle upon Tyne
Seminar, Newcastle upon Tyne, UK, 1978, pp. 145-156.

[10] Jones M. et al.: "Implementing an API for Distributed Adaptive
Computing Systems", FCCM Conference Virginia Tech, 1999.

[11] Leijten J.A.J.: “Real-time constrained reconfigurable
communication between embedded processors”, Ph.D. thesis,
Eindhoven University of Technology, November 1998.

[12] Lettieri P., Srivastava M.B.: “Advances in wireless terminals”,
IEEE Personal Communications, pp. 6-19, February 1999.

[13] Rabaey Jan M., “Reconfigurable Computing: The Solution to
Low Power Programmable DSP”, Proceedings 1997 ICASSP
Conference, Munich, April 1997.

[14] Smit G.J.M., Havinga P.J.M.: “Lessons learned from the design
of a mobile multimedia system in the Moby Dick project”,
proceedings HUC2k (Second International Symposium on
Handheld and Ubiquitous Computing), Bristol, UK, September
2000.

[15] Smit G.J.M., Martinus Bos, Paul J.M. Havinga, Sape J.
Mullender, Jaap Smit: “Chameleon - reconfigurability in hand-
held multimedia computers”, proceedings First International
Symposium on Handheld and Ubiquitous Computing, HUC'99,
September 1999.

[16] Weiser M.: “Some computer science issues in ubiquitous
computing”, Communications of the ACM, 36(7):75-84, July
1993.

