
Pagina W 1 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

EXTENDING HTML IN A PRINCIPLED
WAY WITH DISPLETS

Fabio Vitali
Dept. of Computer Science

Università di Bologna
Mura Anteo Zamboni, 7

I-40127 Bologna

Chao-Min Chiu
Graduate School of Management

Rutgers University
University Heights

Newark NJ 07102, USA

Michael Bieber
Institute for Integrated Systems Research

New Jersey Institute of Technology
University Heights

Newark NJ 07102, USA

Abstract

Displets provide authors and programmers with a way to freely extend the HTML language on a per-document basis
in a principled manner. Currently, in order to be accepted, HTML elements must be approved by the official HTML
review board. Non-standard extensions have appeared, and have relied on the commercial power of the proponents
for acceptance.

Two major forces are driving the extension process of the HTML language: those who favor a better description of
document elements, as with SGML, and those who would like better control over the final appearance of documents,
as with Postscript and other display-oriented languages. Special notations (such as mathematics, music, etc.), are
hardly considered - if at all - in defining the HTML standard. We designed displets to fill this frustrating gap.

Displets are Java classes that are activated while rendering an HTML document. Displets provide graphical artists
a better control over the final appearance of HTML documents, librarians and indexers a better description of their
content, and those in need of new notations a way to describe and use graphical objects in a manner compatible
with the graphical and structural habits of the HTML community.

1 Introduction

The current debate on HTML sees two opposing positions as preeminent. One wants better control
over the final appearance (the rendering) of a document. The other advocates better control over
the description of the structure and role of the parts of the document.

The first group, lead by graphic designers, would like the standardization efforts on HTML to cease
and allow ad hoc plentiful extensions to the language to cover all visualization needs. The second
group, the SGML community, would prefer HTML to abstract from the description of the
document's physical appearance, and let style sheets guide the final mapping of structural elements
to their visual representations.

Furthermore, commercial software developers often find it irresistible to improve and detour from
the published standard, and seek a commercial advantage by extending HTML with new,

Pagina W 2 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

proprietary tags ([16], [17], [18]). They hope, of course, for users to switch to their browsers to be
able to read and fully appreciate Web pages using those new tags.

Yet, it is our impression that all these approaches miss a critical need of authors of distributed
documents - support for special notations. Such notations include (and are not limited to)
specialized graphical objects (object-oriented graphics, graphs, charts, etc.), specialized notation for
specific fields (chemistry, electrical and electronic engineering, music, mathematics, software
engineering, chess, etc.), specialized alphabets (hieroglyphics, cuneiform, etc.), special symbols
(philosophical, religious, astrological, alchemical signs, etc.)

Generally there is one basic way to include these types of notation in an HTML document - by
providing an image of the symbol's graphical depiction. For particularly complex or dynamic
objects, it is now possible to write Java applets that display the object as their sole effect. Applets
may include specifications of the object details inside their code, making it therefore completely
hidden. Alternatively applets may receive these specifications as parameters put in the HTML code,
but without a required syntax or style, possibly resulting in an arcane and opaque syntax.

We propose a cleaner approach to extensions to the HTML language: displets. Displets are small
Java modules similar to applets. A properly extended browser would activate them while parsing an
HTML document, everytime it encounters pre-declared new tags and would let them handle the
display operation for the relevant objects. Declaring both the extensions that will be used in the
document and the displet class needed for their display at the beginning of the document, enables
any kind of customized extension to the HTML language without loss of generality, while
maintaining wide-spread compatibility and stylistic elegance.

We have developed a proof-of-concept implementation of displets by modifying the 1.0 alpha3
release of the HotJava browser. A few extensions have been designed and implemented on that
architecture.

The paper is structured as follows. Section 2 summarizes the current state of the HTML language.
In section 3, we discuss the need for HTML to support new notations. Section 4 introduces and
describes displets. Section 5 covers some implementation details. Section 6 presents several
extensions to HTML we have developed using displets, and describes others that we would like to
create. Section 7 describes a series of suggestions on how to implement displets within existing and
future standards.

2 The HTML language

The HTML language was designed as part of the World Wide Web effort at CERN at the
beginning of the nineties. Its goal [1] was to provide an easy page description language suitable for:

l hypertext news, mail, on-line documentation, and collaborative hypermedia;
l menus of options;
l database query results;
l simple structured documents with inline graphics; and
l hypertext views of existing bodies of information

HTML was designed to be an application of the Standard Generalized Markup Language (SGML,
[14]), that is, a class of documents conforming to an SGML Document Type Definition (DTD)
defining "HTML documents." SGML is an international standard for describing marked-up text in
an electronic format. Its wide acceptance and influence are owed to several characteristics, among
which we would like to highlight the following ([23], [10]):

Pagina W 3 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

Descriptive markup
An SGML document has its content enriched by embedded tags that describe its parts in
terms of their role and meaning, rather than the kind of processing necessary to display them.
This allows one to define a generic markup that can be used for any purpose: from display on
a wide range of devices (from dumb terminals to highly graphical workstations, from simple
line printers to sophisticated typographical systems) to content-based analysis and
categorization (useful for large document systems, indexers, search engines, etc.), to
processing for information extraction, restructuring, and update. SGML is only interested in
the meaningful structuring of the documents, and leaves the task of assigning graphical
attributes to document elements to rendering software.

Open set of document types
SGML documents may respect constraints defined by their type (as proscribed in their
Document Type Definition, or DTD). This means that only some elements may appear in a
SGML document, and that some elements may have constraints as to where and how to
appear.

Human-readable representation
SGML markup appears as text tags surrounding the described elements. Both the character
set used and suggested practice emphasize readability in the mark-up, since no special
software may be available for marking the text, and using meaningful words as tag names
improves understandability of the text in all situations.

HTML is a specific document type described using an SGML DTD. As such, it inherits some of
SGML's qualities: it shows embedded markup with meaningful names, some constraints in the
nesting of elements, and some structuring support (the header tags). On the other hand, being a
single DTD, HTML has the drawbacks of being a closed document type: only the existing elements
can be used and no extension can be created unless approved by the appropriate committee.

This fact has caused several problems in the development of the language itself. Since HTML+
[20], on through HTML 2.0 [2] to HTML 3.2 [21], every proposed enhancement to the language
has had to deal with an approval process, with the attacks of competing proposals, and with the
need to keep the additional features simple, usable and orthogonal to each other. Several extensions
were first implemented in commercial software and then proposed to the language committee with
the force of an already wide-spread usage.

Further needs could have been met with further language extensions (e.g., math markup [8]), but
had little support from influential user bases or commercial software, as they were deemed too
complex for fast implementation or no consensus was reached among the competing proposals. The
needs remain, and are met in the meantime with different, more complex and less elegant solutions.
In-line images have long been the standard way to include content elements the graphical depiction
of which was outside HTML capabilities, but this usage stresses rendering, not content. Server-side
extensions (e.g., [12]) make it possible to specify new tags that are automatically substituted with
appropriate content before being delivered to the browser. They rely on the fact that even though a
document needs to be shown on several types of browsers, it still resides on only one server, so that
it is safe to include new tags of which that server is aware.

In the current discussion, graphic designers compete with SGML enthusiasts to provide new
extensions. Extremists appear on both sides. David Siegel [22], for instance, proposes all
standardization in the HTML language be stopped at the current state and that the market decide
successful extensions via natural selection of the fittest. C. M. Sperberg-McQueen and R. F.
Goldstein [24] suggest using pure SGML documents and activating SGML viewers as plug-ins or
external viewers.

Pagina W 4 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

Others have more moderate views. The April 1996 W3C Workshop on High Quality Printing from
the Web had several proposals for consistent font rendering over the Web ([25], [27]) and new
markup elements for managing the display [7]. At the November 1994 First International
Workshop on WWW Design Issues, some researchers discussed ways to include SGML features in
the Web by improving the structure control ([19], [26]) or by developing simplified SGML-like
dialects to replace HTML ([11]).

Important proposals are those receiving support from the W3C in one form or another. Stylesheets
[5] are a way to attach rendering and formatting instructions to HTML tags. They allow authors to
specify the presentation in a precise way without cluttering the content of documents. Style rules
can be connected to HTML elements through implicit association, specification of linked stylesheet
documents (with the LINK element), or the use of a new proposed header tag called STYLE, in
which formatting instructions can be specified according to one of several stylesheet specification
languages ([13], [15]).

The Extensible Markup Language (XML, [6]) is an important proposal by the W3C Working
Group on SGML. XML is a simplified SGML with many of the arcane features removed in order
to produce a more usable and understandable language. XML documents thus are still valid SGML
documents, which leverages existing software.

3 The need for HTML extensions

The previous discussion shows that any proposed new extension is bound to annoy or be ignored
by an important authoring community. If the extension is related to rendering, many in the SGML
community will criticize it. If related to content or structure, many graphic designers will ignore it,
continuing to do HTML hacks or creating images until obtaining the desired specific effect for
some specific (high-end) browser, with disregard for compatibility and content analysis. The need
for an approval process by the HTML editorial review board and an implementation on commercial
applications contributes to the shared discomfort.

Suppose an author needs to display the following chart in a Web browser:

Pagina W 5 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

Figure 1: A simple chart in an HTML page

Currently a few solutions are possible:

l creating a static GIF or JPEG image while writing the document;
l having a CGI application create a GIF or JPEG image on-the-fly; or
l having a Java applet draw it during the display of the page.

In the first case, the chart is static and fixed; when changing the data, the author would have to
redraw the picture using whichever application he or she used the first time. In the second case, the
author would have to mess with CGI scripting and with the dynamic generation of graphic data. In
the third case, the author would have to write his or her own Java applet or use an existing one and
learn how to pass the parameters to it.

Obviously, the latter solution is probably the most elegant and common one given the current
availability of tools. Unfortunately, this solution shares a big drawback with the other ones: the data
that form the charts are not in an easily understandable or reusable format, as is dictated by the
syntax of the applet parameters. In short, the applet programmer decides how the chart data should
be specified, without any necessary regard for matching the markup of the rest of the page, and
with several restrictions on the available character set (we cannot, for instance, use angle brackets
or double quotes in the text to be drawn).

Furthermore, the applet content is completely separated from the content of the page. This leads to
a dangerous loss of hypertext in Web documents [3]. Applet authors cannot use hypertext features

Pagina W 6 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

a dangerous loss of hypertext in Web documents [3]. Applet authors cannot use hypertext features
(such as links on the objects); display HTML text in the chart labels; enable human readers to
understand the chart data by reading the HTML source code; or enable bots, indexers and research
engines understand its content - unless the applet programmer has gone far out of his or her way to
duplicate these characteristics from the browser in the code of the applet itself.

Therefore, while applets have the procedural power to support all needed notations, they strongly
discourage content markup, both in syntax and in structure, and are not an elegant choice for new
data objects.

The ideal solution would be to specify the chart data as markup included in the HTML source code,
instead of as parameters of the applet. Unfortunately this is currently not possible. Yet the whole
point of structured markup à la SGML is to be able to name and describe all the parts of a
document in a significant manner. The whole point of typographic languages à la Post Script is to
be able to specify exactly how and where to display all the parts of a document. HTML forces
authors instead to fit all the parts of a document in a limited set of available markup tags, and
removes most rendering control from the authors.

4 Displets

Displets are our proposal for creating HTML extensions in a principled, general way that will
satisfy everyday HTML authors, as well as both disputing communities.

l New tags can be created on a per-document basis, without approval or explicit support from
commercial browsers.

l All new tags are explicitly defined before being used, using a simple syntax.
l Specification of syntactical and structural constraints can be provided.
l Procedural support is given for creating any kind of graphical object with styles, font,

images, and graphical primitives.
l Complete control on rendering of new and nested elements is provided.
l Support for interactive elements (e.g., link anchors) is provided.

Displets are Java modules that are automatically activated whenever some pre-declared tags are
parsed by the HTML parser during the display of the HTML document. The author will be able to
include any kind of tag provided some displet exists to handle the data thus specified.

4.1 Displets within HTML documents

Displets are specified within HTML documents as new markup tags. They are preceded by their
declaration, and then used within the document as if they were legal HTML markup.

An example of an HTML document enhanced with displets may help in understanding their use:

<HTML><HEAD>
<TITLE>Test for chart</TITLE>
<TAG NAME="CHART" HasEndTag NonNesting SRC="http://hertz.njit.edu/chart/chart.class">
 <ATTR NAME="type" VALUE="BAR, PIE, LINE" REQUIRED>
 <ATTR NAME="width" VALUE=number>
 <ATTR NAME="height" VALUE=number>
</TAG>
<TAG NAME="TABLE" HasEndTag IN="Chart"SRC="http://hertz.njit.edu/chart/table.class">
 <ATTR NAME="HasLegend" VALUE=boolean>
</TAG>
<TAG NAME="TR" HasEndTag IN="Chart"SRC="http://hertz.njit.edu/chart/tr.class">
 <ATTR NAME="Type" VALUE="LABEL, DATA" REQUIRED>
 <ATTR NAME="Color" VALUE=RGB>
</TAG>

Pagina W 7 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

</TAG>
<TAG NAME="TH" IN="Chart"SRC="http://hertz.njit.edu/chart/th.class"></TAG>
<TAG NAME="TD" IN="Chart"SRC="http://hertz.njit.edu/chart/td.class"></TAG>
</HEAD><BODY>

<P>Some normal HTML text followed by the chart:</P>
<CHART TYPE=BAR> <TABLE HasLegend>
 <TR TYPE=LABEL>
 <TH> <TH>Jan/Mar <TH>Apr/Jun <TH>Jul/Sep <TH>Oct/Dec
 </TR>
 <TR TYPE=DATA COLOR=RED>
 <TH>Smith <TD>125 <TD>257 <TD>327 <TD>250
 </TR>
 <TR TYPE=DATA COLOR=GREEN>
 <TH>Green <TD>137 <TD>140 <TD>110 <TD>160
 </TR>
 <TR TYPE=DATA COLOR=BLUE>
 <TH>Brown <TD>421 <TD>380 <TD>250 <TD>150
 </TR>
</TABLE> </CHART>
</BODY></HTML>

Table 1: An HTML document defining and using a chart displet

A displet-enhanced HTML document has two characteristics: new tags are introduced (with a
simple syntax) at the beginning of the document, and, in the body, the newly defined tags are mixed
with standard HTML ones to create the needed document.

According to this syntax (others can be defined; a discussion can be found in section 7), for each
tag the main characteristics are described in a simplified syntax that closely resembles SGML
DTDs: the name of the tag, the syntax constraints, and the available attributes. There are two major
difference from DTDs:

l the rendering function (i.e., the displet class) is mentioned explicitly; and
l the valid containers for each element are specified, rather than the valid content as we would

have with SGML. This avoids the use of finite state grammars in the specification of an
element's content, and in our opinion, greatly simplifies understanding of the syntax for non-
SGML experts.

As the example shows, some tags have not been defined from scratch, but are a customization of
existing ones. This allows non-compliant browsers to still make use of and display the document
content as best as it can.

For instance, leveraging the fact that unknown tags and attributes are usually ignored by browsers,
we are re-using TABLE, TR, TH and TD tags for specifying the charting data. Therefore an
unaware browser would display the previous document as containing an appropriately formatted
table:

Jan/Mar Apr/Jun Jul/Sep Oct/Dec
Smith 125 257 327 250
Green 137 140 110 160
Brown 421 380 250 150

Table 2: The same chart displayed by an unaware browser

Pagina W 8 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

By specifying the IN="Chart" attribute within the table-related tags, we signal that the code of the
displets should be called only when these tags are found within a CHART tag, so that tables
described outside of charts are still handled normally - as tables.

This solution should appeal to SGML enthusiasts because the HTML language can be extended
with new tags. Structuring the documents is more flexible and complete, the new tags are explicitly
defined, and some syntactical prescriptions (albeit simpler than in SGML) are reinforced.

It also should appeal to graphical designers. Page designers are not constrained to forcing their
graphical ideas into existing tags. Also, the final rendering of the elements can be finely controlled
by the displet code.

Furthermore, it should appeal to those with special notation needs. Whole new notations can be
defined (mathematics, music, etc.), as well as simple elements (special characters, dingbats, etc.), or
complex structured data formats (object-oriented graphics, charts, etc.). Authors can easily include
all in HTML documents, having the same ease of use and comprehension as with the other HTML
tags.

Also, it may appeal to the HTML review board, because it is the only method so far to extend
HTML without deferring to endless committee discussions or to the market force of commercial
software, or employing complex specification mechanisms such as SGML and XML.

Finally, it may appeal Web authors, who will be able to mix and match pre-defined displets creating
sophisticated complex without recurring to programming.

4.2 Displets as Java modules

A displet is a Java class whose methods are called during the parse of an HTML document.
Displets have control over the display of themselves and their immediate surroundings, such as the
HTML code contained between their start and end tag, or immediately following the end tag. They
are not usually called while the document is on screen, unless the displet explicitly requests this
service.

The Java code for a very simple displet looks like this:

import awt.Graphics;

class HelloWorldDisplet extends browser.Displet {

 public void startElement() {
 graphic.drawString("Hello world!", 10, 25);
 }
}

Table 3: The "Hello world" displet

Displets require a modified HTML parser that allows external classes to be declared and invoked,
and that allows external classes to modify the rendering parameters (such as text font, size or style,
margins, etc.)

The modified HTML parser must accept the definition of the new tags upon encountering the TAG
element, and invoke the appropriate methods when encountering the start and end tag of the newly
defined element.

Pagina W 9 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

Whenever encountering an unknown tag, the HTML parser should verify whether a TAG tag with
that name has been defined and is permitted to occur in the current context (for instance, if it
follows the specifications of the IN and NonNested attributes). If so, the parser will create a new
instance of the displet with an array of the valid attributes (as specified by the ATTR elements
contained in the TAG element). The parser also verifies and performs appropriate housekeeping
tasks when encountering the end tag of the newly defined element.

Upon displaying the page, the startElement() method of the displet should be called when
encountering the start tag of the new object. Within this method it is possible to create graphical
objects and to change the settings of the current rendering (font, margins, etc.). The endElement()
method is called in conjunction with the new element's end tag. This method usually should be used
to restore the original settings that were modified in the startElement() method.

Furthermore, the browser should be capable of calling the appropriate methods whenever a user
event happens within the boundaries of the displayed object. This need is clearly shown for the A
tags, where the browser must react when the user clicks on or moves the mouse over the displayed
object.

5 Implementation

We have created a proof-of-concept implementation of displets using Java 1.0 alpha3 and the 1.0
alpha3 release of the HotJava browser. Although this forced us to use a non-standard and outdated
version of the language, and a limited set of HTML options to start off with, it allowed us to use
the source code of an existing HTML parser and browser that we could modify and extend.

HotJava 1.0 alpha3 parses and displays HTML documents through the interaction of the
appropriate subclasses of three different classes: Tag, TagRef and DisplayItem. Tag instances (one
for each tag type) are passive objects that simply notify the HTML parser of their existence.
TagRef instances are created by the HTML parser every time it encounters the proper tag, and are
used as an internal representation of the HTML document. When displaying the document, each
TagRef is associated to a relevant DisplayItem, which decides how to display itself.

The current implementation defines two new tags: TAG and ATTR:

<!ELEMENT tag - o attr*>
<!ATTLIST tag
 name CDATA #REQUIRED
 hasEndTag (hasEndTag) #IMPLIED
 nesting (nesting) #IMPLIED
 interactive (interactive) #IMPLIED
 in CDATA #IMPLIED
 src CDATA #REQUIRED>

<!ELEMENT attr - o (#PCDATA)?>
<!ATTLIST attr
 name CDATA #REQUIRED
 value CDATA #REQUIRED
 required (required) #IMPLIED>

Table 4: The definition of the TAG and ATTR elements

Three classes are defined, namely the DispletTagRef, DispletDisplayItem and Displet. A
DispletTagRef is created whenever a declared new tag is encountered during the parse of the
document. The DispletDisplayItem is then activated by the browser during the layout of the

Pagina W 10 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

document. The DispletDisplayItem is then activated by the browser during the layout of the
document page. This class creates an instance of the appropriate Displet class (the only class
supplied by the user), which can create a graphic object or modify the layout settings as needed.

If the INTERACTIVE attribute is specified, the displet class will also receive all the users' events in
the area, in which case the appropriate methods (mouseDown(), mouseUp(), etc.) will be called. An
interactive displet can do exactly the same things as an applet, although the calling method is
different (displets should prepare and paint themselves in the startElement() method).

This structure is parallel and similar to the one used for managing applets:

Figure 2: The analogy between applets and displets

The user implementing a new displet simply has to subclass Displet. Displets are built around two
basic methods: startElement() and endElement(). In the first, a displet should prepare and
draw its graphical representation and/or modify the current setting for the next elements. In the
second, a displet should restore the original settings. Two objects are available to all methods in a
displet class: the graphic object, providing the context for the drawing routines, and the document
object, providing the current values for variables such as the current margins, the current font, etc.

6 Displet examples

In our proof-of-concept implementation, we have created a small set of working extensions to
HTML. A few more are in the works, and should be ready at about the conference time.

6.1 Charts

A chart is a graphical depiction of a table of numerical values. In accordance to this definition, and
in order to maintain compatibility with other browsers, charts use table tags to define the data they
need to show. A complete example of the grammar and use of charts is given in sections 3 and 4.

6.2 Graphs

A graph is a set of circular and rectangular shapes called nodes connected by arrowed lines called
arcs. The following is the declaration of such a displet in the HTML document:

<HTML><HEAD>
<tag name="GRAPH" hasEndTag nonNesting src="http://hertz.njit.edu/displets/graph/GRAPH.class">
 <attr name="width" value=number>
 <attr name="height" value=number>
</tag>

<tag name="NODE" hasEndTag nonNesting in="GRAPH"
src="http://hertz.njit.edu/displets/graph/node.class">
 <attr name="name" value=string required>
 <attr name="pos" value=integerPair>
 <attr name="size" value=integer>
 <attr name="shape" value="rect , circle">rect</attr>
</tag>

Pagina W 11 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

<tag name="ARC" hasEndTag nonNesting in="GRAPH"
src="http://hertz.njit.edu/displets/graph/arc.class">
 <attr name="name" value=string>
 <attr name="from" value=string required>
 <attr name="to" value=string required>
 <attr name="arrow" value="to, from">
 <attr name="thickness" value=integer>
</tag>
</HEAD><BODY>
<graph width=400 height=300>
 <node name="first" pos=290,120 size=160,40 shape=rect>
 This is the first label
 </node>
 <node name="second" pos=100,20 size=160,40 shape=rect>
 This is the second label
 </node>
 <node name="third" pos=100,120 size=120,50 shape=rect>

 <arc from="first" to="second" arrow=from>This has a label, too</arc>
 <arc from="first" to="third" arrow=from>
</graph>
</BODY></HTML>

Table 5: Defining and using a graph

This is how the graph looks on the screen:

Figure 3: A graph element in an HTML page

6.3 Anchor groups

Pagina W 12 di 18

file://C:\WINNT\Profiles\Luca\Desktop\displet\release1\paper\Displet.html 08/03/99

6.3 Anchor groups

Anchor groups are a way to implement multi-endpoint links [4]. the user finds a clickable area that,
instead of leading to a single destination, pops up a list of choices each leading to a different
destination. As a displet, this corresponds as an anchorGroup tag surrounding a set of plain HTML
A anchors.

The following is a declaration for AnchorGroup:

<HTML><HEAD>
<tag name="agroup" hasEndTag interactive src="http://hertz.njit.edu/displets/agroup/agroup.class">
 <attr name="name" value=string>
 <attr name="align" value="top, middle, bottom">
</tag>

<tag name="a" hasEndTag src="http://hertz.njit.edu/displets/agroup/a.class">
 <attr name="HREF" value=URL required>
 <attr name="ALT" value=string>
 <attr name="selected" value=boolean>
</tag>
</HEAD><BODY>
<agroup name="agroup1" align="top">
 This is an example of multi-endpoint link:
 Go to NJIT,
 Go to Rutgers
</agroup>
</BODY></HTML>

Table 6: Defining and using an anchor group

By defining anchor groups as collections of anchors, we can guarantee some compatibility with
existing browsers, since the links, rather than being grouped in a single pop-up menu, will be
displayed side by side without problems.

