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An lterative Multiuser Decoder for
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Abstract—The combination of forward error correction (FEC)  limits the applicability of these techniques to situations where
coding and random interleaving is shown to overcome the limi- the correlation between users is intentionally kept low, such
tations of multiuser detectors/decoders when the user cross cor- as CDMA. In this paper we investigate how to extend these

relations are high. In particular, one can asymptotically achieve techni to th h th lati hiah h
single-user performance in a highly correlated multiuser system. echniques to the case where the correlalions are high, suc

In addition, an optimal iterative multiuser detector is derived as frequency-division multiple-access (FDMA) with a high de-
from iterative techniques for cross-entropy minimization. A prac- gree of channel overlap. An optimal iterative multiuser decoder

tical suboptimal implementation of this algorithm is presented, is derived based on cross-entropy minimization techniques

and simulations demonstrate that, even with highly correlated [24], [25] and a practical implementation of this algorithm

users, it achieves optimal asymptotic efficiency. The effects of the . ted. Th i bootimal algorithm is similar t
theoretical limits on channel capacity are evident in many of the IS presented. The resulling suboptimal algorithm IS simiiar to

simulation results. The complexity of the suboptimal algorithm is  ©ne that has been independently discovered by Reteal.
approximately (O(2") + O(2")) per bit per iteration where K is [18] for CDMA.

the number of users ands is the code constraint length. In Section 1l we review notation used for the multiuser
Index Terms—iterative decoding, minimum cross entropy, mul-  detection problem and illustrate some of the limits of con-

tiuser decoding, multiuser detection. ventional multiuser detectors/decoders. It is shown how these
limits can be overcome. In Section Il it is shown how

techniques similar to those applied to the detection of parallel

concatenated codes (turbo codes) [15], [16] can also be applied
ULTIUSER detection has received considerable afp detecting parallel users, that is, multiuser decoding (MUD).
tention recently with its potential to improve systemn Section IV simulation results are provided that confirm the

capacity and alleviate some technical requirements of codBeoretical results of the previous two sections. In Section V

division multiple-access (CDMA) systems, such as powerfurther analysis of the simulation results is performed.
control. Many algorithms for performing multiuser detection

have been put forth. These range from the high-complexity Il. MULTIUSER DETECTION
optimum detectors for asynchronous systems [1] to many

forms of suboptimum lower complexity detectors includin o : . oo
linear [2]-[4] and nonlinear [5], [6]. In many scenarios thes%sers, each transmitting a block &f bits. For bit period; of

detectors work well and provide close to optimum perfoHserk’,the corresponding transmitted bit will b? re_presgnted
mance. by b.(i). The complete sequence of thgh user’s bits will

The interest in CMDA has rekindled interest in multiuse elrep{e]s\fanteg tl.;y the tvect?r;;h;( (b’“(l)t’).'t"’bt’“i.N)), <
decoders and recent results in this area include [7]-[13] ahd ,+1}7 an € vector o -user pits at imé IS

. . . T .
261, | - hat th ; represented byo(i) = (by(4),---,br(9))7. Thg matrix of all
[26]. In [9] it is demonstrated that the optimum detector ers’ bits is represented fiye {—1,+1) 5%, whereby, is

for an asynchronous CDMA system employing forward errof® . i S
correction (FEC) coding combines the trellises of both ﬂ% row of .thIS matrlx_._The same notation is extended to other
asynchronous detector and the FEC code. The result is a ti g_crete-nme quantities.

varying trellis with a complexity per bit that is approximately .

O(2°K), where K is the number of users andis the code A Multiuser Model

constraint length. This complexity makes the use of the optimalThe model for multiple access communications, illustrated

I. INTRODUCTION

In the following sections we assumk bit-synchronous

decoding detector prohibitive for even small systems. in Fig. 1, assumes that there afé users simultaneously
A limitation of these multiuser detectors/decoders is thatcessing the same communications channel using modulating

they degrade as the correlation between users increases. Wageformss,(t) € R(—o0, ), k = 1,---, K, with symbol

period 7. The noiseless input to the receiver is
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Fig. 1. [llustration of multiuser communication model.

to unit energy. The relative received amplitude levels of thie usually forced by assuming that the modulating waveform
different users are characterized by the positive parameterszero outside the symbol interval, i.es;(¢) € R[0,7].
{/ws}. For the case of equal power usess, = w» = ---= Under these assumptions, lettidg = H(0), an equivalent
wg = 1. With an additive noise channel, the correspondingdjscrete-time representation of this system is

received signal is y(i) = HW'?b(@) +n(i) y(0),b(6),n(0) € R (5)

r(t) = 5(b,2) +n(?). (@ where the vecton(s) is a set of zero-mean correlated noise
samples with

na(i) = /_ T Refn(Osu(t—iT—m)]dt (6)

It is assumed that the noise proces&) is a zero-mean
complex white Gaussian process with spectral dengityThis
model can be easily extended to include complex signaling
T el EOvT oo YW i te dagonal matrx wih nonzero cleme(s,)
waveforms are the carrier frequencies with appropriate pulstlence It is assumt;:ld that [‘the ,”2'9"&) 'QS Wh/'.te' ,I.t follrc])ws
shaping! With CDMA, the modulating waveforms correspontfrgnl(d') and (6) thatt[n(i)n(j)"] = o~ H8(i - j), where
to the spreading codes assigned to each user. 7% = No/2T. .

. . . As a reference, the optimum approach performs an exhaus-
It is assumed that the modulating waveform of each Useris " .rch to determine thsi(7)
known at the receiver, and that tlé-user coherent receiver
locks to the signaling interval and phase of each active usbfi)=arg min {(y(i)—HWYXTH  (y(i)— HW'/*)}.
In a highly correlated multiuser environment it is recognized xCLALE
that constructing a coherent receiver is a challenging problem, (7)
but this is not dealt with in this paper. If the additive noise ighe conventional detector takes the sign of the bits at the
a white Gaussian random process, it can be shown [1] thag@put of the matched filter, that ib(i) = sign{y(:)}, where
set of sufficient statistics for maximum-likelihood detection ofhesign(-) operator is applied on an element-by-element basis.

the data is the set of matched-filter outputs The conventional approach is much less complex than the opti-
00 mum approach but clearly relies on low cross correlations, that
yr(i) = / Re[r(t)s(t — I — )] dt (3) is, H being approximately diagonal, for good performance.

where y(¢) is the output of a filter matched to thkth B. Detector Efficiency
modulating waveform. Define thé&lth entry in the cross-

correlation matrix of the user waveformd (i) € KK The efficiencyof a detector is a measure of the power

efficiency of a multiuser detector relative to a single-user

by detector operating at the same bit-error rate (BER). It allows
) oo ) a simple comparison between detectors of different types. The
(H(0)m = [ si(t — 41 = mi)si(t — ) dt. (4) asymptotic efficiencis defined as [2]

k
For the synchronous case, it is assumed that the cross cor- g, = Sup{() <r<1: lim M < oo} (8)

. . . . 0 Pk ;
relation between modulating waveforms in adjacent symbol o0 Pi(a/\/T)
intervals is zero, that isf/(i) = 0 for [i[ > 0. The latter where P (o) is the error rate of théth user in the multiuser

k . . -
1with FDMA, the modulating waveforms are complex, in general, with £YSt€M and’; (_‘7) is the error r'ate of ?[héth userin a smgle-
complex phase that may vary from one symbol interval to the next. user system with the same noise varianéeFor the optimum
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detector on a Gaussian channel, the asymptotic error rate is 1.0
determined by the minimum Euclidean distance between any
pair of K-dimensional sequencée andb? that differ for the

> Optimal
. . 0.8
kth user. This distance can be expressed as g Detector
2 1 2 4|2 £
dk = gu}g ||S(b 7t) - S(b 7t)|| (9) E:J 06 Decorrelating
) © Detector
bi;ﬁbi §
E]
b=

where ||(1)[I2 = [T |(-)]*dt. For the synchronous Gauss-
ian channel, performance at low noise is dominated by thg&
.. . . .. (o]
minimum distance error, and the asymptotic efficiency of th%
optimum detector reduces to the ratio of the scaled minimurg **[
distances. Evaluating (9) for the multiuser and single-uset
minimum distances, in a manner similar to [3], and taking 4,

the ratid gives 0.0 02 0.4 06 08 10
Cross-correlation (p)

<
'S
T

Conventional
Detector

N
.= 1 min g(n)TWI/QHWI/QE(TL) (10) Fig. 2. Asymptotic lefficiencies of conventional, decorrelating, and optjmum
Wi dfree =170 detectors as a function of the number of uggks) and the cross-correlation
n=1 parameterp.

where the minimum is over alk -dimensional error sequences
e € {—1,0,+1} N "and the error sequeneg correspond-

::'g to_thedlfth user flshnon_zgro. Tt:f quant't‘yﬁe‘l’ is the Ipositive cross correlations for the K-symmetric channel.
amming distance of the minimum distance single-user ermorg, - ;g channel, the asymptotic efficiency of the optimal

event (. = 1 for uncoded) an@y ds:. is the corresponding detector is independent of the number of users for pos-

Euclidean distance. Asymptotic efficiency is analogous {4 o Both the conventional and decorrelating detectors

asymptotic coding gain, as it represents the gain (loss) relatyg

ded (sindl he sianal ) é[;rade with the number of users. The asymptotic efficiency
to an uncoded (single-user) system as the signal-to-noise "Y%he conventional detector approaches zero quickly as the
(SNR) becomes large.

number of users increases. The asymptotic efficiency of the
o decorrelating detector approaches the lipe= 1 — p. At
C. Example Uncoded Efficiencies p = 0.5 and large K, it approaches a 3-dB degradation
To illustrate these concepts, we define thesymmetric relative to the optimal detector. This example illustrates the
channel that is characterized by a cross-correlation matrix limitations of uncoded detectors. Even with the optimum
1 detector, the asymptotic efficiency degrades when the cross-
A correlation parameter exceeds 0.5. Thiesymmetric channel
gH=|" L r (11) is not an anomaly in this respect. In fact, the performance of
por 1 1 the optimal detector on th&'-symmetric channel is an upper
R bound on the asymptotic efficiency for any uncoded multiuser
and a channel gain matrix d%1/2 = I. That is, all users detector for a bit-synchronous additive Gaussian channel.

have the same cross correlation between their modulating
waveforms and suffer the same propagation losses. DesignAsymptotic Efficiency with Coding

of the modulating waveforms of théd users to produce pqr coded systems, the asymptotic efficiency is also given
(11) is, in general, not possible without some bandmdtﬁy (10) but only error sequences that correspond to the
expansion. There are some common examples. ThexCas®  itterences between legitimate codewords are considered in
corresponds to orthogonal signaling, for example, using &, minimization. In the following we only consider the case
orthogonal Hadamard codes in a CDMA system or orthogoqﬁhere all the channel gains are oie= 1. Let pyax represent
frequencies in an FDMA system. Using different cyclic shiftg, magnitude of the largest off-diagonal element of cross-
of the sameM sequence, as the modulating waveforms Qf, . ajation matrix4.

the users, corresponds to the cgse- —1/(2" — 1). Using Theorem 1: With synchronous equal power users, the

the same modulating waveform for each user cOMespondls mnratic multiuser coded efficiency over a Gaussian channel
to p = 1, and the bandwidth expansion factor is one. The upper bounded by

K-symmetric channel provides insight into the behavior of

multiuser detectors as a function of the number of users me < min{1,2(1 — prax)} (12)

because it allows the analytical calculation of the asymptotic

efficiency as a function of the cross-correlation parametenyhen all users apply the same code.

and the number of userk” [14]. In Fig. 2 the asymptotic  Thjs result indicates that a multiuser system, coded as in

efficiencies of the conventional, the decorrelating [2], [3], anfheorem 1, suffers from the same limitations as the uncoded
2A factor of four has been removed from both the numerator and denorﬁYStem as the Corre'?t'on between users increases. A proof is

nator. given in the appendix.

the optimal detectors are compared for 2, 5, and 10 users and
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Alternatively, we can assume that all users use the samement constraint corresponding to a parity check equation
FEC code but that each user has a different pseudorandigrtil )b, (2)b,(3) = 1 is E[br(1)br(2)bi(3) — 1] = 0. The
interleaver. The analysis of [9] does not apply in this case, general solution to the cross-entropy minimization problem is
the trellis structure of the decoder is no longer as straigtgiven by the following lemma [17].
forward and the optimum detector under these conditions Lemma 1: Let b be a random vector witmtrinsic distri-
is even further from practical. In this case the asymptotltion g¢,[b]. Let E[f;(b)] = 0, ¢ = 1,---, F be constraints
efficiency will depend upon the choice of interleaver. hgty  on the moments ob. Then the MCE distribution is given by
be a random variable representing the asymptotic efficiency
of the kth user for a set of¢ independently chosen random p[b] = Ago[blg1(P) - gr(P) (14)
interleavers of lengthV. whereg;(b) = exp{—\; f;(b)} for some constant§);}, and

Theorem 2 (Optimal Asymptotic Efficiency with Codinghe constantd normalizes the probability mass.
and Random Interleaving): For a synchronous Gaussian For coding applications, the expression ftb) simplifies
channel withK equal power users anll randomly selected to I;(b), that is, the indicator function for the set of codewords
interleavers of lengthV that satisfy the parity equatiof)(b) = 0, and the MCE distri-
. ) o bution is equivalent to the posterioricodeword distribution
M Prigey =11=1, k=1 K (13) [24], [25]. Furthermore, one can iteratively determine the MCE
when the cross-correlation matr#l is positive definite. distribution [21], [22]. With this algorithm, the constraints

This theorem is proven in the appendix. It highlights th8® grouped into set€;(b), ¢ = 1,.--, K and each of the
importance of not separating the detection and decoding pr&g_nstramt sets Is considered separgte!y. We use the nofcat|on
lems. In the uncoded case the efficiency of even the optimtﬁén(b)?ci.(b). to Fepfes‘?”t the MCE d|str|but|'on corresponding
detector degrades fos > 0.5. This loss disappears if theto thelntr|n5|.c dlstnbutl_on .q"[].o] aﬂd _con_stralnt setl;(b).
detection process is not separated from the decoding procesjs_emma 2 For’the intrinsic distribution g,[b] and con-
and one employs random interleaving. The benefits of randGHe Mt setsCi(b),i = 1,---, K, let pi[b] = go[b] o C1(b)
interleaving are somewhat analogous to what is observed \Aﬁ‘tﬂd let
turbo codes [15], [16], although, with multiuser decoding, it pit1[b] = p;[b] 0 Ciyjmodr (b) (15)
does not rely on the use of systematic recursive convolutional . o )
codes. The positive definiteness Hf is a technical require- then p;[b] converges to the unique MCE distribution with
ment of the proof that does not appear necessary in practit&SPect tog,[b], satisfying all of the constraints.

This result is more general than indicated here. In particular, TS IS shown in [21, Th. 3.2]. This theorem says that the
the following corollary comes immediately from the inspectio§€duence of local MCE distributions, obtained by applying
of the proof of the theorem. the 90n_stramt s_ets repeatedly, converges to_ the global MCE

Corollary 1: The results of Theorem 2 apply when thglstr|but|oq. This fprms the .baS|s ]‘or 'the iterative Qetec—
cross correlatiord is time varying. tion/decoding algorithm. In this application ti#€ constraint

It does not matter whether this time variation is intention&€tS correspond to the interleaver/FEC code combinations for

or nonintentional. This implies that the results can be applied§§ch user. The following two lemmas describe two variations
cases such as FDMA with a high degree of spectral overlap.R this algorithm that are useful in practice and retain its

the latter the pulse shapes may be constant from one sym%i'ma“ty- ) .
period to the next, but the effect of frequency offsets and Lemma 3 (Equivalence of Parallel and Serial Implementa-

phasing will vary from one symbol period to the next. tions): For the decoding problem, letc.i.[b] be the result
after K steps of the serial algorithm defined by (15). Let

p*[b] = ¢o[b] o Cx(b), k = 1,---,K be the K MCE
distributions after one parallel step, then the distribution

1 oM. . K
pl)arallel[b] :Cparallelp [bggo {E})K—I?L [b] = Pserial [b] (16)

I1l. M ULTIUSER DECODING ALGORITHM

A. Optimum Algorithm

The following iterative decoding structure can be derived
either from intuition or theoretically from a minimum crosswhere the constant,,;ane; NOrmalizes the probability mass.
entropy (MCE) framework [17], [24], [25]. Cross-entropy Thus, for the decoding problem, the constraints can be
minimization is a statistical inference scheme that estimates #ygplied in parallel rather than serially. The proof of Lemma 3
probability distribution function that satisfies given constraints presented in the Appendix, and it follows by induction that
on its moments and minimizes the cross entropy (relatitiee parallel version converges to the same limit as the serial
entropy) with respect to ampriori distribution [17]. To reduce version. The combination of these three lemmas gives the
confusion when applied to the decoding problem, we will usdgorithm structure shown in Fig. 3. The algorithm consists of
the termintrinsic distribution where MCE literature typically two parts: a combiner anfl’ parallel decoders. Each decoder
uses the terma priori distribution. Theintrinsic distribution only considers the bits of one constraint set, i.e., one user.
represents the distributiop, [b] implied by the channel sam- The combiner uses the output of the decoders together with
plesy. This is quite different than the usual interpretatiothe input to form a new MCE distribution.
of a priori information. The constraints correspond to the The MCE distribution (14) consists of two parts, the
parity check equations of the code [24], [25]. For example, thensic part ¢,[lb] and an extrinsic part due to the constraints
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Fig. 3. lllustration of iterative multiuser decoding algorithm.

¢:(b). The nomenclature ahtrinsic andextrinsiccomes from B. Suboptimum Algorithm

an analogy to turbo coding [19]. From Lemma 3 Although optimum, the iterative MCE approach is far from
practical. Since it deals with distributions, it requires the
Ppasatiel[b] = Cpazatiergo[blg1 (b) - - g (b) (17) " determination of the probabilities at th&™ possible binary
. o . vectors. To make it practical requires an additional assumption
that IS, the MCE dls_trlputlpn after one parallel step IS thfﬁatthe symbol probabilities at the output of the MCE decoders
combination of the intrinsic distribution and the extrinsic, o independent in distinct symbol intervaEhis assumption
distrib.ution from each comppnent brangh ir? the ,SteP- I.n Fifs reasonable if the bits of a user codeword are randomly
3 the input to each decoder is the combination OfitensiC ;e rjeaved. This does not assume that bits from different users
distribution obtained from the channel with thextrinsic in the same bit period are independent.

distribution for each user provided by the previous decoding.With this independence assumption, the decoders need only
On the first iteration there is no previous extrinsic distributioQJutput a soft value for each ok N bits rather thare®N
L_emma4 (Discarding Extrinsic Data): When the con- gossible codewords. Consequently, instead of the true MCE
straint sets concern nonoverlapping subsets of the dgjgithm, one can use a soft-output decoding algorithm such
Cr(P) = Ci(br), let as [20] for estimating the symbol probabilities. The overall
‘ ‘ structure of this modified algorithm is best illustrated by an
pﬁarallel[b] = c}’iarallelqo [b]gl (bl) e gk,]‘(bk,]‘) example
‘grt1(Prt1) -9 (Px) (18)  For a memoryless Gaussian channel with matched filter
outputs{yx(¢): k = 1,---, K, ¢ = 1,---, N}, the intrinsic

then distribution for theith symbol period is given by
‘ -1/2
eatia[P] © Ci(br) = pE. Dol o Ci(bs). (1 1 — det(H)~ Lo T
by 11 1[ ] © Ck( k) pparallel[ ] © Ck( k) ( 9) q[b(L)] = W exp _T‘Q(Y(L) - Hb(L))

That is, we can ignore previous extrinsic distribution for a
subset of bits when calculating a new extrinsic for the same

subset of bits. The proof of this lemma is in the appendix. h ise h gl Gi he ind
These results can be combined to give Theorem 3, whi}ﬁﬁ1ere the noise has a covarianged. Given the indepen-

follows from the observation at the end of Lemma 1 th;ﬁence assumption, the input to the decoders is, from (17),

the global MCE distribution is thea posteriori codeword PparalleLm[P(4)] for @ particular iteration and bit interval where
distribution the subscriptm implies the distribution aftern iterations.

Theorem 3 (Optimal Iterative Multiuser Detector)With Since each decoder acts only on a subset of thekhitsthe

the algorithm defined by Lemma 2 and the possible modific@t-h decoder input is the corresponding marginal distribution
tions defined by Lemmas 3 and 4 Pparallel m [0x(2)]

H () - Hb(z'))} (21)

= parallel,m b('[.)] (22)
ilb Prfb | y (20) E Pparallelm |
i [P] b ]y] b1(a), b1 (8),bay1(d), ,br (3)

that is, there is convergence to tleposteriori codeword Using the independence assumption, the soft-output de-
distribution. coders estimate the symbol probabilities for tkie bit of the
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kth userpy, [bx(i)], where '\Iterations Ke5
pfn[bk (L)] = pparallel,rn[bk(i)]gk,rn(bk(i))- (23) 101 : \ l 0=0.60
The normalized extrinsic distributiop;, ,,, [bx(i)] is then ?
given by g & 6\
B [ba(i) = 1] o 107
| () = 1] = Ay, Pl = 24 5
gk’nl[ k( ) ] b pparallel,nl[bk(z) = 1] ( ) E p=
O
for bi(¢) = 1 and similarly forb,(i) = —1, where Ay, 5 108
normalizes the sum of the probabilities 6f1” and “1.” The = F \
combined intrinsic and extrinsic distribution is given by I \
Pparallel,m+1[P(1)] = Am o [b(i)]g;n,l[bl (@) 'g;n,l( [br (9)] 10
(25) i
where the constant,, normalizes the probability mass. At 105 — : ; . : ! .
0o 1 =2 3 4 5 6 7

any time, a decision can be made based on the decoder
output. In practice, better performance is obtained if one uses
Pparallel,m [b(2)], i.e., themth iteration Ofpl’ara“el[b(L)] as per Fig. 4. Comparison of BER performance of iterative decoder with five users

Lemma 4, instead Opparaliel,»[P(4)] in the right-hand side and, = 0.60 (1, 2, 4, 8, and 16 iterations) to ideal single-user performance.
of (22). Ostensibly, this is because it increases the validity

of the independence assumption. This provides a manageable
algorithm that is suitable for multiuser detection. From a
complexity viewpoint, there arek’ decoders (or a single
decoder reusedy( times) that is matched to the code of a
single user. The complexity of this algorithm can be expressed
as(O(25) + O(2%)) per bit per iteration where is the code
constraint length.

E/N, (dB)

s | fterations | K=5 1
0=0.75

10-1 p 1

102 2

IV. SIMULATION RESULTS =

. . . . 1038
In this section the simulation results for the proposed :

iterative detection algorithm are presented for five and ten
users with a variety of correlation valugs All simulations

use a block size of 500 information bits for each user. Each
user uses the same rate-1/2 constraint length 5 convolutional
code with generators [10011] and [11 101]. Each user uses
a different pseudorandom interleaver, and the same set of 10-5o . 3 4 5 s 7
interleavers is used for all simulation runs. The interleavers

were chosen at random and no attempt was made to optimize Eb/No (dB)

them. Each Slmu,laftlon pomt is tested for the minimum of 160Igg. 5. Comparison of BER performance of iterative decoder with five users
errors or four million bits. andp = 0.75 (1, 2, 4, 8, and 16 iterations) to ideal single-user performance.

Bit Error Rate

/

104 E 4,8,16

A. Five- r Resul L .
e-User Results The degradation is 1.5 dB at a BER of 1) and further

In Fig. 4 the performance of the iterative detector ofa jteration does not improve upon this.
symmetric channel with five users ang af 0.60 is shown for
1, 2, 4, 8, and 16 iterations. Even with this high correlation
performance converges rapidly to single-user performance
(p = 0) at higherE, /N, ratios as predicted by theory. Thereis For comparison purposes, the corresponding performance
a noticeable loss at low SNR'’s. In Fig. 5 the performance withith ten users and a of 0.60 on aK-symmetric channel
five users and a of 0.75 is shown. In this example a thresholds shown in Fig. 7. Like previous cases, there is a threshold
effect is becoming apparent at the lowgy/N, ratios. Below E,/Ny below which the channel is not usable. Relative to
the threshold, the channel is unusable. Above this threshdide five-user case with the same correlation, performance on
performance rapidly converges to single-user performance.the first iteration is significantly degraded. However, with

In Fig. 6 the performance on A-symmetric channel with enough iterations, performance still converges to the single-
a p of 0.90 and five users is shown. In this case the threshalder performance fak;, /N, ratios of 4 dB and higher. It also
effect is even more apparent, and performance has moyeforms significantly better than the five-user case withoa
significantly away from the single-user performance curv8.90. Note that the variance of the multiple-access interference

Ten-User Results
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Fig. 6. Comparison of BER performance of iterative decoder with five usefrég. 8. Dependence of performance_on interleaver size for cross cprrelations
andp = 0.90 (1, 2, 4, 8, and 16 iterations) to ideal single-user performancef p = 0.75 and0.90. Results are for five users, rate-#2= 5 convolutional
code, and 16 iterations.

E L

:\\"emjms example, with no interleaving, theory claims that performance

101 b should degrade as soon as the correlation parameter exceeds
i 0.5. Simulation confirmed that the expected degradation was

observed.

As the analysis indicated, for sufficiently largé, asymp-
totic multiuser performance is expected to be the same as
single-user performance. In Fig. 8 the performance itk 5
users and interleaver sizes corresponding/te= 100, 200,

109 F 1000, and 2000 information bits (N = 2(J + «)) for the
i constraint length 5 rate-1/2 convolutional code is shown. The
I results correspond to th&'-symmetric channel with cross-
104k correlation values op = 0.75 and 0.90 and 16 iterations in
FK=10 each case. For the = 0.75 case, the predicted performance
p=0.60 is obtained withJ as small as 100. For thg = 0.90
105 L . . . N . case, there appears to be some degradation with the smaller
c. 1 2z 3 4 5 6 7 interleavers although the simulation results are not conclusive.
Eb/NO (dB) The interleaver size clearly plays a role at low SNR. Larger
interleaver sizes improve performance in the range between
Fig. 7. Comparison of BER performance of iterative decoder with ten us§ireshold and single-user performance. The interleaver size
andp = 0.60 (1, 2, 4, and 8 iterations) to ideal single-user performance. . .
has little effect on the threshold behavior of the detector.
Although not shown, simulation results indicate that increasing
p?(K —1) is identical in these two cases. The reason why fihe interleaver size has little effect on the rate of convergence.
users(p = 0.9) significantly degrade the detector performance
while ten usergp = 0.6) do not is explained in Section V. p coge Dependence

e BRI \V

102

p=0

Bit Error Rate

The dependence of performance on the FEC is also of

C. Interleaver Dependence interest. For comparison with the constraint length 5 rate-1/2
The interleaver used in these simulations was chosencanvolutional code used to this point, rate-1/2 convolutional

random. The same interleaver was used for all simulatioosdes with constraint lengths of 4 and 7 were tested on the
having the same block size. No attempt was made to optimigesymmetric channel. A recursive systematic code was also
this interleaver, as theory indicates that an interleaver pickegbted. The results are qualitatively similar to the constraint
at random is expected to be good. To test this assumption, ergth 5 code in all cases. In particular, performance converged
repeated the tests with a number of different interleavers, edpidly to single-user performance at highEy /N, ratios.
of which were chosen at random. The simulated performan€arthermore, the threshold was found to be independent of
results with the different interleavers were virtually identicathe FEC code used and found to depend only on the number
Theory also indicates that there will be bad interleavers. Fof usersk and correlation.
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Fig. 9. Comparison of BER performance of iterative decoder with five usefég. 10.  Comparison of BER performance of various scenarios with theoret-
andp = 0.75 (1, 2, 4, and 8 iterations) to ideal single-user performance ovéal capacity limits of the/l-symmetric channel and the single-user bound;
the K -exponential channel. all results are after 16 iterations add= 500 information bits.

E. Other Channels that a practical multiuser decoder can be implemented that has

Simulation results, thus far, have concentrated on Ahe minimal losses, if any, with respect to single-user performance

symmetric channel because it is analytically tractable aH?iQ\any SltlljtatIOPS. h threshold-t behavi th
allows a comparison of different channels through the sin- € resulls also snow a threshold-type behavior as the

gle cross-correlation parameter The theoretical results andcorrelatlon parametgrincreases on thﬁ’-symmetnc channel.
algorithms derived here, however, apply to genekaliser Above the thresholds, /Ny, performance rapidly approaches

Gaussian bit-synchronous channels. For example, letithe single-user performance. Below the threshold, the channel is

exponentiachannel be defined as having the cross-correlatid) actically unusable. The fact thaF this threshold does not
matrix given by epend on either the code or the interleaver length suggests

that it may be capacity related. For positive definiie the

1 p P2 B . pK-L discrete-time model of (5) is equivalent td&aparallel channel

P 1 o pr . pE2? with dependent noise [23], and we have the following result.

o2 p 1 p - pi-3 Theorem 4: The theoretical capacity of the systery) =
H= L . (26) Hb(é) +n(4) with independent equal power users and Gauss-

K=2 .. ... 1

o p2 p ian signaling is
0 L= e e p p 1 1
| - () = log, (YL HETDN pig/dimension  (27)
It has the same asymptotic propertiesias theK -symmetric 2 det(H-1)

channel; however, for intermediate valuesppfit is substan-
tially different from the K-symmetric channel. In Fig. 9 theWhere~ is the single-user SNR per dimension.
performance obtained over tii&-exponential channel for five ~For a rate-1/2 codey = E,/No. This theorem can be
users with a cross-correlation parametesf 0.75 is shown. Proven using a simplified version of that given in [23]. For
The conclusion is that while quantitatively different, théymmetric users, the capacity per userliKth of this
BER performance is qualitatively the same on tié& qguantity. In Fig. 10 the performance obtained in varidis
exponential channel as observed on Hiesymmetric channel. symmetric scenarios is compared to the combination of the
The K -exponential channel is not as harsh askheymmetric Single-user capacity limit, i.e., thi, /N, for a capacity of 1/2
channel and for this reason there is faster convergencebits/dimension/user, and the single-user BER limit. For two of
single-user performance when= 0.75. At the higher cross- the three scenario&( = 5andp = 0.75, andK = 10 andp =
correlation value of 0.90, thé(-exponential channel has a0-60, performance is within 1 dB of the limits imposed by these
threshold, but at significantly loweE, /N, than observed two curves. In the third case, it was found that the required
with the K-symmetric channel. E, /Ny to achieve 1/2 bits/dimension/user was significantly
larger with binary signaling than with Gaussian signafirg.
Fig. 10 the capacity limit for thé X' = 5, p = 0.9) case was

. . . 3This was pointed out by an anonymous reviewer who noted that the
The simulation results have shown the near-optimum perf%—m_capacity of the binary adder chaniél = 5,p = 1) is only 2.2

mance of the MCE-based decoding algorithm and emphaskag/dimension.

V. ANALYSIS OF SIMULATION RESULTS
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computed numerically for the true signaling distribution, ndhen
Gaussian signaling. Performance is within 1 dB of capacity
over the illustrated range. With the larger block sizes shown 2 . 1 pllei(n)
in Fig. 8, the difference is less than 0.5 dB. Similar behavior &= pr [e1(n) e2(n)] |:p 1} [@(n)}
was found on other channels withvalues very close to one, =t
as long as the channel capacity was not exceeded. _
The K-symmetric channel is an artificial construct de- =720
veloped to test and compare the performance of the detec- < 2dgee(1 — |p|) (30)
tion/decoding algorithm. In many circumstances it will not

have practical relevance. Thi-exponential channel model, hore , is the correlation between users and the minimum
will be a closer model of many practical situations. Howevefs achieved withe;(n) = —sign(p)ea(n). With p as

the K-symmetric channel does provide meaningful tests of tlgﬁe magnitude of the maximum off-diagonal elementZf
behavior and robustness of the algorithm and the theory. substituting (29) and (30) into (10), one has

N

VI. CONCLUSION 42 31
. . . .. . . = < i 1,2(1 - max/ S+
In this paper it has been implicitly shown that, in a multiuser K diree mind1, 2( pma)} (31)
system with low user correlations, techniques which perform
detection followed by decoding should be capable of near- [

optimum performance. When the user correlations exceed Proof of Theorem 2:In the synchronous Gaussian channel
0.5, these approaches have limitations. These limitations d8f asymptotic efficiency is given by (10). For the cée= I,
be remedied by FEC coding, random interleaving, and joikte have
detection/decoding. Theoretical analysis shows that, with this
approach, multiuser detection/decoding is capable of asymp-
totically achieving optimal single-user performance for user )
correlations approaching one. < Pl‘[lninS (e) < dfree:| (32)
. . . . . 20
The paper also derives an optimal iterative algorithm for
coded multiuser detection/decoding based on iterative tesokRere
nigues for minimizing cross entropy. It is shown that, with an N
independence assumption, this optimal algorithm becomes a 52(5) = E g(n)THg(n). (33)
practical algorithm for multiuser detection. Simulation results n=1
are presented that validate the theoretical claims. These sirBu-. . :
; ; : efine the weight of a multiuser error eveft| as the
lation results also show that, in many scenarios, performance .
. ) . Cn . number of nonzero elementg(n) in the sequence of vectors
with the practical algorithm is limited only by single-user, : N
. o . e(n),n = 1,---,N}. For a particular error event, l&k
performance and theoretical capacity limits when using on S
. e the number of users contributing to that error event. For
simple codes and short block lengths. 8 o 2
. . . K* = 1, it is clear thaté*(e) > dgee. Lt Apin be the
The complexity of this algorithm can be expressed approX-. . .
. 1% " . . . - minimum eigenvalue off and letD = dgee/Amin. Then,
imately as(O(2") + O(2%)) per bit per iteration where is 5 "
. . : flrom (33), for|g| > D, 6*(2) > dgree. Thus, onlyK* > 2 and
the code constraint length. However, as the simulation results . . .
. ) : efror events of weight betweel;,.. and D (inclusive) must
show, one can approach channel capacity with quite small : .
o ; : be considered. Then, from the union bound
%, andm. In addition, this algorithm for synchronous users can
be extended to provide similar performance for asynchronous p

Prm,n < 1] = Pr[min 62(e) < dfree:|

er#0

users with the penalty of increased complexity Prim,y <1]< > Ag max Pr[6%(e) < diee]  (34)
d=2dgecc o
APPENDIX where A, is the number of error events of weightAssume a

Proof of Theorem 1: Since we assum&’ = I, let the common convolutional code for all users with transfer function

numerator of the asymptotic efficiency expression (10) be A7) = Z caZ?. (35)
N d>dgrce
2 _ T .

&= 2o e(n)” He(n). (28) Let ciax = max{cy: diee < d < D}. Then, for a giverk™

n=l and any interleaver of lengthv, the number of error events
For a code of minimum distanaé.., a single-user error Of Weightd, where2dg.. < d < D, is upper bounded by

event of minimum distance implies that Ay < (Cnax N < (Ca N ) diree (36)

% < dpee. (29) sinced > K*dg.... From the following Lemma 5, we have that

d—dpreot1
This upper bound can be tightened by noting that, when each max Pr[§?(e) < diee] < cbin<_) . @37
of two users have coinciding minimum distance error events, lel=d N



MOHER: ITERATIVE MULTIUSER DECODER 879

Substituting (36) and (37) into (34), one obtains individual user errors, leX; be a binary random variable (0 or
1) representing whether thith error is a singleton or not. Then
ED: 4/d d d—dpyeet1
Pr[nk,N < 1] S (cmaxN) free cbin<_> d
d=2dpycc N sa=y_ Xi. (46)
S CSUIHNH (38) =1
D/d ] _ Using the chain rule for the joint cumulative distribution
WNEre oy = ChinCmhx " DP 412 js determined by upper F(X1,Xs,--,Xg) one has
boundingd by D, and B
d/dizee — d + disee — 1} = 1 — dipee (39 e )
= QdfiilggD{ [dizee = d+ dizee — 1} = 1 — dizee (39) =F(X1)F(Xo | X1) - Fa(Xa | X1y, Xa—1)
< Byp(X1)Bp(X2) -+ Bp(Xa) (47)

by letting d = 2dgee. Thus, for Ay, > 0 and dpee > 2,

limy oo Pr[me, v < 1] = 0. L' where, for a random interleaver, the individual distributions in
Proof of Lemma 3: In [24] and [25] it is shown that, for the productF;( ) have been upper bounded by the Bernoulli
the decoding problem, the MCE distribution is given by  distribution with parametep = (1 — d/N). For general
cumulative distribution functiong/; and B;, if F,(X) <
plz]o Ci(x) = Aip(x)Ic,(z) (40) Bi(X) and F;(X) < B;(X), then Fy(X) x Fj(X) =
dFi(X —5)dF;(s) < B;(X) = B;(X). Consequently, from

whereAi IS a constant that n_ormahzes the pr_obablllty mass a?(ue bound in (47), the distribution &f; is upper bounded by
I-(z) is the indicator function for the set, i.e., codewords . AT . .
the binomial distribution ofd trials with parametep

satisfying the parity check equations in the constraint(set

Consequently, dizee =1 /g o
PI‘[Sd < dfree] S Z <’>(1 - p)d*]p]
Pserial [b] = Aserialqo [b]ICI [b]ICZ (b)’ T ’ICK (b) (41) =0
dfroo—1
and using (40) in (16), one obtains < (1 —p)d—drm—l—l rz <f>p1
5=0
pparallel[b] = AparallelQo [b]ICI (b)7 ce 7ICK (b) (42) dfioo_l (d )j
_ yd—direetl D
and, consequentlye:ial[P] = pparatiel[p]. - =t Z 7
Proof of Lemma 4: The distributions pp,a;anel[b] and d—dfyeet1 I;ZO
PhacanalP] are defined by (42) and (18), respectively. Then, us- <UmpTiey o
X ; 2 _ i i i
122“(40) and sincelc, (b))? = I¢, (b), it follows immediately and (44) follows for a constant,;,, < ¢2p. |
Pparallel [b] o Uy (b) = pﬁarallel [b] o Cy (b) (43) ACKNOWLEDGMENT
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