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An Iterative Multiuser Decoder for
Near-Capacity Communications

Michael Moher,Member, IEEE

Abstract—The combination of forward error correction (FEC)
coding and random interleaving is shown to overcome the limi-
tations of multiuser detectors/decoders when the user cross cor-
relations are high. In particular, one can asymptotically achieve
single-user performance in a highly correlated multiuser system.
In addition, an optimal iterative multiuser detector is derived
from iterative techniques for cross-entropy minimization. A prac-
tical suboptimal implementation of this algorithm is presented,
and simulations demonstrate that, even with highly correlated
users, it achieves optimal asymptotic efficiency. The effects of the
theoretical limits on channel capacity are evident in many of the
simulation results. The complexity of the suboptimal algorithm is
approximately (O(2K)+O(2�)) per bit per iteration where K is
the number of users and� is the code constraint length.

Index Terms—Iterative decoding, minimum cross entropy, mul-
tiuser decoding, multiuser detection.

I. INTRODUCTION

M ULTIUSER detection has received considerable at-
tention recently with its potential to improve system

capacity and alleviate some technical requirements of code-
division multiple-access (CDMA) systems, such as power
control. Many algorithms for performing multiuser detection
have been put forth. These range from the high-complexity
optimum detectors for asynchronous systems [1] to many
forms of suboptimum lower complexity detectors including
linear [2]–[4] and nonlinear [5], [6]. In many scenarios these
detectors work well and provide close to optimum perfor-
mance.

The interest in CMDA has rekindled interest in multiuser
decoders and recent results in this area include [7]–[13] and
[26]. In [9] it is demonstrated that the optimum detector
for an asynchronous CDMA system employing forward error
correction (FEC) coding combines the trellises of both the
asynchronous detector and the FEC code. The result is a time-
varying trellis with a complexity per bit that is approximately

, where is the number of users and is the code
constraint length. This complexity makes the use of the optimal
decoding detector prohibitive for even small systems.

A limitation of these multiuser detectors/decoders is that
they degrade as the correlation between users increases. This
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limits the applicability of these techniques to situations where
the correlation between users is intentionally kept low, such
as CDMA. In this paper we investigate how to extend these
techniques to the case where the correlations are high, such
as frequency-division multiple-access (FDMA) with a high de-
gree of channel overlap. An optimal iterative multiuser decoder
is derived based on cross-entropy minimization techniques
[24], [25] and a practical implementation of this algorithm
is presented. The resulting suboptimal algorithm is similar to
one that has been independently discovered by Reedet al.
[18] for CDMA.

In Section II we review notation used for the multiuser
detection problem and illustrate some of the limits of con-
ventional multiuser detectors/decoders. It is shown how these
limits can be overcome. In Section III it is shown how
techniques similar to those applied to the detection of parallel
concatenated codes (turbo codes) [15], [16] can also be applied
to detecting parallel users, that is, multiuser decoding (MUD).
In Section IV simulation results are provided that confirm the
theoretical results of the previous two sections. In Section V
a further analysis of the simulation results is performed.

II. M ULTIUSER DETECTION

In the following sections we assume bit-synchronous
users, each transmitting a block of bits. For bit period of
user , the corresponding transmitted bit will be represented
by . The complete sequence of theth user’s bits will
be represented by the vector

and the vector of the -user bits at time is
represented by . The matrix of all
users’ bits is represented by , where is
a row of this matrix. The same notation is extended to other
discrete-time quantities.

A. Multiuser Model

The model for multiple access communications, illustrated
in Fig. 1, assumes that there are users simultaneously
accessing the same communications channel using modulating
waveforms , with symbol
period . The noiseless input to the receiver is

(1)

The parameters represent the relative transmission delays
and, for the synchronous case, . The
modulating waveforms are assumed to be normalized
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Fig. 1. Illustration of multiuser communication model.

to unit energy. The relative received amplitude levels of the
different users are characterized by the positive parameters

. For the case of equal power users,
. With an additive noise channel, the corresponding

received signal is

(2)

It is assumed that the noise process is a zero-mean
complex white Gaussian process with spectral density. This
model can be easily extended to include complex signaling
and can be applied to a variety of multiple-access systems
including FDMA and CDMA. With FDMA, the modulating
waveforms are the carrier frequencies with appropriate pulse
shaping.1 With CDMA, the modulating waveforms correspond
to the spreading codes assigned to each user.

It is assumed that the modulating waveform of each user is
known at the receiver, and that the-user coherent receiver
locks to the signaling interval and phase of each active user.
In a highly correlated multiuser environment it is recognized
that constructing a coherent receiver is a challenging problem,
but this is not dealt with in this paper. If the additive noise is
a white Gaussian random process, it can be shown [1] that a
set of sufficient statistics for maximum-likelihood detection of
the data is the set of matched-filter outputs

(3)

where is the output of a filter matched to theth
modulating waveform. Define the th entry in the cross-
correlation matrix of the user waveforms
by

(4)

For the synchronous case, it is assumed that the cross cor-
relation between modulating waveforms in adjacent symbol
intervals is zero, that is, for . The latter

1With FDMA, the modulating waveforms are complex, in general, with a
complex phase that may vary from one symbol interval to the next.

is usually forced by assuming that the modulating waveform
is zero outside the symbol interval, i.e., .
Under these assumptions, letting , an equivalent
discrete-time representation of this system is

(5)

where the vector is a set of zero-mean correlated noise
samples with

(6)

and is the diagonal matrix with nonzero elements .
Since it is assumed that the noise is white, it follows
from (4) and (6) that , where

.
As a reference, the optimum approach performs an exhaus-

tive search to determine that

(7)

The conventional detector takes the sign of the bits at the
output of the matched filter, that is, , where
the operator is applied on an element-by-element basis.
The conventional approach is much less complex than the opti-
mum approach but clearly relies on low cross correlations, that
is, being approximately diagonal, for good performance.

B. Detector Efficiency

The efficiency of a detector is a measure of the power
efficiency of a multiuser detector relative to a single-user
detector operating at the same bit-error rate (BER). It allows
a simple comparison between detectors of different types. The
asymptotic efficiencyis defined as [2]

(8)

where is the error rate of theth user in the multiuser
system and is the error rate of theth user in a single-
user system with the same noise variance. For the optimum
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detector on a Gaussian channel, the asymptotic error rate is
determined by the minimum Euclidean distance between any
pair of -dimensional sequences and that differ for the

th user. This distance can be expressed as

(9)

where . For the synchronous Gauss-
ian channel, performance at low noise is dominated by the
minimum distance error, and the asymptotic efficiency of the
optimum detector reduces to the ratio of the scaled minimum
distances. Evaluating (9) for the multiuser and single-user
minimum distances, in a manner similar to [3], and taking
the ratio2 gives

(10)

where the minimum is over all -dimensional error sequences
, and the error sequence correspond-

ing to the th user is nonzero. The quantity is the
Hamming distance of the minimum distance single-user error
event ( for uncoded) and is the corresponding
Euclidean distance. Asymptotic efficiency is analogous to
asymptotic coding gain, as it represents the gain (loss) relative
to an uncoded (single-user) system as the signal-to-noise ratio
(SNR) becomes large.

C. Example Uncoded Efficiencies

To illustrate these concepts, we define the-symmetric
channel that is characterized by a cross-correlation matrix

(11)

and a channel gain matrix of . That is, all users
have the same cross correlation between their modulating
waveforms and suffer the same propagation losses. Design
of the modulating waveforms of the users to produce
(11) is, in general, not possible without some bandwidth
expansion. There are some common examples. The case
corresponds to orthogonal signaling, for example, using the
orthogonal Hadamard codes in a CDMA system or orthogonal
frequencies in an FDMA system. Using different cyclic shifts
of the same sequence, as the modulating waveforms of
the users, corresponds to the case . Using
the same modulating waveform for each user corresponds
to , and the bandwidth expansion factor is one. The

-symmetric channel provides insight into the behavior of
multiuser detectors as a function of the number of users
because it allows the analytical calculation of the asymptotic
efficiency as a function of the cross-correlation parameter
and the number of users [14]. In Fig. 2 the asymptotic
efficiencies of the conventional, the decorrelating [2], [3], and

2A factor of four has been removed from both the numerator and denomi-
nator.

Fig. 2. Asymptotic efficiencies of conventional, decorrelating, and optimum
detectors as a function of the number of users(K) and the cross-correlation
parameter�.

the optimal detectors are compared for 2, 5, and 10 users and
positive cross correlations for the -symmetric channel.

For this channel, the asymptotic efficiency of the optimal
detector is independent of the number of users for pos-
itive . Both the conventional and decorrelating detectors
degrade with the number of users. The asymptotic efficiency
of the conventional detector approaches zero quickly as the
number of users increases. The asymptotic efficiency of the
decorrelating detector approaches the line . At

and large , it approaches a 3-dB degradation
relative to the optimal detector. This example illustrates the
limitations of uncoded detectors. Even with the optimum
detector, the asymptotic efficiency degrades when the cross-
correlation parameter exceeds 0.5. The-symmetric channel
is not an anomaly in this respect. In fact, the performance of
the optimal detector on the -symmetric channel is an upper
bound on the asymptotic efficiency for any uncoded multiuser
detector for a bit-synchronous additive Gaussian channel.

D. Asymptotic Efficiency with Coding

For coded systems, the asymptotic efficiency is also given
by (10) but only error sequences that correspond to the
differences between legitimate codewords are considered in
the minimization. In the following we only consider the case
where all the channel gains are one . Let represent
the magnitude of the largest off-diagonal element of cross-
correlation matrix .

Theorem 1: With synchronous equal power users, the
asymptotic multiuser coded efficiency over a Gaussian channel
is upper bounded by

(12)

when all users apply the same code.
This result indicates that a multiuser system, coded as in

Theorem 1, suffers from the same limitations as the uncoded
system as the correlation between users increases. A proof is
given in the appendix.
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Alternatively, we can assume that all users use the same
FEC code but that each user has a different pseudorandom
interleaver. The analysis of [9] does not apply in this case, as
the trellis structure of the decoder is no longer as straight-
forward and the optimum detector under these conditions
is even further from practical. In this case the asymptotic
efficiency will depend upon the choice of interleaver. Let
be a random variable representing the asymptotic efficiency
of the th user for a set of independently chosen random
interleavers of length .

Theorem 2 (Optimal Asymptotic Efficiency with Coding
and Random Interleaving): For a synchronous Gaussian
channel with equal power users and randomly selected
interleavers of length

(13)

when the cross-correlation matrix is positive definite.
This theorem is proven in the appendix. It highlights the

importance of not separating the detection and decoding prob-
lems. In the uncoded case the efficiency of even the optimum
detector degrades for . This loss disappears if the
detection process is not separated from the decoding process
and one employs random interleaving. The benefits of random
interleaving are somewhat analogous to what is observed with
turbo codes [15], [16], although, with multiuser decoding, it
does not rely on the use of systematic recursive convolutional
codes. The positive definiteness of is a technical require-
ment of the proof that does not appear necessary in practice.
This result is more general than indicated here. In particular,
the following corollary comes immediately from the inspection
of the proof of the theorem.

Corollary 1: The results of Theorem 2 apply when the
cross correlation is time varying.

It does not matter whether this time variation is intentional
or nonintentional. This implies that the results can be applied to
cases such as FDMA with a high degree of spectral overlap. In
the latter the pulse shapes may be constant from one symbol
period to the next, but the effect of frequency offsets and
phasing will vary from one symbol period to the next.

III. M ULTIUSER DECODING ALGORITHM

A. Optimum Algorithm

The following iterative decoding structure can be derived
either from intuition or theoretically from a minimum cross-
entropy (MCE) framework [17], [24], [25]. Cross-entropy
minimization is a statistical inference scheme that estimates the
probability distribution function that satisfies given constraints
on its moments and minimizes the cross entropy (relative
entropy) with respect to ana priori distribution [17]. To reduce
confusion when applied to the decoding problem, we will use
the termintrinsic distribution where MCE literature typically
uses the terma priori distribution. Theintrinsic distribution
represents the distribution implied by the channel sam-
ples . This is quite different than the usual interpretation
of a priori information. The constraints correspond to the
parity check equations of the code [24], [25]. For example, the

moment constraint corresponding to a parity check equation
is . The

general solution to the cross-entropy minimization problem is
given by the following lemma [17].

Lemma 1: Let be a random vector withintrinsic distri-
bution . Let be constraints
on the moments of . Then the MCE distribution is given by

(14)

where for some constants , and
the constant normalizes the probability mass.

For coding applications, the expression for simplifies
to , that is, the indicator function for the set of codewords
that satisfy the parity equation , and the MCE distri-
bution is equivalent to thea posteriori codeword distribution
[24], [25]. Furthermore, one can iteratively determine the MCE
distribution [21], [22]. With this algorithm, the constraints
are grouped into sets and each of the
constraint sets is considered separately. We use the notation

to represent the MCE distribution corresponding
to the intrinsic distribution and constraint set .

Lemma 2: For the intrinsic distribution and con-
straint sets , let
and let

(15)

then converges to the unique MCE distribution with
respect to , satisfying all of the constraints.

This is shown in [21, Th. 3.2]. This theorem says that the
sequence of local MCE distributions, obtained by applying
the constraint sets repeatedly, converges to the global MCE
distribution. This forms the basis for the iterative detec-
tion/decoding algorithm. In this application the constraint
sets correspond to the interleaver/FEC code combinations for
each user. The following two lemmas describe two variations
on this algorithm that are useful in practice and retain its
optimality.

Lemma 3 (Equivalence of Parallel and Serial Implementa-
tions): For the decoding problem, let be the result
after steps of the serial algorithm defined by (15). Let

be the MCE
distributions after one parallel step, then the distribution

(16)

where the constant normalizes the probability mass.
Thus, for the decoding problem, the constraints can be

applied in parallel rather than serially. The proof of Lemma 3
is presented in the Appendix, and it follows by induction that
the parallel version converges to the same limit as the serial
version. The combination of these three lemmas gives the
algorithm structure shown in Fig. 3. The algorithm consists of
two parts: a combiner and parallel decoders. Each decoder
only considers the bits of one constraint set, i.e., one user.
The combiner uses the output of the decoders together with
the input to form a new MCE distribution.

The MCE distribution (14) consists of two parts, thein-
trinsic part and an extrinsic part due to the constraints
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Fig. 3. Illustration of iterative multiuser decoding algorithm.

. The nomenclature ofintrinsic andextrinsiccomes from
an analogy to turbo coding [19]. From Lemma 3

(17)

that is, the MCE distribution after one parallel step is the
combination of the intrinsic distribution and the extrinsic
distribution from each component branch in the step. In Fig.
3 the input to each decoder is the combination of theintrinsic
distribution obtained from the channel with theextrinsic
distribution for each user provided by the previous decoding.
On the first iteration there is no previous extrinsic distribution.

Lemma 4 (Discarding Extrinsic Data): When the con-
straint sets concern nonoverlapping subsets of the data

, let

(18)

then

(19)

That is, we can ignore previous extrinsic distribution for a
subset of bits when calculating a new extrinsic for the same
subset of bits. The proof of this lemma is in the appendix.
These results can be combined to give Theorem 3, which
follows from the observation at the end of Lemma 1 that
the global MCE distribution is thea posteriori codeword
distribution.

Theorem 3 (Optimal Iterative Multiuser Detector):With
the algorithm defined by Lemma 2 and the possible modifica-
tions defined by Lemmas 3 and 4

(20)

that is, there is convergence to thea posteriori codeword
distribution.

B. Suboptimum Algorithm

Although optimum, the iterative MCE approach is far from
practical. Since it deals with distributions, it requires the
determination of the probabilities at the possible binary
vectors. To make it practical requires an additional assumption
that the symbol probabilities at the output of the MCE decoders
are independent in distinct symbol intervals. This assumption
is reasonable if the bits of a user codeword are randomly
interleaved. This does not assume that bits from different users
in the same bit period are independent.

With this independence assumption, the decoders need only
output a soft value for each of bits rather than
possible codewords. Consequently, instead of the true MCE
algorithm, one can use a soft-output decoding algorithm such
as [20] for estimating the symbol probabilities. The overall
structure of this modified algorithm is best illustrated by an
example.

For a memoryless Gaussian channel with matched filter
outputs , the intrinsic
distribution for the th symbol period is given by

(21)

where the noise has a covariance . Given the indepen-
dence assumption, the input to the decoders is, from (17),

for a particular iteration and bit interval where
the subscript implies the distribution after iterations.
Since each decoder acts only on a subset of the bits, the

th decoder input is the corresponding marginal distribution

(22)

Using the independence assumption, the soft-output de-
coders estimate the symbol probabilities for theth bit of the
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th user , where

(23)

The normalized extrinsic distribution is then
given by

(24)

for and similarly for , where
normalizes the sum of the probabilities of “” and “ .” The
combined intrinsic and extrinsic distribution is given by

(25)

where the constant normalizes the probability mass. At
any time, a decision can be made based on the decoder
output. In practice, better performance is obtained if one uses

, i.e., the th iteration of as per
Lemma 4, instead of in the right-hand side
of (22). Ostensibly, this is because it increases the validity
of the independence assumption. This provides a manageable
algorithm that is suitable for multiuser detection. From a
complexity viewpoint, there are decoders (or a single
decoder reused times) that is matched to the code of a
single user. The complexity of this algorithm can be expressed
as per bit per iteration where is the code
constraint length.

IV. SIMULATION RESULTS

In this section the simulation results for the proposed
iterative detection algorithm are presented for five and ten
users with a variety of correlation values. All simulations
use a block size of 500 information bits for each user. Each
user uses the same rate-1/2 constraint length 5 convolutional
code with generators [10 011] and [11 101]. Each user uses
a different pseudorandom interleaver, and the same set of
interleavers is used for all simulation runs. The interleavers
were chosen at random and no attempt was made to optimize
them. Each simulation point is tested for the minimum of 1600
errors or four million bits.

A. Five-User Results

In Fig. 4 the performance of the iterative detector on a-
symmetric channel with five users and aof 0.60 is shown for
1, 2, 4, 8, and 16 iterations. Even with this high correlation,
performance converges rapidly to single-user performance

at higher ratios as predicted by theory. There is
a noticeable loss at low SNR’s. In Fig. 5 the performance with
five users and a of 0.75 is shown. In this example a threshold
effect is becoming apparent at the lower ratios. Below
the threshold, the channel is unusable. Above this threshold,
performance rapidly converges to single-user performance.

In Fig. 6 the performance on a -symmetric channel with
a of 0.90 and five users is shown. In this case the threshold
effect is even more apparent, and performance has moved
significantly away from the single-user performance curve.

Fig. 4. Comparison of BER performance of iterative decoder with five users
and� = 0:60 (1, 2, 4, 8, and 16 iterations) to ideal single-user performance.

Fig. 5. Comparison of BER performance of iterative decoder with five users
and� = 0:75 (1, 2, 4, 8, and 16 iterations) to ideal single-user performance.

The degradation is 1.5 dB at a BER of 10, and further
iteration does not improve upon this.

B. Ten-User Results

For comparison purposes, the corresponding performance
with ten users and a of 0.60 on a -symmetric channel
is shown in Fig. 7. Like previous cases, there is a threshold

below which the channel is not usable. Relative to
the five-user case with the same correlation, performance on
the first iteration is significantly degraded. However, with
enough iterations, performance still converges to the single-
user performance for ratios of 4 dB and higher. It also
performs significantly better than the five-user case with aof
0.90. Note that the variance of the multiple-access interference
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Fig. 6. Comparison of BER performance of iterative decoder with five users
and� = 0:90 (1, 2, 4, 8, and 16 iterations) to ideal single-user performance.

Fig. 7. Comparison of BER performance of iterative decoder with ten users
and� = 0:60 (1, 2, 4, and 8 iterations) to ideal single-user performance.

is identical in these two cases. The reason why five
users significantly degrade the detector performance
while ten users do not is explained in Section V.

C. Interleaver Dependence

The interleaver used in these simulations was chosen at
random. The same interleaver was used for all simulations
having the same block size. No attempt was made to optimize
this interleaver, as theory indicates that an interleaver picked
at random is expected to be good. To test this assumption, we
repeated the tests with a number of different interleavers, all
of which were chosen at random. The simulated performance
results with the different interleavers were virtually identical.
Theory also indicates that there will be bad interleavers. For

Fig. 8. Dependence of performance on interleaver size for cross correlations
of � = 0:75 and0:90. Results are for five users, rate-1/2k = 5 convolutional
code, and 16 iterations.

example, with no interleaving, theory claims that performance
should degrade as soon as the correlation parameter exceeds
0.5. Simulation confirmed that the expected degradation was
observed.

As the analysis indicated, for sufficiently large, asymp-
totic multiuser performance is expected to be the same as
single-user performance. In Fig. 8 the performance with
users and interleaver sizes corresponding to , ,

, and information bits for the
constraint length 5 rate-1/2 convolutional code is shown. The
results correspond to the -symmetric channel with cross-
correlation values of and and 16 iterations in
each case. For the case, the predicted performance
is obtained with as small as 100. For the
case, there appears to be some degradation with the smaller
interleavers although the simulation results are not conclusive.
The interleaver size clearly plays a role at low SNR. Larger
interleaver sizes improve performance in the range between
threshold and single-user performance. The interleaver size
has little effect on the threshold behavior of the detector.
Although not shown, simulation results indicate that increasing
the interleaver size has little effect on the rate of convergence.

D. Code Dependence

The dependence of performance on the FEC is also of
interest. For comparison with the constraint length 5 rate-1/2
convolutional code used to this point, rate-1/2 convolutional
codes with constraint lengths of 4 and 7 were tested on the

-symmetric channel. A recursive systematic code was also
tested. The results are qualitatively similar to the constraint
length 5 code in all cases. In particular, performance converged
rapidly to single-user performance at higher ratios.
Furthermore, the threshold was found to be independent of
the FEC code used and found to depend only on the number
of users and correlation .
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Fig. 9. Comparison of BER performance of iterative decoder with five users
and� = 0:75 (1, 2, 4, and 8 iterations) to ideal single-user performance over
the K-exponential channel.

E. Other Channels

Simulation results, thus far, have concentrated on the-
symmetric channel because it is analytically tractable and
allows a comparison of different channels through the sin-
gle cross-correlation parameter. The theoretical results and
algorithms derived here, however, apply to general-user
Gaussian bit-synchronous channels. For example, let the-
exponentialchannel be defined as having the cross-correlation
matrix given by

(26)

It has the same asymptotic properties inas the -symmetric
channel; however, for intermediate values of, it is substan-
tially different from the -symmetric channel. In Fig. 9 the
performance obtained over the-exponential channel for five
users with a cross-correlation parameterof 0.75 is shown.

The conclusion is that while quantitatively different, the
BER performance is qualitatively the same on the-
exponential channel as observed on the-symmetric channel.
The -exponential channel is not as harsh as the-symmetric
channel and for this reason there is faster convergence to
single-user performance when . At the higher cross-
correlation value of 0.90, the -exponential channel has a
threshold, but at significantly lower than observed
with the -symmetric channel.

V. ANALYSIS OF SIMULATION RESULTS

The simulation results have shown the near-optimum perfor-
mance of the MCE-based decoding algorithm and emphasize

Fig. 10. Comparison of BER performance of various scenarios with theoret-
ical capacity limits of theK-symmetric channel and the single-user bound;
all results are after 16 iterations andJ = 500 information bits.

that a practical multiuser decoder can be implemented that has
minimal losses, if any, with respect to single-user performance
in many situations.

The results also show a threshold-type behavior as the
correlation parameterincreases on the -symmetric channel.
Above the threshold , performance rapidly approaches
single-user performance. Below the threshold, the channel is
practically unusable. The fact that this threshold does not
depend on either the code or the interleaver length suggests
that it may be capacity related. For positive definite, the
discrete-time model of (5) is equivalent to a-parallel channel
with dependent noise [23], and we have the following result.

Theorem 4: The theoretical capacity of the system
with independent equal power users and Gauss-

ian signaling is

bits/dimension (27)

where is the single-user SNR per dimension.
For a rate-1/2 code, . This theorem can be

proven using a simplified version of that given in [23]. For
symmetric users, the capacity per user is th of this
quantity. In Fig. 10 the performance obtained in various-
symmetric scenarios is compared to the combination of the
single-user capacity limit, i.e., the for a capacity of 1/2
bits/dimension/user, and the single-user BER limit. For two of
the three scenarios, and , and and

, performance is within 1 dB of the limits imposed by these
two curves. In the third case, it was found that the required

to achieve 1/2 bits/dimension/user was significantly
larger with binary signaling than with Gaussian signaling.3 In
Fig. 10 the capacity limit for the case was

3This was pointed out by an anonymous reviewer who noted that the
sum-capacity of the binary adder channel(K = 5; � = 1) is only 2.2
bits/dimension.
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computed numerically for the true signaling distribution, not
Gaussian signaling. Performance is within 1 dB of capacity
over the illustrated range. With the larger block sizes shown
in Fig. 8, the difference is less than 0.5 dB. Similar behavior
was found on other channels withvalues very close to one,
as long as the channel capacity was not exceeded.

The -symmetric channel is an artificial construct de-
veloped to test and compare the performance of the detec-
tion/decoding algorithm. In many circumstances it will not
have practical relevance. The-exponential channel model
will be a closer model of many practical situations. However,
the -symmetric channel does provide meaningful tests of the
behavior and robustness of the algorithm and the theory.

VI. CONCLUSION

In this paper it has been implicitly shown that, in a multiuser
system with low user correlations, techniques which perform
detection followed by decoding should be capable of near-
optimum performance. When the user correlations exceed
0.5, these approaches have limitations. These limitations can
be remedied by FEC coding, random interleaving, and joint
detection/decoding. Theoretical analysis shows that, with this
approach, multiuser detection/decoding is capable of asymp-
totically achieving optimal single-user performance for user
correlations approaching one.

The paper also derives an optimal iterative algorithm for
coded multiuser detection/decoding based on iterative tech-
niques for minimizing cross entropy. It is shown that, with an
independence assumption, this optimal algorithm becomes a
practical algorithm for multiuser detection. Simulation results
are presented that validate the theoretical claims. These simu-
lation results also show that, in many scenarios, performance
with the practical algorithm is limited only by single-user
performance and theoretical capacity limits when using only
simple codes and short block lengths.

The complexity of this algorithm can be expressed approx-
imately as per bit per iteration where is
the code constraint length. However, as the simulation results
show, one can approach channel capacity with quite small,

, and . In addition, this algorithm for synchronous users can
be extended to provide similar performance for asynchronous
users with the penalty of increased complexity

APPENDIX

Proof of Theorem 1: Since we assume , let the
numerator of the asymptotic efficiency expression (10) be

(28)

For a code of minimum distance , a single-user error
event of minimum distance implies that

(29)

This upper bound can be tightened by noting that, when each
of two users have coinciding minimum distance error events,

then

(30)

where is the correlation between users and the minimum
is achieved with . With as
the magnitude of the maximum off-diagonal element of,
substituting (29) and (30) into (10), one has

(31)

Proof of Theorem 2: In the synchronous Gaussian channel
the asymptotic efficiency is given by (10). For the case ,
we have

(32)

where

(33)

Define the weight of a multiuser error event as the
number of nonzero elements in the sequence of vectors

. For a particular error event, let
be the number of users contributing to that error event. For

, it is clear that . Let be the
minimum eigenvalue of and let . Then,
from (33), for , . Thus, only and
error events of weight between and (inclusive) must
be considered. Then, from the union bound

(34)

where is the number of error events of weight. Assume a
common convolutional code for all users with transfer function

(35)

Let . Then, for a given
and any interleaver of length , the number of error events
of weight , where , is upper bounded by

(36)

since . From the following Lemma 5, we have that

(37)
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Substituting (36) and (37) into (34), one obtains

(38)

where is determined by upper
bounding by , and

(39)

by letting . Thus, for and
.

Proof of Lemma 3: In [24] and [25] it is shown that, for
the decoding problem, the MCE distribution is given by

(40)

where is a constant that normalizes the probability mass and
is the indicator function for the set , i.e., codewords

satisfying the parity check equations in the constraint set.
Consequently,

(41)

and using (40) in (16), one obtains

(42)

and, consequently, .
Proof of Lemma 4: The distributions and

are defined by (42) and (18), respectively. Then, us-
ing (40) and since , it follows immediately
that

(43)

This illustrates the interesting point that when the true MCE
algorithm is applied to the decoding problem, convergence
occurs in one cycle through the constraint sets. It is only when
one uses approximations to the true MCE algorithm that more
than one iteration will bring potential improvement.

Lemma 5: For an error event over users

(44)

Proof: In any symbol interval an error can be a singleton
(due to a single user) or otherwise (due to coincidence of
multiple user symbol errors). Let be a random variable
representing the number of singletons in an error event of
weight ; this depends upon the interleaver and the error event.
Then the corresponding distance is lower bounded by

(45)

where is any error event of weight and is the
number of user errors in symbol. For any ordering of the

individual user errors, let be a binary random variable (0 or
1) representing whether theth error is a singleton or not. Then

(46)

Using the chain rule for the joint cumulative distribution
one has

(47)

where, for a random interleaver, the individual distributions in
the product have been upper bounded by the Bernoulli
distribution with parameter . For general
cumulative distribution functions and , if

and , then
. Consequently, from

the bound in (47), the distribution of is upper bounded by
the binomial distribution of trials with parameter

(48)

and (44) follows for a constant .
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