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Abstract

Most of today’s virtual environments are populated with some kind of autonomous life-like agents. Such agents

follow a pre-programmed sequence of behaviours that exclude the user as a participating entity in the virtual

society. In order to make inhabited virtual reality an attractive place for information exchange and social

interaction, we need to equip the autonomous agents with some perception and interpretation skills. In this paper

we present one skill: human action recognition. By opposition to human-computer interfaces (HCI) that focus on

speech or hand gestures, we propose a full-body integration of the user. We present a model of human actions

along with a real-time recognition system. To cover the bilateral aspect in human-computer interfaces, we also

discuss some action response issues. In particular we describe a motion management library that solves

animation continuity and mixing problems. Finally we illustrate our system with two examples and discuss what

we have learned.

Introduction

The possibility of interaction with synthetic characters is a decisive aspect in the

engagement of a participant as an active member in reactive inhabited virtual environments

(Pausch et al., 1996). Because of its intuitive nature, a gesture-based interface is appealing for

both novice and experienced users (Rubine, 1991). Various techniques have been proposed in

order to interpret the participant’s motion. Newby uses statistical classification of hand

postures in order to identify the American Sign Language (Newby, 1994). Roy et al. exploit a

connectionist approach in order to recognise an arm gesture from a list of arm mimes (Roy et

al, 1994). Darrell et al. extract the location of visible end effectors from the participant image

(Darrell et al., 1994). They derive high level input from the detection of specific postures or

gestures.
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Most often, the motion capture of a participant is either limited to a small part of the body

such as a hand or an arm, or restrained by visibility constraints. Gavrila & al. aim at

identifying the full human posture by analysing multiple-view frames (Gavrila et al., 1996).

They have also addressed the problem of movement recognition for the two upper limbs

(Gavrila et al., 1997). However, this goal was achieved in a post-processing phase. By

comparison, the alternate motion capture approach based on magnetic sensors allows close to

real-time identification of full participant mobility (Semwal et al., 1996), (Molet et al. 1998).

Furthermore, the magnetic sensor technology now has higher usability thanks to a partially

wireless device. We take advantage of the magnetic sensors in order to provide the joint value

input. Our contribution answers the participant’s action recognition problem by proposing a

hierarchical model of body action, a real-time recognition algorithm and a motion mixing

method for action responses. The system is illustrated with an immersive virtual shop

environment, populated by two autonomous agents, the shopkeeper and a friend called

‘Mary’, and the performers’ avatar. The example’s aim is to illustrate how action recognition

can be seamlessly integrated within the behaviours of the autonomous agents in order to

create an interactive social scenario. In a second example, the interface uses action

recognition in order to control the performer’s interaction with a virtual environment, by body

and camera displacements, object grasping and light control. In previous work, we used

action recognition for a simplified fighting training application (Emering et al., 1997).

Application Fields

A good human-computer interface is one that allows the user to forget the interface and

concentrate on the task. The interface manipulation should become part of the user reflexes.

To reach this goal, the interface has to heavily use the participant’s’ a priori knowledge and
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daily experiences. Therefore, we propose full-body human action recognition as an important

component of multi-modal interfaces. Some application fields that we have already

experienced or foresee for our system are the following:

1) performing tasks in a simpler way

One goal in virtual reality (VR) is to simulate real world situations. As a consequence, the

interface has to facilitate the real world interaction paradigms. However, reproducing every

single detail of an interaction is not necessarily a desirable goal. Grasping an object is such an

example. It is relatively easy to copy a performer’s hand motions onto virtual hands. Even

collision detection between objects and the virtual hands can be mastered (Boulic et al., 1996)

(Rezzonico et al., 1995). Nevertheless, experience shows that grasping a virtual object is still

more difficult than in real life. The problem is the poor quality of the feedback loop. Neither

can we manage realistic 3D-vision sensation, nor do we have realistic force feedback devices.

We think that grasping an object with detailed finger control is not necessarily desirable.

Instead of asking the user to perform a precision grasp, we ask the user to perform a grasp

gesture. This action is recognised by the system and the object snaps to his/her hands. Of

course, in real life, objects generally do not behave like magnets, but this can be an acceptable

compromise between the realism of a task performance and the convenience of the interface.

Other interaction tasks that can be advantageously simplified through action recognition

events are walking, sitting or simply looking around by turning the head. In most VR

systems, such actions are triggered by some hand posture recognition events. We claim that

such actions can be more naturally triggered through a full-body action recognition system.

2) context dependent reactive agents
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Imitation, in the sense of copying with modifications or reformulating, is a key aspect in

simulating intelligence for synthetic agents. Famous examples are robots in MUDs (Multi-

User-Dungeon), for example the robot called Julia in (Foner, 97). The principle consists of

analysing text strings and finding some corresponding answer in a dictionary or to

reformulate the input text. A similar approach can be applied to the behaviour of synthetic

agents. In our virtual shop testbed, we let the seller imitate the users’ pointing to the

merchandise, in order to incite the life performer to confirm the choice. Another example that

we are currently developing consists of an interactive dance performance between a live

performer and an autonomous dancer. Most of the time the autonomous dancer simply copies

the performer’s dance motions, possibly with some amplitude modulation. Whenever the

autonomous dancer recognises a specific dance action, it suspends the imitation and plays a

pre-recorded keyframe sequence. Such context dependent behaviors can be useful in

interactive pedagogical applications, for example to train people (Rickel et al., 1998).

3) semantic modulation

Human gestures are often performed in parallel with speech. They can either modulate the

emotional context of the dialog or drastically change its semantics. If used as a stand-alone

channel, gestures are self-contained, semantically meaningful units. A method for isolating

the emotional motion components of gestures is described in (Amaya, 1996). We did not

develop any testbed that integrates the recognition system with a speech synthesizer, but we

think it is an interesting issue for interactive environments focusing on dialogues between

performers and agents (Cassell et al., 1994).
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4) interface for human embodiment and environmental controls

Rather than using action recognition for communicating with another agent, we can use such

a system to interact with an environment by controlling some parameters such as: the virtual

camera positions, displacement parameters of the performer’s embodiment, or changing the

behaviour of objects. Further in this paper, we present an interactive walk-through

environment that reveals the possibilities and also some pitfalls in the design of such

applications.

Previous Work

Currently there are two main approaches for designing a full-body action recognition human-

computer interface. The first directly connects to the sensors’ raw data stream. This is

generally the case for video image based sensing installations. The ALIVE system (Maes et

al., 1995) applies vision routines in order to extract the performer’s figure from the 2D image

background and label the salient points of the contour. The recognition algorithm itself uses

space and time separable template patterns. The KidsRoom (Bobick et al., 1997) moves

beyond just measuring salient body points. It combines sensor output with contextual

information derived from the story in order to recognise individual and group actions, e.g.

‘staying in a group’. Another interesting fact in ALIVE is that the user has an embodiment in

the virtual scene - the extracted video figure - whereas in the KidsRoom, user embodiments

are absent.

Motion-based recognition from video images can be decomposed into describing a spatial

pattern (where there is motion) and how the motion evolves. An extension proposes ‘motion-

energy images’ and ‘motion-history images’ as a two-component version of a temporal
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template. The recognition consists of matching the templates with stored models of views of

known actions  (Bobick and Davis, 1997).

The other approach consists of first reconstructing a 3D model from the sensor data. This is

typical for systems with a small set of high precision sensors such as data gloves, magnetic or

optical motion capture systems. Here the data is mapped to anatomical joint angles (Molet et

al., 1996) prior to the recognition stage. The advantage is that the sensor dependent layer can

be replaced without necessarily affecting the recognition system.

The underlying recognition algorithms that can be found in literature are various. Hidden

Markov Models, HMM, (Yanghee Nam et al., 96) are among the most popular, as the

probabilistic approach seems to adapt well to complex human actions that are difficult to

clearly define. HMM suffer however from a large number of parameters that have to be

adjusted either by training or by some a priori assumptions. Also it is not clear, due to a lack

of publications, whether HMMs could reasonably scale to higher dimensional data input

spaces, such as human bodies, without conflicting with real-time constraints. Other popular

methods are neural networks (Looney, 1997). The critical decision lies in the choice of an

adequate network type and the parameter adjustment functions. However, neural networks are

known for robust classification in presence of noise. Finally, there are statistical methods.

They are widely used because of their lightweight computation and implementation facilities.

Human Actions

The purpose of human activity is to achieve common or individual goals. In order to identify

these goals by a software process, we need to divide human activity into smaller units, actions
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that can easily be categorised by an algorithm. As human activity is driven by multiple

motivations such as biological needs, rational decisions and social goals, we limit our model

to the action types having the following characteristics:

- goal-oriented. The initiation of the action is motivated by a unique final goal. The

action has a rational character, i.e. its goal is the result of a conscious decision. The goal is

often underlined by a final permanent body posture or a characteristic set of constraints in the

Cartesian space (detailed later in this paper). We do not consider actions of biological or

physiological character such as fidgeting or balance gestures. We consider fidgeting as a

noise whose amplitude is not big enough to have a significant impact on the action

specifications. Finally, at the current level of development, we do not consider actions of

social character, although they are interesting for higher level behavioural interactions. Social

actions can be modelled as a composition of rational actions. For example, ‘having a glass of

wine with somebody’ can be decomposed into 1) grasping the glass 2) clink glasses 3) drink

and 4) put the glass down. Actions of social character have, typically, many subgoals, which

is in contradiction with our previous requirement of unique goal-oriented actions.

- finite duration. Time is a good criterion for delimiting the set of actions that we are

interested in. We consider only actions of short duration, that is, actions of a few seconds.

Actions of social nature have a longer lifetime, in the order of minutes and more. For periodic

actions, such as walking, we claim that the definition of one motion cycle is sufficient.

During the recognition phase, periodic actions will be recognised each time a cycle of the

periodic motion is identified.
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- postures & gestures. Actions are expressed through the performer’s body

configuration, either in joint or Cartesian space. Postures are given by a permanent body

configuration (absolute values at a given time) by opposition to gestures (variations over

time).

- involved body parts. Actions do not necessarily involve the complete body. A set of

bodyparts can be sufficient to perform an action. A body part is one of the following: upper or

lower arm or leg, a hand, a foot, the neck, the head, the pelvis, the abdomen or the thorax

(Table 1). Reducing an action definition to a set of bodyparts does not necessarily imply a

loss of action relevant-information.

- parallelism. Sometimes, actions are performed in parallel rather than sequentially.

Giving a phone call with a mobile telephone while walking is considered as two different

actions. The execution of actions can be sequential, overlapping or parallel, i.e. the ‘phoning’

action may start and end at any time before, during, or after the walking action. We also state

that distinguishing parallel actions in an unambiguous way implies the use of non-intersecting

sets of body parts for both actions.

On the basis of these observations, we define an action as follows, with a BNF-like (Backus-

Naur-Form) notation:

Action ::=  <posture> | <gesture> | <gesture*posture> | <constraint> | <action + constraint>

where   ‘*‘ means ‘followed by’

‘+’   means a parallel evaluation of both operands
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An action can be defined by a gesture followed by a final posture. An example is ‘sitting

down’ which is decomposed into the ‘sitting down‘ gesture of the body and the permanent

sitting posture. Starting postures are not taken into account, as we are mainly interested in

goal-oriented actions expressed with a well-defined final body state. Another reason is that

for an action such as ‘sitting down’, a large number of starting postures can be considered.

We are not interested in the performer’s state at the beginning of an action.

Besides postures and gestures, we also consider actions that are defined by constraints. In

short constraints allow the defining of actions such as ‘holding an object’. Constraints are

either verified or not. They produce a Boolean result at each time step and are evaluated in

parallel to an action. This concept will be detailed further in this paper.

Action Data

In order to preserve the mobility of a human skeleton in a body model, one has to handle a

large number of degrees of freedom (DOF), around 40-80, excluding hands and feet. Our

current model has 68 DOF for the main skeleton (cf. Figure 1).
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Figure 1 Several display choices for a humanoid

Tracking and analysing such an amount of data is a time-consuming computation process that

needs to be optimised. Our approach consists of defining a hierarchy of three data levels. At

the top level, we consider the centre of mass (CoM). The CoM is a rough criterion that carries

information regarding the global body configuration and motion direction. At the second

level, we consider end effectors (EE): hands, feet, head and spine root. We include the spine

root because it reveals the position of the upper body relative to the lower body. End effectors

represent a remarkable compression of body information. Indeed, one can decode a human

action solely by looking at the position evolution of these strategic body references (cf.

Figure 2). A slightly larger set of body landmarks has been used in (Hodgins, 1995) to

compare real and simulated motions. At the lowest level, we consider the skeleton joint

angles (JOINT). The JOINT angles are the most detailed body information source available.
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Figure 2 Showing strategic body locations during a ‘walking’ motion (cf. our mpeg files at

http://ligwww.epfl.ch/~emering/AAI_JOURNAL)

Cartesian data and joint angle variations depend heavily on the anatomical differences of the

live performers. We propose to normalise all Cartesian data with the body height of the

performer. Indeed, statistical studies have measured high correlation between the body height

and the major body segment lengths (Kroemer, 1990). Choosing adequate reference

coordinate systems also matters. We use three coordinate systems, shown in Figure 3: a

Global, a Body and a Floor Coordinate System (in short GCS, BCS, FCS). The BCS is

attached to the spine base of the body and its up axis is aligned with the main spine direction.

The FCS is located at the vertical projection of the spine root onto the floor level and reuses

the GCS Up axis.

An approximate CoM position is derived from the positions and the masses of the geometric

volumes attached to the body skeleton (cf. Figure 1b). The CoM is referenced in the FCS

because the height to the local floor is determinant. Consider for example the two postures:

‘standing’ and ‘lying on the floor’. If the CoM were expressed in the BCS, the postures

would not be distinguishable by the CoM. The EEs, except the spine root, are referenced in
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the BCS. Indeed the spine root is referenced in the GCS, so that it indicates global body

location and movements.

Figure 3 Reference coordinate systems (Global, Floor and Body CS)

Action Primitives

Based on the three information levels, CoM, EE, and JOINT, we introduce the concept of

action primitives. An action primitive is an elementary unit used for the action specifications.

We define posture, gesture and constraint primitives:

- Posture primitives are of the form (body location, 3D position) and (JOINT, angle value)

where body location is either the CoM or one EE. Explicitly specifying 3D positions

and angle values is tedious. Therefore, we use a specify-by-example paradigm. For each

posture, we record a prototype and store it in a database. The system then extracts the

posture primitives directly from these prototypes.
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- Gesture primitives have the form (body location, velocity direction) where ‘body

location’ denotes either the CoM or one EE. The ‘velocity direction’ is a discretised

value describing the average motion direction: up, down, forward, backward, left, right.

Its value is set whenever the velocity norm is above a normalised threshold along one of

the FCS, BCS or GCS frame vectors. The threshold is fixed empirically. It delimits

voluntary motions from noise, caused by fidgeting, for example. Additionally a

not_moving value for the ‘velocity direction’ specifies a still CoM or EE. The head end

effector is a special case as we consider rotation directions rather than velocity

directions. This is useful to express messages like ‘yes’ and ‘no’. The rotation direction

is determined by analysing the average rotation of the look-at vector. For gesture

primitives, we don’t use JOINT level information because pattern recognition on joint

angle evolution functions is incompatible with real-time constraints.

- Constraint primitives are of the form (EEi, EEj, f) with i�M��DQG�µI¶�D�GLVWDQFH�FRPSDULVRQ

function. A constraint primitive is either verified or not, depending on the result of ‘f’

applied to both end effectors. In the simplest case, ‘f’ is a function that compares the

relative distance between the end effectors against a threshold value. An example is the

‘holding an object’ action: both hands are constrained to a constant distance,

independently of the current posture or gesture. More sophisticated constraint functions

are possible, e.g. checking the relative orientation between end effectors or checking

whether an end effector is inside a bounding volume. So far, we applied only distance

constraints.
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Action Model

Postures are defined by a Boolean expression of posture primitives. As we use posture

prototypes that are defined at JOINT level by default, the system can automatically extract

the missing data of CoM and EE levels. As a consequence, postures are always defined by

posture primitives of the three levels. Any posture can be expressed as a logical ‘and’

expression of posture primitives. When inserting posture prototypes into the posture database,

it is possible to define the relevant body parts of a posture. The set of proposed body parts is

listed in Table 1. Additional DOF for body positioning are not listed because they are not

used in the model.

Body Part # of joints # of
DOF

BODY_HEAD 1 3
BODY_NECK 2 6
BODY_THORAX 2 5
BODY_ABDOMEN 3 5
BODY_PELVIS 1 3
BODY_L_THIGH 2 6
BODY_R_THIGH 2 6
BODY_L_LEG 1 2
BODY_R_LEG 1 2
BODY_L_FOOT 3 4
BODY_R_FOOT 3 4
BODY_L_U_ARM 3 7
BODY_R_U_ARM 3 7
BODY_L_L_ARM 1 2
BODY_R_L_ARM 1 2
BODY_L_FIST 1 2
BODY_R_FIST 1 2
Total 31 68

Table 1 Set of body parts and number of degrees of freedom
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Gestures are defined explicitly by a Boolean expression of gesture primitives. All gesture

primitives are optional and can be combined with logical ‘and’ and ‘or’ operators. Some

examples of gesture definitions:

'Walking forward’ = ((spine_root, forward) AND (left foot, forward))

OR ((spine_root, forward) AND (right foot, forward))

‘Sidewalking right’ = ((CoM, nop) AND (spine root, right) AND (left foot, right))

OR ((CoM, not_moving) AND (spine root, right)

AND (right foot, right))

‘Say yes’ = (head, up) OR  (head, down)

‘Welcome’ = (right hand, up) AND (right hand, right)

AND (left hand, up) AND (left hand, left)

‘Wave right hand’ = ((right hand, left) AND (left hand, not_moving))

OR ((right hand, right) AND (left hand, not_moving))

‘Pointing right hand right’ = (right hand, right) AND (right hand, up)

AND (left hand, not_moving)

‘Pointing right hand forward’ = (right hand, forward) AND (right hand, up)

AND (left hand, not_moving)

‘Sit down’ = (CoM, backward) AND (spine, backward) AND (spine, downward)

‘Get up’ = (CoM, forward) AND (spine, forward) AND (spine, upward)

Table 2 Some gesture specifications

All the definitions have been empirically set and can be more or less constrained, by adding

more or less ‘not_moving’ primitives. We did not list symmetrical gestures, e.g. left-sided

gestures, ‘walking backwards’ etc.
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By using action primitives based on CoM, EE and JOINT, our action model has a hierarchical

structure with five definition levels and one parallel branch for the constraints.

Level Level description
1 Centre of Mass (velocity)

Gesture 2 End Effector (velocities)
Action (final) 3 Centre of Mass (position) constraint(s)

Posture 4 End Effector (positions)
5 Joint values

Table 3 Hierarchical action model

Action Recognition

In the near future, more and more motion capture systems will provide real-time animation

possibilities of a performer’s avatar. In order to be independent of this technology progress,

we base our recognition system entirely on the virtual avatar body rather than on raw sensor

data. With this approach, other motion capture systems, such as optical ones, can be used. Of

course, a corresponding anatomical converter, from the sensor data to the virtual body model,

has to be provided with that motion capture system.

Currently we use a magnetic motion capture system with a maximum of 16 sensors. A real-

time anatomical converter (Molet et al., 1996) maps the raw sensor data onto a virtual

skeleton model. The resulting avatar is used as input to the recognition system (cf. Figure 4).
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Figure 4 Data flow from the sensors to the recognition system

Recognition algorithms

The action recognition system is based on the action model presented in the previous section.

The algorithm starts by initialising a candidate database with all defined actions: the

Candidate Action Set (CAS). Then it proceeds sequentially with a candidate selection at each

of the five levels of Table 3. Candidates that don’t correspond to the performer’s current

action are eliminated from the CAS. If at any level the CAS becomes empty, the system

returns an ‘unknown action’ message. Candidates that have no definition for a given level,

bypass this level during the candidate selection, i.e. they stay in the CAS.

The recognition algorithm takes advantage of the hierarchical data structure of the action

model. It is a constant balance between the number of action candidates and the amount of

data per candidate. At the higher levels, the CAS is large: we apply rough selection criteria

such as CoM and EE, with low computational cost. As the CAS passes through the selection

levels, its size shrinks whereas computation costs increase. At the lower levels, computation
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costs are higher because they deal with JOINT space entities. The multi-level approach

allows real-time performances.
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Figure 5 Action candidate elimination scheme

1) Gestures (Levels 1 & 2).

Here we compute the current gesture primitives of the avatar. The primitives are substituted

into each action’s Boolean gesture expression. Those actions whose expression results in a

TRUE value remain in the CAS. The others are discarded immediately to avoid unnecessary

computation at lower levels.

2) Postures (Levels 3, 4 & 5)

Here we compute the 3D position of the CoM. For all the actions in the CAS, the squared

distance between their CoM and the avatar’s CoM is calculated. We call Min and Max, the
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respectively smallest and largest squared distances. Actions remain in the CAS exclusively if

their distance is smaller than a selectivity radius R given by:

R = Min + (1-S)*(Max-Min)

Equation 1 Posture selection

S is a normalised selectivity parameter within [0,1]. We apply the same algorithm at levels

four and five with possibly a different, empirically fixed, selectivity factor. The selectivity

factor regulates how aggressively the candidates are removed at each level. The dimension of

the Cartesian vector varies at the three levels: 3D for the CoM, 18D for the EEs

(concatenation of six end effector 3D positions) and 68D for the joints (68 degrees of freedom

of our body model). Note that this algorithm always selects at least one posture among the

posture candidates. This is true even if the avatar’s posture doesn’t correspond to any of the

postures defined in the database. This artefact may or may not be desirable, depending on the

compromise of interaction mis-interpretation and its ignorance. If misinterpretation happens

too often, a simple remedy is to add some neutral postures to the database, for example a

‘stand still’ posture. Those postures are generally not imposed by application needs but they

help avoid aberrant posture selections. An alternative is to include a cut-off threshold in

Equation 1. The problem of this solution is to fix the threshold. We discuss some

improvements of the posture selection algorithm further on.

3) Constraints

Constraints are evaluated in parallel to the gesture and posture levels. This consists of

applying the constraint functions to the performer’s current body configuration. Each

constraint results in a Boolean value.
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Simultaneous actions can be detected as long as they act on complementary body parts.

‘Making a phone call while walking’ is such an example. We define the phone call action by

a posture involving the right arm and the neck (levels four and five). 'Walking’ is defined by a

gesture of the lower body.

Recognition Performance

Performances have been measured with an action database of thirty-five actions. The database

includes 13 actions with all the levels, six actions with only gesture levels, and 16 actions

with only posture levels. The resulting average recognition processing time is 1.2 ms (R4400

CPU, 200 MHz) with a very small standard deviation (less than 0.1ms) (cf. Figure 6). The

processing time is not necessarily equal to the recognition time. For example, recognising a

‘walking’ action requires waiting for approximately one quarter of a walking cycle until the

gesture primitives are verified. In practice, this means a ~0.2s delay until ‘walking’ is

recognised. For postures and constraints however, the recognition time equals the processing

time.

8 5
µs

number of
candidates

average cost
per candidate

Level1 2 3 4 5

35

13 µs

Figure 6 Recognition processing cost analysis
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The robustness (cf. Figure 7) is evaluated on four performers whose total heights range from

1.65m to 1.85m. The tested action set consists of four gesture-only actions, 27 posture-only

actions and 16 full-level actions. The test has the following structure: stand still, perform one

action, then stand still again. We imposed this motion sequence to our test performers in

order to have a comparable basis.

Gesture
   only

Posture
   only

  All
Levels

error-free

transient
 error(s)

failure

0

50

100

Figure 7 Average action recognition rates (%)

We distinguish three recognition possibilities: successful recognition, transient errors and

recognition failure. A transient error is a recognition error that occurs during the transition

intervals in the stand-perform-stand cycle. Such transient errors happen typically for gestures

whose specification is not sufficiently constrained. For example, ‘wave right hand’ and

‘pointing right hand right’ (cf. Table 2) use both the gesture primitive (right hand, right).

When a pointing gesture is performed, a ‘wave’ gesture might be temporarily recognised. A

recognition failure is typically due to a posture recognition failure, either because of the

selectivity parameter (Equation 1) or because of the algorithm of distance computation itself.



23

Action Response

Providing a sophisticated behaviour to synthetic actors is useless, if it cannot be expressed in

a visual or audible way. In our testbeds the synthetic agents use mainly gesture responses.

Motion generation for humanoid actors is a difficult task (Perlin et al., 1996). Even the

smallest problems raise the attention of the observer because we all are experts, due to our

every day experiences. We investigated on a framework (Boulic et al., 1997) dedicated

exclusively to the integration and mixing of human motion generators. We can choose among

several motion generators such as procedural walking, inverse kinematics, keyframe

sequences, grasping, gazing, and specialised motions. The software architecture, called

AGENTlib, handles motion blending and motion parallelism with a mechanism of weights

and priorities:

- Parallelism happens when two or more motions update the body configuration

simultaneously. If the involved actions use mutually non-intersecting sets of body parts,

parallel actions can be performed as is. In case of intersections, a weight and priority

mechanism arbitrates among the motion generators.

- Blending occurs whenever motions are performed sequentially and overlap on some

period of time. The overlapping is desirable as it provides a fluid and continuous

motion.

Any motion generator produces a set of joint angle values at each timestep. We apply the

following equation to each DOF:
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where k is a time index of the associated variable

θ is the current value of the DOF,

θi is the DOF value of the ith contributing motion generator

ωi is the weight corresponding to θi.  The weight follows a cubic step function,

sometimes called ‘ease-in ease-out’, whose range is within [0.0, 1.0].

f() is a function to constrain the angle delta values; currently we use the

identity function. f(x) = x
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Figure 8 Illustration of Equation 2; DOF weight evolutions during the blending of two actions
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Figure 9 Illustration of Equation 2: an initial action is blended with a second one

For the global positioning and orientation, we need to blend 4x4 homogenous matrices. First

we compute the delta transformations between the current matrix and the matrix of the ith

contributing motion generator (cf. Figure 10).

reference 
frame

current 

(θ)

contribution 

(θ i)
delta

current_dir

contrib_dir

(θi - θ)

Figure 10 Motion blending with 4x4 homogenous matrix

The matrix is converted to an Eulerian vector, in other words, a vector representing the axis

and whose norm is the rotation angle around this axis. A special algorithm handles the angle

discontinuity at the boundaries [0, PI]. The resulting angle is multiplied by the current weight
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and converted back to a matrix. All contributing matrices are multiplied together to produce

the final location matrix.

Examples

In the first example, we use action recognition as a means of controlling and guiding a

synthetic humanoid in a virtual environment. Figure 11 shows the subjective view of the

agent.

Figure 11 Interactive walk-through environment driven by action recognition events: the

performer approaches the green plant, grabs it and continues to walk.

We underline that the synthetic agent is not an avatar here: rather than copying the

performer’s motions, it takes advantage of action recognition skills. Based on the

identification results and a finite state automaton, it activates different motion generators.

Table 4 summarises the actions that the agent is able to recognise and the associated

responses. Some of the reactions are context-dependent: the recognition of one action

activates different response schemes that depend on the current state and location of the

agent.
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Performer’s action Event interpretation
walking forwards walking forwards
walking backwards stop walking
while walking point right arm right turn right or walk straight if currently turning left
while walking, point left arm left turn left or walk straight if currently turning right
grasping if agent is close to:

- the object: attach or detach it
- the street lamp: switch on/off global light sources

vertical head movement tilt head vertically to inspect environment
horizontal head movement turning the head horizontally to inspect environment

Table 4 Summary of action-response correspondences for Example 1

Although the application worked as we intended it to, this example was very revealing about

pitfalls in designing good human-computer interfaces. We discuss our experiences further on

in this paper.

In the second example (cf. Figure 12 & Figure 13), we use action recognition as a new skill

for autonomous agents. It illustrates in a pedagogical way that, even in virtual reality,

maintaining good relationships requires some personal effort. The performer is immersed into

a virtual shop environment where he meets a friend named ‘Mary’. The performer is

supposed to buy a gift for Mary and to experience her reaction. Both the shopkeeper and

Mary are autonomous agents. They use the recognition system in order to analyse the

performer actions and react in consequence. When the performer points to the desired object,

the shopkeeper selects it and waits for confirmation. By nodding the head, the performer can

either agree or refuse if he has changed his mind. On confirmation, the shopkeeper lifts the

object and waits until the participant performs a grasping action. Then the participant can

hand the object to Mary. If she is happy, she responds friendly to the performer’s gift and

grasps the object. Finally, she accepts to go for a walk together. In the opposite case, she

adopts a spiteful manners and leaves the scene. Table 5 gives a brief overview of the key

events driving the automata of the example.
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Figure 12 The virtual Shop. The performer tries to please a friend and naively thinks that

giving a green plant will do the job (cf. MPEG files at

http://ligwww.epfl.ch/~emering/AAI_JOURNAL).

Performer’s action Event interpretation
walking forwards let the avatar start walking
walking backwards let the avatar stop walking
right arm pointing forwards
left arm pointing forwards
right arm pointing right
left arm pointing left

select one of the four objects on the table of the shop. We used gesture-
based actions for illustration purposes but posture based actions would
have been fine too.

grasping pick up the selected object
say ‘no’ cancel an object selection
say ‘yes’ confirm an object selection

ask Mary to accept the gift
wave right hand ‘hello’ greet Mary; if she is within the field of view of the performer and vice

versa, she responds by waving her hand and joins the performer in the
shop

standing still neutral action, it is used for synchronising the agents’ automata but does
not imply a behavioural response

handkiss although recognisable and planned in the scenario, this action was not
used because it was too difficult to perform the action due the limited
view with the head-mounted display (HMD)

Table 5 Summary of action-response correspondences for the Virtual Shop.
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The motions of the autonomous agents are performed with AGENTlib. Essentially, they use

play back of pre-recorded keyframe sequences, inverse kinematics, procedural walking and

look-at motions.

The main advantage of Virtual Reality compared to real life is that a scenario can be repeated.

Figure 13 shows another take of the Virtual Shop environment. Note that the performer is not

wearing a HMD this time. Instead we use two distinct displays, adequately arranged for the

performer.

Figure 13 The Virtual Shop, with happy-end
this time: the performer learned his lesson.

Discussion

In this section we discuss our experiences with human action recognition as a bilateral

communication channel between a performer and life-like synthetic agents. First we discuss
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some user experiences in relation with the illustrations previously presented. These are

followed by some thoughts about acceptance of full-body recognition as a human-computer

interface and some future work.

User Experiences

Here we want to share the experience gathered during the performing of the examples

described in the previous section. Most of the issues discussed here are drawn from the action

guided walk-through illustration, but they apply to VR testbeds in general.

- event / action associations. The action recognition system generates events which are

associated with actions (cf. Table 4 & Table 5). Those associations have to be chosen with

great care as the convenience of the human-computer interface heavily depends on them.

Adjusting the displacement direction by raising the left or right arm is an example of a bad

association. If our first goal was to illustrate the action recognition system, it would be a bad

choice to use arm-based motion control for an interactive walk-through environment. A

direction control connected directly to the relative orientation of the performer is much more

intuitive and efficient. Choosing the right event/action association is a crucial aspect in a

human-computer interface. However, there are some examples of associations that cannot be

performed in a natural way. ‘Walking’ is such an example. The recognition system allows

identifying a ‘walking’ action. Nevertheless, technical limitations make it impossible for a

performer to just ‘walk’ through an environment. Some researchers experienced with

‘treadmills’ (Pratt et al., 1997), but treadmills don’t allow an easy solution for the walking

direction. Our solution consists of splitting the event into two parts: when the performer

performs a few steps forwards, we activate the ‘walking’ motion generator and keep it

performing even when the performer stops walking. The ‘walking’ motion generator is de-
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activated when the performer walks back a few steps. This approach is a compromise

between the limited space available for the performer’s activity and the need for large range

displacements in a virtual world. The walk forward and backward mechanism works fine as

long as it approximately corresponds to an identity operation, i.e. globally the performer does

not move away from the original position. In general however, this condition is not satisfied.

When the displacements are accompanied by radical orientation adjustments, the performer

will inevitably drift away from the allocated activity space.

- realistic behaviour. If we create life-like environments and inhabitants, we should

expect life-like behaviour from the performer. We use a ‘grasp’ action recognition event to

attach a near-by object to the performers’ hands (cf. the plant in Figure 11 and the rose in

Figure 13). To continue our quest for realism, the object should at least have the property of

being fixed to a support. As long as the performer keeps a grasp-like posture, we can

reasonably suppose that the performer’s hands give the object’s support points. If the

performer changes his posture, this supposition no longer holds: the object should drop to the

floor due to elementary gravity properties. This example was actually the main motivation for

using constraints.

- need of Head Mounted Display (HMD). Developing 3D interactive environments

with full body involvement of a performer requires a 3D activity space for the participant. A

3D activity space needs non-localised visualisation possibilities. Currently, two solutions are

explored in the VR community: a CAVE system or the use of head mounted displays. For our

testbeds we used the second alternative. Although a HMD allows a true 3D stereo view, we

found its use somehow restrictive for high quality immersion. For example, a realistic depth

feeling could not be achieved. This is quite embarrassing, as distance estimations are essential
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for walk-through environments. For example, for grasping an object, we reasonably consider

that the performer’s distance to the object should be smaller than the length of the arm. In the

example of Figure 11, we found out that this is hard to achieve. Another aspect is the vision

field of vision of the HMD. In real life, we focus on one part of the scene, but we are aware of

a much larger field of vision. For example, we see our hands although we don’t focus on

them. With an HMD, you lose awareness of your body, you only see the region of focus.

When the performer is close enough to the plant object in order to grasp it, a large percentage

of his view is filled up with the plant, itself thus hiding the scene. This missing lateral view

makes it difficult to know where you are walking or what you are grasping. It forces you to

explicitly check your body location with respect to the floor or the location of your hands

with respect to yourself and the object. Under these conditions, precise navigation or

environmental interactions are difficult. In our ‘walk-through’ example, we experienced this

phenomena by a frequent motion direction adjustment by the performer: it is hard to steer

straight forward in direction of a target.

- time. When immersed into virtual environments, the feeling of time is changed. As

one is too busy contemplating the environment in order to localise oneself in the scene, one

spends much more time on a task than is needed in real life. This is especially true for VR

immersions through a head-mounted display.

User Acceptance

Here we discuss a few relevant aspects that we found to be important for the user’s

acceptance of a human-computer interface:
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- setup. The setup time of an interactive application is a major issue in interfaces.

Standard interface devices such as mouse, keyboard or spaceball take a non-perceivable setup

time for the user. In VR applications, the performer’s state has to be measured. This can only

be done with a more or less complex sensor system that has to be attached on to the

performer. All our VR testbeds have been performed with a magnetic motion capture system.

This means that a dozen sensors have to be fixed to the performer besides the setup of the

HMD and the datagloves. Currently this procedure is too heavy for frequent trips into

cyberspace. Nevertheless wireless technology is emerging and will eventually reduce the

hardware setup time to a negligible amount. On the software side, our action recognition

system is based on generic body information. Its setup time consists of explaining to the user

the type of actions that can be recognised.

- feedback. Independently of the form used, be it visual, audio or force, feedback is of

major importance in interfaces. In our case the feedback of the interaction consists of

behavioural responses from the synthetic agents. Currently we use only non-verbal

communication: the agents react by some gestures to the user’s actions. In a more complete

testbed, the response would be extended to some speech and facial expression response. The

behavioural complexity of agents depends solely on the imagination of the programmer as

long as the necessary environmental perception tools are available for the synthetic agent. We

argue that action recognition is one of these tools.

- user sensitivity to details. Finally we mention that humans are very sensitive to the

interface with a computer, as well as to the synthetic environment they interact with. Most

often, small details add a lot to the user acceptance of a system. From a graphical point of

view, this might simply be the presence of shadows of the agents’ embodiments or their
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moving chest due to breathing simulation. For the interface, users will more readily accept a

misinterpretation than the ignorance of their input. The problem is that we all are experts

when we are confronted with life-like agents: we experience it every day. Therefore we are

very critical of small errors, be they motion, visual or response errors.

Future work

- posture algorithm. As action recognition is supposed to be a skill among others for

synthetic agents, the algorithms have to perform much faster than real-time. Our hierarchical

model helps balancing algorithmic complexity and recognition speed. Nevertheless, we plan

to replace the rather simple distance selection algorithms (cf. Equation 1) by a more

sophisticated approach based on radial basis function (RBF) neural networks. In this context,

an RBF network can be compared to an activity surface in posture space. Close to a posture

prototype, the surface is at the maximum activity value. The activity decreases non-linearly

with the distance of the posture from the prototypes. A major expected improvement is a

higher resolution in posture selection. This allows the defining of a larger database of

postures and the increasing of tolerance of posture similarity. Another interesting property of

RBF networks is the possibility of defining several prototypes for a same posture. The idea is

to have different people perform a given posture and store all these prototypes in order to

define the posture. The RBF produces a smoothly blended activity shape around these

prototypes in the activity map. It is comparable to a continuous bounding volume in posture

space. The posture is recognised if it  is within this volume.

- gesture algorithm. Currently, gesture primitives only allow the recognition of simple

motions, such as walking, pointing and grasping. Precise motions at the end effectors, for

example, cannot be recognised. The problem lies within the combination of gesture
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primitives for gesture specifications. At this time, a gesture is defined by a single Boolean

expression of primitives. In order to increase the resolution, we need to extend the temporal

dimension of gestures. We need to keep trace of the activation of action primitives, i.e. an

activation history. Then a gesture is defined by a sequence of gesture primitive expressions.

Another improvement for gestures are cinematic aspects. The system is able to recognise a

walking gesture, but we do not know anything about the speed. Recognising acceleration

parameters in gestures is important as they can modulate the meaning of a gesture itself.

- skeleton DOF weighting. Our current virtual body model has roughly 68 DOF,

excluding hands and feet. Obviously, all do not have the same importance during a gesture or

a posture: there are always some irrelevant DOF to the action. Thus using all 68 DOF for

action definition leads to over-specification. Reducing the number of joints to the ones

relevant in the action decreases the sensitivity to noise. One solution is to associate a weight

to each DOF. The weight values 0.0 and 1.0 correspond to minimal and maximal DOF

relevance. Due to the number of DOF, manual weight adjusting has to be excluded. Doing it

automatically requires several samples of the same action. The DOF variations in the samples

carry information about the DOF influence: the larger its variations, the less relevant is the

DOF. On the other hand, the smaller the variations, the higher its relevance. Using weights

for each DOF allows the reducing of the number of joints while increasing the specification

precision and therefore the recognition performance. Finally, we would like to mention that

our current anatomical converter (Molet et al., 1996) does not necessarily animate all 68 DOF

of the avatar. It depends on the number of sensors effectively used and the selected

conversion algorithm.  The weight mechanism would also filter out the unused joints. Note

that we currently have the possibility of specifying a set of relevant body parts per action.
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This is actually a special case of DOF weighting already: all DOF of the used body parts are

assigned the maximum weight, and all other DOF are assigned a weight zero.

- body part extensions. So far, we did not use the hands in illustrations of our

recognition system although they are as integrated as any other DOF of the virtual body. The

reason for this is a bad correspondence between the virtual hands and the performer’s hands

when using datagloves. An automatic calibration is needed prior to further investigation in

this direction. By analogy to our body data decomposition, we plan to use three data levels

for the hands: hand centre, finger tips, and finger joints.

Conclusion

In this article, we presented action recognition as a skill for establishing bilateral interaction

between human performers and autonomous agents. We proposed a possible decomposition

of human activity into actions that can be identified in real-time by a computer system. We

also covered the response to actions in the context of a motion-mixing framework. Two

illustrations of a performer interacting with life-like agents enabled us to collect some

experiences and to propose further enhancements. Our conclusion is that the presented action

model and recognition system has a promising potential in cases where life-like interaction is

needed.
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