
A Configurable Mobile Agent Data Protection Protocol

Paolo Maggi
paolo.maggi@polito.it

Riccardo Sisto
riccardo.sisto@polito.it

Dipartimento di Automatica ed Informatica
Politecnico di Torino

Corso Duca degli Abruzzi, 24
I-10129 Torino, ITALY

ABSTRACT
This paper addresses the problem of protecting the data
carried by mobile agents from the possible attacks of ma-
licious execution hosts. Specifically, we consider protection
mechanisms that, instead of preventing malicious hosts from
tampering with the collected data, simply aim at detecting
tampering attempts. The various proposals that appeared in
the literature so far are characterized by several limitations,
some of which have been pointed out recently. In particular,
data truncations may not be detected, and a binding of the
static code to the collected data is missing. This paper takes
into account such criticisms and formally defines a new pro-
tocol that does not suffer from all the previous limitations.
Such a protocol is also configurable, according to the pro-
tection level needed. In this way, the minimum protection
level compatible with the needed security properties can be
selected each time.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Security, Theory

Keywords
Mobile agents, cryptographic protocols, data integrity, data
authenticity

1. INTRODUCTION
The development of several kinds of distributed software

applications can benefit from the use of mobile agents. For
instance, a promising application domain is electronic com-
merce on the Internet. Researchers envision, for example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

mobile agents dispatched to visit the sites of different com-
panies in order to find out the price at which they sell a
given product so as to select the cheapest one.

However, to make the use of the mobile agent paradigm
really acceptable, it is necessary to face all the numerous
security threats that arise from it. Such threats generally
fall into two main categories. On one hand, it is neces-
sary to protect hosts from malicious agents coming from the
network, and, on the other hand, it is necessary to protect
agents from malicious hosts and network intruders.

As noted in [6], research efforts in the field of mobile agent
security have been quite intense between 1996 and 1998,
but they have recently become weaker. This however does
not necessarily mean that all the main problems have been
solved. In fact, while satisfactory solutions are already avail-
able to protect hosts from malicious agents, some open issues
remain in the protection of agents from malicious hosts.

Researchers have envisaged several different protection
mechanisms for mobile agents, mainly aiming at confiden-
tiality and integrity of the data carried by the agent. The
various proposals share many common ideas and character-
istics. While confidentiality can be obtained by encrypting
the data with the public key of the intended recipient, in-
tegrity is more difficult to achieve, because an hostile execu-
tion environment has full control over the agent operations.
Among the various techniques proposed, a lot of attention
has been paid to the ones that, using cryptography, provide
a way for detecting tampering attempts on the collected
data, rather than preventing such attempts.

All the proposed protocols that follow this approach have
two main limitations. On the one hand, as pointed out by
Roth in [5, 6], they lack (or do not specify) a mechanism to
bind the dynamic data of an agent to its static data (i.e.
its code and initial parameters). The absence of such a
binding enables several attacks, based on stripping out the
data from an agent and using them in other similar agents.
On the other hand, as recognized by the various protocol
authors, the proposed mechanisms are not resistant to all the
kinds of tampering: typically, truncations of the collected
data in some cases cannot be detected (e.g. [1, 2, 3, 4, 7,
10]). Moreover, some of the proposed protocols have been
designed specifically for particular application domains and
work correctly only if certain environment assumptions hold
(e.g. [1, 2, 3]). In some cases (e.g. [10]), the protocols have
been specified only in an informal, incomplete way.

The main goal of this paper is to put together the underly-
ing ideas of various proposals that appeared in the literature,

and the related criticisms, and to formally define a protocol
that incorporates them and does not suffer from the previ-
ously mentioned limitations. In particular, solutions to the
problem of binding the static and dynamic parts of a mobile
agent have already been sketched in [6] and proposed in [7],
while, for what concerns resistance to truncations, this pa-
per shows how an improvement can be achieved by forcing
the agent to securely store the addresses of the next hosts
to be visited, as long as they are computed or become avail-
able. This can be done using a technique similar to the one
used for storing the other collected data.

The paper is not restricted to any particular application
domain and also considers free-roaming agents, i.e. agents
that are free to autonomously choose the next host to visit
at each step. No particular assumptions are made about the
agent functionalities. Simply, it is assumed that the agent
collects (or computes) some data at each step. The objective
of the protocol is to ensure some form of confidentiality,
authenticity, integrity or non-repudiability on the collected
data.

Another issue that is addressed in this paper is protocol
configurability, according to the needs of the applications.
So far, various different protocols enjoying different sets of
security properties have appeared in the literature. How-
ever, each of them provides only a particular combination of
properties, which does not necessarily fit exactly the needs
of specific applications. Since protection mechanisms have a
cost, it would be quite useful to have a single protocol that
can be configured according to the specific security needs of
the application under development, but always maintaining
the same base structure.

In this paper the configurability issue is addressed by
defining a basic protocol message structure with a set of
fields that can take slightly different forms, according to the
required properties.

The rest of the paper is organized as follows. Section 2
precisely states our initial assumptions and presents the for-
mal notation used in this paper to describe mobile agent pro-
tocols, which is similar to the one introduced in [5]. Then,
section 3 defines the security properties for mobile agents
that are addressed here, and section 4 recalls the protocols
that have been previously proposed in the literature, dis-
cussing the extent to which they meet such properties and
pointing out their limitations. Section 5 describes the base
structure of our configurable protocol. Subsequently, some
different possible choices of the configurable fields are speci-
fied, and the resulting protocol instances discussed. Section
6 concludes and points out further research issues.

2. NOTATION AND INITIAL
ASSUMPTIONS

A mobile agent is a program that can move from host to
host during its execution. In this paper, when describing
the execution of a mobile agent, in ranges over the visited
hosts: i0 denotes the initiator host, i.e. the host that ini-
tially creates the agent, whereas i1, . . . , ik denote the k hosts
where the agent is subsequently executed, in order of visit.
It is assumed that each mobile agent finally returns back to
its originator, where its execution terminates. In our agent
execution description, this means that, after having visited
the k-th host ik, the agent returns back to i0 where it ter-
minates. So, the entire agent lifetime is divided into k + 2

slots, executed respectively on hosts i0, i1, . . . , ik, i0. It is
worth noting that in principle this execution model does
not exclude that a non-initiator host is visited more than
once, i.e. i1, . . . , ik are not necessarily pairwise distinct. It
is also worth pointing out that this execution model does not
represent the ideal, or wanted agent behavior, but it repre-
sents any real agent execution which terminates, including
executions affected by malicious activities. The only agent
executions that are not represented by this model are the
ones that do not terminate, i.e. the ones where the agent
fails to come back to its initiator.

Each mobile agent is composed of a static (immutable)
part, which includes both the agent code and any constants
used by the agent, and a dynamic part, which changes dur-
ing agent execution. The static part is denoted Π.

The dynamic part is assumed to be divided into two areas:
one of them collects the relevant results of the computations
carried out by the agent, while the other one includes only
scratch variables used during the agent computations. Only
the former section is cryptographically protected and trans-
ferred with the agent from host to host. Consequently, the
agent cannot rely on the contents of its scratch variables
when it moves from host to host. In practice, we assume
that scratch variables are cleared during each move, and
agents are programmed so as to move to a new host only
after having saved in the protected area any data that may
subsequently be needed. It is assumed also that the pro-
tected area functionally behaves as an add-only container,
where new data can be added by the agent during its exe-
cution.

The data added while the agent is visiting host in is de-
noted dn. If the agent has no data to add when visiting a
host, it is required to add a dummy data item before leaving
the host.

From a formal point of view, the protected area is treated
as a set of data items, and not as an ordered sequence. How-
ever, this is not a limitation: if an ordering on the collected
data is needed, this can be achieved including an order num-
ber in each data item dn. Similarly, if it is required that
each collected data item be unique, it is enough to include
a unique identifier in it (e.g. the host identifier plus a pro-
gressive number).

When the agent moves from host in to host in+1, a mes-
sage M that includes the agent in its current state is built
and sent from host in to host in+1. This is written in →
in+1 : M . Of course, M includes both the agent static
part Π and the protected area of the agent dynamic part.
The data protection mechanisms that are considered here
do not aim at prevention, but only at detection of tamper-
ing. Moreover, mechanisms with various protection levels
are considered. Therefore, it is always possible that, be-
cause of malicious activities carried out by malicious hosts
or network intruders, the set of data items contained in the
protected area of the agent when it reaches back host i0 dif-
fers from the set of data {d1, . . . , dk} gathered by the agent
during its lifetime. For example, it is possible that an agent
adds d1 to its protected area on host i1, then it visits a ma-
licious host i2 where d1 is deleted, and finally reaches back
i0 without carrying d1 in its protected area. Of course, the
protection mechanism should enable i0 to detect such sit-
uations. The set of data items contained in the protected
area of the agent when it reaches back host i0 is denoted
{d′

1, . . . , d
′
k′}. It can be noted that we consider the most

general case where the final number k′ of data items in the
protected area can differ from k.

In protocol descriptions, the encryption of a plaintext m
by a key K is denoted {m}K . The digital signature of m
by host in is written as an encryption with a private signing
key S−1

in
, i.e. {m}

S−1
in

. To denote the bare signature (rather

than the union of the signature and the signed data) the
notation S−1

in
(m) is used. We also assume that the identity

of the signer can always be extracted from her signature.
Concatenation of m1 and m2 is denoted as m1 ‖ m2.

3. SECURITY PROPERTIES
In this section we define a set of security properties related

to the data carried by a mobile agent with originator i0
which visits hosts i1, . . . , ik and then returns back to i0.

Some properties are defined with respect to one of the
data items put in the agent protected area. If such an item
is denoted d′, such properties can be defined as follows:

• Data Confidentiality : d′ can be read on host i0 only.

• Origin Confidentiality, or Forward Privacy : the iden-
tity of the host where d′ has been added to the pro-
tected area of the agent can be determined by host i0
only.

• Data Authenticity : after having received back the agent,
host i0 can determine for sure the identity of the host
where data d′ has been added to the protected area.

• Data Non-Repudiability : after having received back
the agent, host i0 can build a proof about the identity
of the host where d′ has been added to the protected
area. Note that data non-repudiability implies data
authenticity.

Data integrity properties are defined with respect to the
whole set of data actually collected by the agent ({d1, . . . , dk})
and with respect to the set representing the received pro-
tected area ({d′

1, . . . , d
′
k′}).

We call truncation at j the particular integrity attack
where the protected area is restored to the state that it had
when the agent left host ij (thus eliminating all subsequently
added items). If the attacker performs just one truncation
at j immediately after the agent has visited host im, the set
of data representing the final protected area contents is

{d1, . . . , dj , dm+1, . . . , dk}
We call cancellation the particular integrity attack where a
data item is eliminated from the set representing the pro-
tected area contents. We call insertion the particular in-
tegrity attack where a new data item is added to the set
representing the protected area contents. Finally, we call
substitution a cancellation followed by an insertion of a data
item different from the canceled one.

The strongest data integrity property can be expressed as
follows

• Strong Data Integrity : After having received back the
agent, host i0 can detect if {d′

1, . . . , d
′
k′} �= {d1, . . . , dk}.

Strong data integrity implies that the originator can de-
tect any insertion and/or cancellation of the set of data
added to the protected area of the agent during its exe-
cution.

Since strong data integrity is quite difficult to achieve,
weaker integrity properties have been defined in the litera-
ture. We consider the following definitions:

• Weak Data Forward Integrity : let i1, ..., im be the hon-
est prefix path of the agent, i.e. the path that starts
from the initiator and ends before the first malicious
host visited. Then, after having received back the
agent, host i0 can detect any cancellation of the data
collected by the agent in its honest prefix path, i.e. it
can detect whether {d1, . . . , dm} �⊆ {d′

1, . . . , d
′
k′} This

property was initially introduced in [10].

• Strong Data Forward Integrity : after having received
back the agent, host i0 can detect any attack where,
for some 1 ≤ j < m ≤ k data dj is substituted in the
protected area after the agent has visited a trusted
host im. This property was initially introduced in [3].

• Strong Data Truncation Resilience: after having re-
ceived back the agent, host i0 can detect any trun-
cation attack on the collected data. With our for-
malization, this property can be specified as follows:
whenever the received protected area has the contents
{d1, . . . dj , dm+1, . . . , dk} for some 1 ≤ j < m ≤ k,
i0 can detect that the agent data integrity has been
violated.

• Data Truncation Resilience: this is a weaker form of
the previous property, requiring that a truncation at-
tack be detected unless it restores the state that the
agent had when visiting a malicious host. Formally, if
the received protected area has the contents

{d1, . . . dj , dm+1, . . . , dk}
for some 1 ≤ j < m ≤ k, with ij trusted, then i0 can
detect that the agent data integrity has been violated.
This property was initially introduced in [3].

• Trusted Data Integrity : after having received back the
agent, host i0 can detect any cancellation of the data
items collected by the agent on trusted hosts, i.e., if
It is the set of trusted hosts, it can detect whether
{di | ii ∈ It} �⊆ {d′

1, . . . , d
′
k′}

A property is publicly verifiable when any intermediate
host or the agent itself can verify if the property holds.

4. RELATED WORK
Several different protection mechanisms aiming at confi-

dentiality and integrity of the data carried by a mobile agent
have been proposed in the literature. Among them, we are
concerned with the ones that aim at providing a way for
detecting tampering attempts (without making use of addi-
tional trusted hardware).

In [10], Yee proposed several cryptographic approaches to
the agent security problem. The first mechanism proposed
in [10] is the so-called per-server digital signature and con-
sists in signing the data gathered by the agent on each host
with the host private key. This protocol aims at achieving
data authenticity and data non-repudiability but clearly it
does not address data integrity, because a malicious host can
remove previously gathered data from the agent protected
area without being detected.

In his paper, Yee also proposed a protection mechanism
based on Partial Result Authentication Codes (PRACs).
This mechanism can be used to guarantee weak data forward
integrity and consists in encapsulating the agent state at
each host by using cryptographic checksums (called PRACs)
computed by means of secret key cryptography. This tech-
nique requires the agent and its originator to maintain or in-
crementally generate a list of secret keys used in the PRAC
computation. Each key must be used only once and the
agent must destroy it before migrating to the next host.
According to Yee, PRACs should enable the initiator to
identify the first malicious host, and so trust only the data
gathered before visiting that host. However, it is not clear
how this identification can take place in practice.

An enhanced mechanism using publicly verifiable PRACs
is also suggested in [10]. This one makes use of public key
cryptography and digital signatures instead of relying on se-
cret keys and achieves (publicly verifiable) data authenticity
too.

In [3], Karjoth et al. reformulate and improve the Yee’s
proposals. In particular, they introduce a family of proto-
cols which aim at preserving the integrity and confidentiality
of data acquired by free-roaming agents. All the proposed
protocols are based on the same idea: binding each data
to all the previously gathered data and to the identity of
the subsequent host to be visited. However, as described
in a detailed way by Roth in [5], such protocols still lack
a mechanism to bind the dynamic data of an agent to its
static data, which makes them all subject to attacks based
on separating agent code from agent data.

In the Publicly Verifiable Chained Digital Signature Pro-
tocol (P1), each host digitally signs the data it provides
using its private key and uses a secure hash function to link
its data to the previously gathered data and to the identity
of the next host. In this way, if a mechanism for binding the
static and dynamic agent parts is provided, (publicly verifi-
able) strong data forward integrity is achieved, i.e. an host
cannot modify a previously gathered data even when it was
provided by the host itself or by a colluding untrusted host1.

Furthermore, the protocol accomplishes data confidential-
ity by encrypting data with the public key of the agent’s
originator and data non-repudiability. The protocol does not
achieve any kind of data truncation resilience. In fact, being
the data involved in all the chaining relations known, a mali-
cious host in can easily remove all data {dj , . . . , dn−1} gath-
ered by the agent on hosts ij , . . . , in−1 with 0 < j < n − 1
and send the agent to host ij again without being detected.

The Chained Digital Signature Protocol with Forward
Privacy (P2) is a variation of protocol P1 with the order of
encryption and signature computation being swapped. The
goal of this arrangement is to hide the identity of the hosts
that provided the data so as to achieve forward privacy (in-
stead of publicly verifiable strong data forward integrity)

The Chained MAC Protocol (P3) extends the Yee’s PRAC
based mechanism using the same idea on which P1 and P2
are based. Differently from previous protocols, it requires
that each pair of hosts be connected via a confidential chan-
nel. It achieves the same properties of P2 except data non-
repudiability. It also achieves data truncation resilience.

The last protocol presented in [3] is the Publicly Verifiable

1This is not completely true since if in−1 and in are un-
trusted cooperating hosts then they can modify dn−1 with-
out breaking the chain.

Chained Signatures protocol (P4). It extends P3 by making
PRACs publicly verifiable.

It is worth noting that since P3 and P4 do not achieve
data authenticity, their security relies on the quite strange
assumption that an attacker does not change the last ele-
ment in the chain.

Despite Karjoth et al.’s protocols represent a big improve-
ment with respect to Yee’s proposal, they still have some im-
portant limitations. On one hand, as already pointed out,
they lack a mechanism to bind the dynamic data of an agent
to its static data. For this reason, legitimate hosts can be
abused by malicious hosts as oracles that decrypt, sign or
compute data on behalf of an adversary. On the other hand,
as acknowledged by the authors themselves, these protocols
do not achieve strong truncation resilience. If two untrusted
hosts in and ij (with j < n) conspire or if ij and in are the
same host (i.e. the agent visits the same host twice), they
can truncate the chain of gathered data at j without being
detected. Furthermore, in the case of protocols P3 and P4,
an untrusted host can also “grow a fake stem”, i.e. append
data to the chain in place of other hosts.

In [4], Karnik and Tripathi propose an append only con-
tainer mechanism. Its goal is to protect a container of data
in an object such that new data can be added to it but
any subsequent modification of a data contained therein can
be detected by the agent’s originator. To achieve this goal
Karnik and Tripathi propose to append to the container a
cryptographic checksum that binds the current data to the
previous ones.

This scheme aims at data integrity, but presents some
limitations. First of all, as in the previous protocols, since
the dynamic data of the agent are not bound to its static
data, untrusted hosts can easily abuse other hosts as oracle.

Furthermore, since the dynamic data of the agent are not
bound to the identity of the next hosts, an untrusted host in
cooperating with a second untrusted host ij can easily trun-
cate the chain of data at k for each j ≤ k < n without being
detected. Finally, as acknowledged by the authors them-
selves, since the verification process requires the originator
private key, it can be accomplished only by the agent’s orig-
inator itself, i.e. modifications of the collected data are not
publicly verifiable. Being each data signed using the data
originator private key, data not-repudiability is achieved.

Another protocol proposed in the literature is the second
version of the multi-hops protocol by Corradi et al. [2] 2.
Such protocol, as the previous ones, does not solve the prob-
lem of binding the static and dynamic parts of the agent. It
is based on a simple idea: agents carry along a cryptographic
proof of the data they have already gathered. This proof,
called Message Integrity Code (MIC) serves as a chaining
relation that binds data previously gathered by the agent to
the ones obtained at the current host and to the identity of
the next host to be visited. Thanks to this double chain-
ing relation, strong data forward integrity and data trun-
cation resilience are achieved (under the assumption that
the problem of binding the static and dynamic parts of the
agent is solved). Since all gathered data are signed using the
data originator private key, data non-repudiability is accom-
plished too. Data confidentiality is not achieved but can be
easily added. Forward privacy is not achieved.

2The first version of the multi-hop protocol [1] did not
achieve data authenticity and for this reason had severe lim-
itations.

In conclusion, the multi-hops protocol suffers from the
same limitations of the Karioth et al.’s protocols: hosts can
be abused as oracles and lack of strong truncation resilience.

A further protocol that is worth citing is described in [9].
As the append-only container mechanism, current data is
bound only to the previously gathered data (and not with
the identity of the next host). An attacker location mech-
anism is described too. However, to make this procedure
possible, visited hosts must store a certain amount of infor-
mation about all the visiting agents.

Recently, in [7], a new protocol has been described. As the
Corradi et al’s protocol, it achieves data non-repudiability,
strong data forward integrity and data truncation resilience,
but differently by all the other previous protocols it is robust
against interleaving attacks described in [5].

5. THE PROTOCOL
Our proposal is to have a single abstract protocol that can

be instantiated in several different ways. The abstract pro-
tocol defines in an abstract way the structure of the message
sent from host in to host in+1 when an agent moves from in
to in+1. As we already said this message contains the agent
static part Π and the protected area of the agent dynamic
part.

According to the abstract protocol, on each host in the
agent extends its protected area appending a component
Mn that contains the data dn provided by or computed at
the host. Mn is composed of two parts, denoted Dn and
Cn.

These ones can take slightly different forms according to
the required properties. Moreover, Dn is always a func-
tion D of in and dn, i.e. Dn = D(in, dn). Similarly, Cn

is always a function C of in, dn, Cn−1 and in+1, i.e. Cn =
C(in, dn, Cn−1, in+1). Functions D and C are the configura-
tion parameters of the protocol.

The agent static part Π is paired with a timestamp t, and
the pair is signed by the initiator, so as to obtain a static
piece of data Π0 = {Π, t}

S−1
i0

which uniquely identifies each

agent instance. Moreover, each visited host can verify the
authenticity of the agent static part and the identity of the
agent, thus for example being able to detect whether the
same agent visits the host more than once.

From a formal point of view, the abstract protocol can be
written as follows:

∀n ∈ [0, k]

Mn = Dn ‖ Cn

Dn = D(in, dn)

Cn = C(in, dn, Cn−1, in+1)

C−1 = ε

Π0 = {Π, t}
S−1

i0

in → in+1 : Π0, {M0, ...,Mn}
It can be noted that, although in general it will be empty,

d0 has been included as well.

The encoding of protocol messages is not specified, but it
is assumed that it is such that each host can uniquely extract
a Π0 and a set of Mi from a correctly encoded received
message. Each host in+1, on reception of a message, must
check that it is correctly encoded, and discard it if it does not
conform to the encoding rules. If the message is correctly
encoded, the host must extract Π0 and the set {M0, ...,Mn}
from it. Then, the host must extract the initiator identity
from Π0 and verify the signature before making the agent
runnable. If any of such operations fails, the message must
be discarded.

Instantiating a concrete protocol from the basic abstract
protocol entails defining functions D and C and specify-
ing any additional verification operations that must be per-
formed on the various hosts.

Let us start explaining how a concrete protocol achieving
data authenticity can be obtained. The easiest way to do it is
to define Mn in such a way that the originator can determine
for sure the host where Mn was generated. Assuming that
the originator i0 can always verify in’s signatures, this can
be obtained by signing data dn with in’s private key. More
precisely, dn is signed together with the agent static part
Π0. This is needed to bind dn to the unique agent identity,
thus making sure that dn is really the data produced by
the agent instance identified by Π0 on host in. In practice,
by signing Π0 and dn together, in certifies that the agent
described by Π0 has really been executed on in producing
data dn. This avoids attacks as the ones described in [5]
where malicious hosts substitute the agent code in order to
collect signed data which are then attached to the original
agent code. Of course, a malicious host can always add a
dn which has not been computed while executing the agent,
but our concern is only data integrity, not data correctness.

Hence, the protocol (MS1) which achieves data authen-
ticity can be formally defined choosing the parameters as
follows:

D(in, dn) =

�
ε if in = i0
dn otherwise

C(in, dn, Cn−1, in+1) =

�
ε if in = i0
S−1

in
(dn, Π0) otherwise

On intermediate hosts, no other verification operation must
be executed, apart from the ones specified for the abstract
protocol. The initiator, instead, upon receiving back the
agent must also verify all the signatures and discard the
agent if any verification fails.

It is worth noting that this protocol formalizes the basic
mechanism used in Yee’s per-server digital signature pro-
tocol [10], and satisfies the same properties. In particular,
since no one, except the data originator itself, can generate a
valid S−1

in
(dn, Π0), for data dn, data authenticity is achieved.

It can be noted that this protocol satisfies data non-
repudiability too, because, after having received back the
agent, the initiator owns a proof, namely S−1

in
(dn, Π0), of

the fact that the agent identified by Π0 really visited host
in and, while visiting it, dn was generated.

This protocol can be used in several realistic situations,
where data integrity is not needed. For example, this pro-
tocol is useful when agents are used in non-competitive en-
vironments or when the nature of the gathered data makes
untrusted hosts not interested in deleting information gath-
ered on other hosts. This may hold for example if a network
management agent visits all the nodes of a network to ask

them the number of users currently logged in. In this case,
the agent sender may be only interested in data authenticity.

It is worth noting that, although in the most general case
this protocol does not guarantee any data integrity prop-
erty, it can provide trusted data integrity in the special case
where the set of hosts to be visited is already known at agent
departure and the value of dn depends only on Π, i0 and in.

Besides data integrity, there are some other protection as-
pects that might be useful, but are not provided by this pro-
tocol. For example, all the hosts can read the data gathered
by the agent on previous hosts (lack of data confidentiality)
and all the hosts can know the identity of the host where
the already gathered data was generated (lack of origin con-
fidentiality). However, the protocol can be extended at will,
in order to achieve data confidentiality and/or forward pri-
vacy.

To achieve data confidentiality, it is enough to encrypt dn

using the initiator public key Ki0 as shown below:

D(in, dn) =

�
ε if in = i0
{dn}Ki0

otherwise

Of course, the initiator will subsequently decode it.
Alternatively, a shared secret key known only by in and

i0 can be used if available.
In fact, with one of such encryptions, if the encryption

scheme is secure, no intermediate host can extract dn from
the agent protected area and so data confidentiality is achieved.

To achieve origin confidentiality, instead, it is necessary
to hide the identity of the hosts where data was generated.
This can be achieved, for example, by encrypting the host
signature with the agent initiator public key:

C(in, dn, Cn−1, in+1) =

�
ε if in = i0
{S−1

in
(dn, Π0)}Ki0

otherwise

and having it decrypted on the initiator.
If the encryption scheme is secure, only the agent initiator

i0 can decrypt the sealed signature and so get the identity
of the host where the data was generated.

It is worth noting that, although such a measure makes
it impossible for intermediate hosts to get data origin infor-
mation directly from the agent itself, it is not enough to get
origin confidentiality globally, because such information can
be obtained otherwise. First of all, it is always possible for
a network intruder to get the identity of the host in where
data dn was generated by analyzing the agent state just be-
fore and just after the agent visited in. To avoid this kind
of information leakage, confidential channels can be used to
send agents. However, even with confidential channels, host
in+1 can know the identity of its predecessor in and hence,
if no precautions are taken, it can get the identity of the
host where the last data item dn was generated. This possi-
ble attack can be avoided by using anonymous connections
[8], which make it impossible for the receiver to know the
sender’s identity.

It can be concluded that origin confidentiality is possi-
ble only provided that the network environment used imple-
ments adequate concealment techniques.

As we already said, under certain conditions, the above
described concrete protocol achieves trusted data integrity.
This one is a rather weak property which should be used
with caution. For example, the above protocol does not
prevent an untrusted host in from modifying its own data in
the case it is visited by an agent more than once or to modify

the data of a cooperating untrusted host ij (with j < n) and,
since no way to discover unstrusted hosts is provided, this
can lead to unfair behaviors in the case untrusted hosts can
read the data provided by other hosts (for example when we
are dealing with shopping agents).

If the sequence (and not just the set) of the hosts to be
visited by the agent is already known at agent departure, a
stronger integrity property can be achieved by introducing a
chaining relation [3] that binds dn to the previously gathered
data (actually to Cn−1). This can be achieved by defining
the C function as follows (MS2):

C(in, dn, Cn−1, in+1) =

�
ε if in = i0
S−1

in
(dn, Π0, Cn−1) otherwise

and the verification operations as in the previous protocol.
In this way in will not be able to substitute data dj gathered
by the agent on host ij (with j < n − 1) without breaking
the chaining relation even in the case ij conspires with in.
On the basis of the above reasoning we can conclude that, if
the agent itinerary is known at agent departure, the above
mechanism achieves strong data forward integrity too. Ac-
tually, in can substitute dj (with j < n) if all the hosts
ij , ij+1, . . . , in−1 conspire with in.

Although from a theoretical point of view the protocol
does not provide any form of truncation resilience, from a
practical point of view it can be successfully used also in the
cases where stronger forms of data integrity are required, if
it is assumed that the agent must not visit an intermediate
host more than once and each host records the identities
of the agents it has already hosted. In fact, let us assume
for example that an untrusted host in substitutes data dj

provided by a cooperating host ij (with j < n) by removing
all the data gathered by the agent on the hosts following
ij in the agent itinerary and by making the agent restart
from host ij . Being Π0 unique, any trusted host il (with
j < l < n) could notice the fact it had already hosted the
agent and would discard it. However, it is worth noting that,
also with such assumptions, strong data integrity is not fully
achieved, because, as we have already observed, untrusted
host in can substitute dj (with j < n) in the case all the
hosts ij , ij+1, . . . , in−1 conspire with it.

Clearly, even if the obtained results are quite interesting,
they cannot be applied in the case we are dealing with free-
roaming agents. In fact they strictly depend on the fact that
the agent itinerary is known at agent departure.

To achieve similar properties in this case too, C can be
modified so as to introduce a second chaining relation, bind-
ing dn to the identity of the next host in+1. The resulting
concrete protocol (MS3) corresponds to the Karjoth et al.’s
publicly verifiable chained digital signature protocol [3] is
defined by:

C(in, dn, Cn−1, in+1) =

� S−1
i0

(Π0, i1) if in = i0
S−1

in
(dn, Π0, Cn−1, in+1) otherwise

Like the previous concrete protocol we presented, this one
achieves data authenticity, data non-repudiability and strong
data forward integrity.

Nevertheless, like the similar Karjoth et al.’s protocol, it
does not achieve any form of truncation resilience, which, as
we already observed, is one of the main limitations of the
current mobile agent data integrity mechanisms. In fact, as

far as we know, no proposed protocol provides a way for
detecting truncation at j of a chain of collected data in the
case ij colludes with the attacker. In fact, if host ij sends
to the attacker the state of the agent as it reaches ij , the
attacker will always be able to restore the saved agent state
and so truncate the agent data at ij .

In the case the data gathered by the agents on each host
in only depends on Π, i0, in and the current contents of the
agent protected area, a satisfactory, even though not defini-
tive, solution to this problem can be achieved by forcing the
agent to securely store the addresses of the next hosts to be
visited as long as they are computed or become available. In
practice, on each visited host in the agent gathers two pieces
of data: a set pn of hosts to be visited (eventually empty
in case the visited host does not want to add new hosts to
the agent’s itinerary) and the actual data dn (eventually a
dummy data in case in does not want to or is not able to
provide a data).

Both pn and dn are stored by the agent in a secure way,
using the last mechanism described (MS3). In this way,
strong data forward integrity is achieved.

It is worth noting that saving the hosts to be visited in a
list while they are computed does not mean that the agent
is not a free-roaming one. In fact, each time the agent can
choose the next host to be visited from the list and can also
compute and add new hosts to the list. The only thing the
agent cannot do is deleting hosts from the list. In practice,
if the agent has decided that it will eventually visit an host,
it cannot then change its mind and decide not to visit that
host.

From a formal point of view, the proposed protocol (MS4)
can be obtained instantiating the abstract protocol in the
following way:

D(in, < dn, pn >) =

�
p0 if in = i0
< dn, pn > otherwise

C(in, < dn, pn >, Cn−1, in+1) =

� S−1
i0

(p0, Π0, i1) if in = i0
S−1

in
(< dn, pn >,Π0, Cn−1, in+1) otherwise

The agent chooses in+1 from the set

(
n�

j=0

pj) \ {i0, . . . , in}

If the set is empty, then in+1 = i0. The result of the choice
must deterministically depend on Π, i0, in and the current
contents of the agent protected area.

All the hosts in p0 will be visited by the agent. Since
protocol MS3 achieves strong data forward integrity, it can
be observed that all the hosts added to the agent’s itinerary
by the trusted hosts belonging to p0 will be visited as well.
Going on in a recursive way, we can guess that all the hosts
added to the agent’s itinerary by a trusted host that has
been added through a chain of trusted hosts will be visited
too.

Reasoning about the previous statement we can under-
stand how this protocol solves in a satisfactory way the
truncation problem. In fact, only truncations of the data
gathered by the agent on hosts directly or indirectly added
to the agent itinerary by an untrusted host cannot be de-
tected.

Then, it can be concluded that this protocol achieves a
slightly weaker form of trusted data integrity, that we call
weak trusted data integrity, even with free-roaming agents:
what is guaranteed is integrity of any data collected on the
trusted hosts that have been directly or indirectly added to
the agent itinerary through trusted hosts.

It is worth pointing out that this solution requires that
the agent cannot return home after visiting each of the hosts
added to the set in its protected area.

To add data confidentiality to the above protocol, D must
be redefined in order to encrypt dn using the public key of
the agent’s originator i0 (or, if available, a shared secret key
known only by i0 and in):

D(in, < dn, pn >) =

�
p0 if in = i0
< {dn}Ki0

, pn > otherwise

In this way, if the encryption scheme is secure no one
except i0 can extract dn from the agent protected area.

The various configuration choices presented in this section
make it possible to select a protocol instance according to
the needed properties and according to the agent and envi-
ronment features.

It can be noted that confidentiality properties can be se-
lected independently of integrity properties, and, for what
concerns data integrity, several protection levels are possi-
ble.

The strongest integrity property that can be achieved with
the proposed mechanisms depends on the agent and environ-
ment features, but in most cases trusted data integrity can
be achieved.

6. CONCLUSIONS
Previous work on mobile agent data protection presented

some interesting ideas about cryptographic mechanisms aimed
at guaranteeing properties such as data integrity and data
confidentiality. However, such proposals had several limita-
tions and were formalized only partially.

In this paper, a twofold contribution has been presented.
On the one hand, it has been shown how the underlying ideas
of some previous proposals can be improved, so as to reduce
their limitations. In particular, it has been shown how an ac-
ceptable form of truncation resilience can be achieved. On
the other hand, the resulting protection mechanisms have
been expressed formally, within the framework of a config-
urable protocol, where it is possible to select one of several
protection levels, according to the required security proper-
ties, and according to the particular assumptions that can
be done about the agent and environment features.

In this paper we have presented some of the possible con-
figuration choices for the proposed configuration protocol,
which cover many realistic situations and increase the ex-
tent to which a mobile agent can be protected, with respect
to similar previous solutions.

However, some questions are left for further research. Spe-
cifically, a more systematic exploration of the possible con-
figuration choices for the abstract protocol presented here
is needed. An important open problem remains the imple-
mentation of even stronger truncation resilience properties.

7. ACKNOWLEDGMENTS
This work has been (partially) funded by the Center of Ex-

cellence on Multimedia Radiocommunications (CERCOM)
of Politecnico di Torino and by the Italian National Research
Council (grant number CNRC00FE45 002).

8. REFERENCES
[1] A. Corradi, R. Montanari, and C. Stefanelli. Mobile

agents integrity in E-commerce applications. In
Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems
Workshop (ICDCS’99), pages 59 – 64, Austin, Texas,
May 31 – June 5 1999. IEEE Computer Society Press.

[2] A. Corradi, R. Montanari, and C. Stefanelli. Mobile
agents protection in the Internet environment. In
Proceedings of the 23th Annual International
Computer Software and Applications Conference
(COMPSAC’99), pages 80 – 85, Phoenix, Arizona,
October 25 – 26 1999. IEEE Computer Society Press.

[3] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the
computation results of free-roaming agents. In
K. Rothermel and F. Hohl, editors, Proceedings of the
2nd International Workshop on Mobile Agents, volume
1477 of Lecture Notes in Computer Science, pages
195–207. Springer-Verlag: Heidelberg, Germany, 1998.

[4] N. M. Karnik and A. R. Tripathi. A security
architecture for mobile agents in Ajanta. In
Proceedings of 20th International Conference on
Distributed Computing Systems, pages 402–409. IEEE
Computer Society Press, 2000.

[5] V. Roth. On the robustness of some cryptographic
protocols for mobile agent protection. In G. P. Picco,
editor, Proceedings of the 5th International Conference
on Mobile Agents (MA 2001), volume 2240 of Lecture
Notes in Computer Science, pages 1–14.
Springer-Verlag: Heidelberg, Germany, 2001.

[6] V. Roth. Programming Satan’s agents. In Proceedings
of the 1st International Workshop on Secure Mobile
Multi-Agent Systems, Montreal, Canada, 2001.

[7] V. Roth. Empowering mobile software agents. In
N. Suri, editor, Proc. 6th IEEE Mobile Agents
Conference, volume 2535 of Lecture Notes in
Computer Science, pages 47–63. Spinger Verlag,
October 2002. ISBN 3-540-0085-2.

[8] P. F. Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous connections and onion routing. In IEEE
Symposium on Security and Privacy, pages 44–54,
Oakland, California, 4–7 1997.

[9] X. F. Wang, X. Yi, K. Y. Lam, and E. Okamoto.
Secure information gathering agent for internet
trading. In C. Zhang and D. Lukose, editors,
Proceedings of the 4th Australian Workshop on
Distributed Artificial Intelligence on Multi-Agent
Systems : Theories, Languages, and Applications
(DAI-98), volume 1544 of Lecture Notes in Computer
Science, pages 183–193. Springer-Verlag: Heidelberg,
Germany, July 13–13 1998.

[10] B. S. Yee. A sanctuary for mobile agents. In J. Vitek
and C. Jensen, editors, Secure Internet Programming:
Security Issues for Mobile and Distributed Objects,
volume 1603 of Lecture Notes in Computer Science,
pages 261–273. Springer-Verlag, Berlin Germany, 1999.

