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Abstract: With the increase of cellular users the traffic hot spots and unbalanced call 
distributions are common in wireless networks. As a solution to this problem, the CDMA 
techniques enable a base tranciever station to connect microcells with optical fibers and to 
control the channels by sectorizing the microcells. To solve the load balancing among 
microcells we dynamically sectorize the microcells depending on the time-varying traffic.  

The microcell sectorization problem is formulated as an integer linear programming which 
minimizes the blocked and handoff calls in the network. In the proposed sectorization proper, 
connected, and compact sectors are considered to keep the handoffs as small as possible, while 
satisfying the channel capacity at each sector. Three genetic algorithms (GAs) are proposed to 
solve the problem: standard GA, grouping GA and parallel GA. 
  Computational results show that the proposed GAs are highly effective. All three GAs 
illustrate outstanding performance for small size problems. The parallel GA which is based on 
the operators used in grouping GA demonstrates excellent solution quality in a reasonable time.  
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1.  Introduction 
 
The micro-cellular mobile telecommunication service need to offer good Quality of Services 

(QoS) and coverage for new and handoff calls at lower cost. As a fast and easy deployment 
method for the improved service, the microcell-based PCS network has benefits for users as 
well as providers. The advantage of microcell system includes a significant increase in system 
capacity with low power at each cell [5]. The microcell system thus reduces cost and enables 
flexible deployment of cells. However, the micro-cellular network requires a large number of 
base stations compared to the conventional macro-cellular system. The installation and 
maintenance of the enormous number of base stations are the most serious problems in the 
deployment of the micro-cellular network. 

One approach to solve this problem is to concentrate radio equipment at the central base 
station with radio frequency (RF) signals being transmitted to microcells through broadband 
analog transmission over fiber, coax, or millimeter-wave radio. The use of broadband aspects of 
fiber optic technology for radio remoting has been studied and tested by Ichikawa et al [6] and 
Cheong et al [8]. Ichikawa et al [6] propose a microcell radio systems using a centralized 
control method with a spectrum delivery switch and subcarrier transmission over optical fiber 
for TDMA and FDMA. A fiber-optic micro-cellular CDMA system is proposed by Cheong et al 
[8]. The system possibly makes group simulcasting operation via remote antenna control using 
multi-drop bus type access network, since the hybrid fiber-radio access network is independent 
of the different channels and gives flexibility in evolution scenarios. Also, the group 
simulcasting scheme [7, 11] alleviates the degradation of QoS and the congestion of the 
signaling traffic caused by the frequent handoffs in the micro-cellular CDMA system.  

In this paper we examine sectorization of microcells in CDMA system to balance the 
dynamically changing traffic. The sectorization also reduces handoffs between cells in the same 
sector by the simulcasting operation based on the bus-type fiber optic network. To balance the 
traffic it is essential to efficiently manage the channel resource in the system. The proposed 
channel management in the sectorized micocells is different from the existing channel allocation 
methods [7, 9, 10]. In previous dynamic channel allocation, fixed basic channels are allocated to 
each cell and some reserved or borrowed channels are assigned to cells with higher traffic. 
However, in the proposed method channels are controlled by units called soft and hard 
capacities and they are assigned to sectors by grouping microcells depending on the time-
varying traffic at each cell. Thus the dynamic sectorization that satisfies the soft and hard 
capacities dramatically reduces call blocking probability and handoff calls. 

The remainder of this paper is organized as follows. In Section 2, we discuss fiber-optic 
micro-cellular systems and dynamic sectorization of microcells. A mathematical model for the 
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microcell sectorization problem is proposed in Section 3. In Section 4, we propose three genetic 
algorithms (GAs) to solve the problem: standard GA, grouping GA, and parallel GA. The 
performance of three GAs are compared with the optimal or lower bound solution in Section 5. 
Finally, we conclude the paper in Section 6. 
 
 

2.  Fiber-optic Micro-cellular CDMA Systems 
 

2.1 System Structure 
In a fiber-optic micro-cellular system as shown in Figure 1 micro-base-stations (mBSs) are 

connected to a central station (CS) via bus type optical fiber. The CS operates and controls the 
mBSs and connects them to a public switched telephone network or a mobile switching center. 
In the system mBSs are sectorized such that each mBS in one sector broadcast its radio signal 
over the mBSs in its sector and it is called simulcasting. For the simulcasting operation, the 
access network between the CS and mBSs should have multi-drop-bus topology. All RF 
resources are located at the CS and managed by the operation and management system (OMS). 
All modulator/demodulator sets are installed at the CS and the OMS installed at the CS assigns 
the resources to sectors according to the traffic demand.  

In CDMA RF resources are managed by the sets of traffic channel elements. In general three 
sectors share the resources for traffic demand. Usually four channel cards, which correspond to 
96 channel elements, are assigned to the three sectors. The set of 96 channel elements is called 
the virtual base station (VBS). Thus one CS usually operates several VBSs. 

Figure 1.  Structure of a Fiber-optic Micro-cellular System 
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In forward direction, radio signal corresponding to each sector is converted to different 
intermediate frequency (IF) signal, combined with forward control channel and reference tone, 
and converted to the forward optic signal. The forward optic signal is then transmitted to hybrid 
fiber-radio access network. At the mBS, the forward optic signal is optic-to-electronic converted, 
bandpass filtered for screening one IF signal which is assigned to the sector, frequency 
converted to the original RF band, amplified and transmitted into the air.  

In the reverse direction, each radio signal from the primary and diversity receiver antenna is 
bandpass filtered, frequency converted to different IF band, combined with reverse control 
channel, and electronic-to-optic converted to the reverse optic signal. The reverse optic signal is 
then transmitted through the hybrid fiber-radio network to the CS. In the CS, the reverse optic 
signal is optic-to-electronic converted, bandpass filtered for primary and diversity IF signal 
which corresponds to each sector, and frequency converted to the original RF band. 

 
2.2 Dynamic Sectorization of Microcells 

In the fiber-optic microcellular CDMA system introduced in Section 2.1, it is important to 
sectorize the microcells to cope with dynamically changing traffic and to balance the traffic in 
each sector. In the microcell system the traffic at each cell is increased or decreased depending 
on the time periods.  Thus it is necessary to dynamically sectorize the cells such that the cells 
in a sector satisfy the soft capacity (the maximum number of channel elements that a sector can 
provide) and the sectors in a VBS meet the hard capacity (the total number of channel elements 
assigned to a VBS).  

In this study we are interested in a proper sectorization which satisfies the soft and hard 
capacities for balanced traffic. Without proper sectorization there may be cases of unbalanced 
traffic where call blockings are increased in a specific sector even if other sectors have idle 
channels. Figure 2 shows an example of sectorization where there are nine microcells, three 
sectors and one VBS. In the example, by assuming 96 channel elements of hard capacity in the 

Figure 2.  Traffic Distribution and Sectorization
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VBS and 40 of soft capacity in each sector, an improper sectorization produces 30 blocked calls, 
while the other two sectors have idle channels. However, no calls are blocked and the traffic are 
well balanced in the proper sectorization. 

Now, note that all mBSs in a sector broadcast radio signals simultaneously. If these hexagonal 
mBSs are not connected as in Figure 3 (a), then they may significantly interfere other adjacent 
simulcasting groups. The disconnected sectorization also generates unnecessary handoffs 
between sectors. Therefore, cells in a sector need to be connected. 

Finally, to minimize the handoffs and interference among sectors we consider the compact 
sectorization. Figure 4 (a) shows an example of connected but incompact sectorization in the 
hexagonal cell environment. A cell surrounded by cells in other sectors may experience higher 
interference than the cells in compact sectorization. Compact sectorization also reduces handoff 

(a) Connected but incompact sectorization (b) Connected and compact sectorization 
Figure 4.  Compact / Incompact Sectorization 

(a) Disconnected sectorization (b) Connected sectorization 
Figure 3.  Connected / Disconnected Sectorization 
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calls by decreasing the length of handoff border between two different sectors. 
To measure the compactness of sectorization in the hexagonal cell environment we in this 

study introduce the compactness index (CI) which is defined as the ratio of the number of 
handoff cell sides to the total number of cell sides in a VBS. The CI of the sectorization of 
Figure 4 (a) is 14/24 and that of (b) is 9/24. 
 
 

3.  Formulation of Microcell Sectorization 
 

 In this section we formulate the sectorization problem with mixed integer programming to 
balance traffic among sectors and to minimize handoffs with connected and compact sectors. 

Given the sectorization of cells in time period t, our problem is to obtain new sectorization in 
period t+1 which adaptively balances the change of traffic demands. We consider the following 
five cost factors in the sectorization problem:  

1) The penalty of the blocked calls caused by hard capacity. A VBS has too many sectors or 
cells that exceeds the hard capacity.  

2) The penalty of the blocked calls caused by soft capacity. In CDMA the interference 
increases as the number of calls in a sector increases. To keep the interference below a certain 
level the limit in soft capacity is necessary.  

3) The cost by soft handoff. When a mobile with an ongoing call moves from one VBS to 
another VBS, then the mobile needs a soft handoff to different channel elements.  

4) The cost by softer handoff. When a mobile with an ongoing call moves from one sector 
to another in a VBS, then the mobile needs a softer handoff using the same channel element.  

5) The cost by forced handoff. When a mBS changes its sector, all ongoing calls in the cell 
have to change their pilot PN offsets. In this process each mobile with the ongoing call uses 
two offsets instantaneously. 

  For the problem formulation we consider a service area with N hexagonal microcells. Each 
microcell is assumed to have traffic demand TDi i=1,…, N. Let pij be the transition probability 
of mobiles from microcell i to j. Then, the handoff calls from microcell i to j becomes 

iijij TDph = . 

Assume that a CS has M VBSs. Let HCm be the hard capacity of VBS m, m=1,…, M and 
SECm be the set of sectors in the VBS m. Also, let SCk be the soft capacity of sector k, k=1,…, K 
and MBSk be the set of microcells of sector k. 

Now to formulate the sectorization we will define variables. Let the binary variable 1=ikx , 
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when microcell i belongs to sector k. Let ik
SECk

im xy
m

∑
∈

= , then 1=imy  when the microcell i 

belongs to VBS m. Also, let the binary variable 1=ijmz , when microcells i and j belong to VBS 

m. Then the soft handoff cost is computed by using the variable ijm
m

ij zz ∑−=1 . Note that 

soft handoff occurs when two cells i and j belong to different VBS, i.e., 0=ijmz . Now by 

letting the binary variable 1=ijkw  when microcells i and j belong to sector k, the softer 

handoff cost is computed by using two variables ijij zw − where ijk
k

ij ww ∑−=1 . The softer 

handoff occurs when microcells i and j belong to different sectors in the same VBS. 
The cost of forced handoff is computed by employing the current sectorization aik, which is 

equal to zero when cell i is in sector k. Since the cost occurs when cell i currently in other sector 

moves into sector k, the cost becomes ∑∑
i k

ikiik xTDa . 

The variable hcm defined as m
i

imim HCyTDhc −=∑  represents the difference between the 

traffic demand and the hard capacity at VBS m. The variable sck defined as 

k
i

ikik SCxTDsc −=∑  represents the difference between the traffic demand and the soft 

capacity at sector k. Since the penalty occurs only when the calls are blocked, we apply hcm
+ 

and sck
+ to the objective function, where −+ −= mmm hchchc  and −+ −= kkk scscsc  and hcm

+, 

hcm
-, sck

+ and sck
- are nonnegative real variables. Note that when the hard or soft capacity is 

sufficient to cover the traffic demands, then the dummy variable, hcm
- or sck

- has positive value 
and hcm

+ and sck
+ becomes zero to minimize the objective function value. 

Now, our objective function is to minimize the weighted combination of five cost factors as  
in (1). They are penalties of blocked calls by hard and soft capacities and handoff calls.  

∑∑∑∑∑∑∑∑ +−+++ ++

i k
ikiik

i j
ijijij

i j
ijij

k
k

m
m xTDaczwhczhcscchcc 54321 )(       (1) 

Now our concern shifts to the constraints required in the formulation. First of all, each 
microcell has to belong to a sector, that is,  

 1=∑
k

ikx     for all i        (2) 
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  The relationship between any two cells in a sector k has to satisfy 1=ijkw  if and only if 

1== jkik xx . Thus we have  

 wijk ≤ xik , wijk ≤ xjk and wijk ≥ xik + xjk – 1  for all i, j, and k       (3) 

The same is true for the relationship between two cells in a VBS m. 1=ijmz  if and only if 

1== jmim yy which leads to 

zijm ≤ yim , zijm ≤ yjm and zijm ≥ yim + yjm – 1  for all i, j, and m       (4) 
  For connected sectorization, if a sector has more than one microcells, then microcells of the 
sector has to be connected. For the formulation of connected sectors we employ the cut [16] of 
MBSk. If sector k is connected, then any cut that separates cells in MBSk has at least one 
common side of the hexagonal cells. Let S1k be a proper subset of MBSk, that is, kk MBSS ⊂1 , 

φ≠kS1 , and kk MBSS ≠1 . Also let S2k be the opposite set of S1k, that is, 

kkk SMBSS 12 −= . Because two subsets are connected, there exists at least one common side 

of the cells separated by the subsets. Thus we have 

1
1 2

≥∑ ∑
∈ ∈k kSi Sj

ijB             (5) 

where Bij = 1, if two microcells i and j are adjacent. 
For compact sectorization, we restrict the length of handoff border with the compactness 

index CI which is introduced in Section 2.2. In Equation (6) the left term represents the number 
of handoff cell sides between two different sectors.  

 ij
jii

ijij
jii

BCIBw ∑∑∑∑
<<

≤           (6) 

From the above, the microcell sectorization can be formulated as the following mixed integer 
linear programming. 

 

Minimize 

∑∑∑∑∑∑∑∑ +−+++ ++

i k
ikiik

i j
ijijij

i j
ijij

k
k

m
m xTDaczwhczhcscchcc 54321 )(  

s.t.  1=∑
k

ikx     for all i 

 wijk ≤ xik , wijk ≤ xjk and wijk ≥ xik + xjk – 1  for all i, j, and k 

ijk
k

ij ww ∑−=1     for all i and j 
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ik
SECk

im xy
m

∑
∈

=     for all m 

zijm ≤ yim , zijm ≤ yjm and zijm ≥ yim + yjm – 1 for all i, j, and m 

ijm
m

ij zz ∑−=1     for all i and j 

 1
1 2

≥∑ ∑
∈ ∈k kSi Sj

ijB     

   for all kk MBSS ⊂1  where φ≠kS1  and kk MBSS ≠1  and 

kkk SMBSS 12 −=  

ij
jii

ijij
jii

BCIBw ∑∑∑∑
<<

≤  

iijij TDph =     for all i and j 

m
i

imim HCyTDhc −=∑    for all m 

−+ −= mmm hchchc     for all m 

k
i

ikik SCxTDsc −=∑    for all k  

−+ −= kkk scscsc     for all k  

 xik , wijk , zijm , Pk ∈ {0,1}   for all i, j, k, and m 
 hcm

+, hcm
-, sck

+, sck
- ≥ 0   for all k and m 

 
Note that many grouping problems which are special cases of the sectorization problem are 

well-known NP-hard problems [15]. This implies that any known exact algorithm will run in 
time exponential in the size of problem instance. Such an algorithm is thus in most cases 
unusable for real-world size problem. As an encouraging results on NP-hard problems, we 
investigate genetic algorithms to solve the sectorization problem and compare the performance 
with the solutions obtained by the mixed integer programming. 
 
 

4.  Genetic Algorithms for Microcell Sectorization 
 
  Genetic algorithms (GAs) are adaptive procedures that find solutions to problems by an 
evolutionary process based on natural selection. In practice, genetic algorithms are iterative 
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search algorithms with various applications. They combine survival of the fittest, genetic 
operations, random but structured searches, and parallel evaluation of solutions in the search 
space. In general, they use a penalty function to encode problem constraints and allow a search 
for illegal solutions, e.g., a solution that violates the connectedness or compactness of 
microcells in our sectorization problem. Allowing a search for illegal solutions may prevent 
falling down into a local minimum and generate a better solution. In this section, we exemine 
three types of GAs to solve the problem formulated in the previous section: Standard GA, 
Grouping GA and Parallel GA.  

During each generation of the three GAs individuals in the current population are rated for 
their fitness as domain solutions. The fitness value is based on the objective function value of 
Equation (1) in Section 3. For the fitness value of each individual linear scale by ranking [3] is 
considered in the three GAs. Linear scaling is known to prevent takeover of the popularities by 
the superstrings and to accentuate differences among population members. Tournament 
selection [3] is employed in the three algorithms. Two chromosomes are randomly chosen from 
the previous population and the better is selected for the next population until the number of the 
selected chromosomes becomes the population size. 

 

4.1 Standard Genetic Algorithm (SGA) 
In this algorithm each gene in a chromosome represents the sector to which the corresponding 

mBS belongs [2]. As operators uniform crossover and bit-flipping mutation are employed. In the 
uniform crossover process two chromosomes are randomly chosen with a probability Pc and 
genes are exchanged with a rate CR. For the mutation a gene is randomly chosen with a 
probability Pm and the value of the gene is changed, that is, the mBS changes its sector. For the 
quality of population, parents are reproduced by the tournament selection and children are 
generated by the crossover and mutation operation.  

 

4.2 Grouping Genetic Algorithm (GGA) 
Grouping GA which is proposed by Falkenauer [1] has several advantages over the straight 

forward encoding scheme in SGA. First, it reduces the size of search space used by the 
encoding scheme in SGA. Secondly, the GGA prevents producing a child which has nothing in 
common to the two identical parents.  

The above superiority of GGA over SGA is due to group-oriented operators: group crossover 
and group mutation. To apply the GGA to our sectorization problem we encode each string into 
two parts: mBS and sector parts as in Figure 5. The group-oriented operators are applied only to 
the sector part. Each gene of mBS part represents the sector to which the mBS belongs. The 
sector part includes sectors that are used for the grouping of the mBSs.  
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Since the operations are applied to the sector part, the GGA reduces the search space used by 
the SGA. Note in the SGA that each mBS can be assigned to any sector and this increases the 
solution space as the number of mBS increases. Grouping operators in GGA also prevents 
generating a string which is far different from their parents. However in SGA two parents 
AABCC and BBCAA which are identical in the sense of grouping may produce a child AABAA 
after recombination at the third crossover site. The child has only two groups instead of three in 
its parents. 

 

P1 = A A B B F F B C F D C C E E D C | B A C D E F   

P2 = a a b b d c a b d c c f e e e f | a c d e b f   

(a) Parent chromosomes 

C2 = A A b b d c a C d c C C e e e C | a c d e b f A C

(b) Injecting sectors from P1 to P2 

C2 = A A b b d c a C d c C C e e e C | d e A C     

(c) Updating sector part 

C2 = A A x x d x x C d x C C e e e C | d e A C     

(d) Removing mBS part 

C2 = A A E E d A D C d D C C e e e C | d e A C D E   

(e) Repairing mBS part by heuristic method 

 
An example of the group crossover with 16 mBSs and 6 sectors is shown in Figure 5 and the 

second child C2 is produced as follows:  
(a) A and C sectors are selected for inheritance from P1 to C2.  
(b) Inject A and C from P1 to P2 in sector and mBS parts and copy P2 to have C2.  
(c) Remove a, b, c and f from sector part whose genes are replaced by A and C.  
(d) Remove genes a, b, c and f from mBS part.  
(e) Repair mBS part by adding new sectors D and E, as explained in the repair process at 

the end of this section.  
The group mutation operator is also applied to the sector part. A chromosome is randomly 

selected for mutation with the probability Pm. The operator randomly eliminates some sectors 
from the sector part of the chromosome. The mBSs that belong to the sectors are also removed 
and assigned to other or new sectors by the repair process. 

The repair process is a special procedure of GGA to assign sectors to mBSs which are not 
sectorized. If a sector exists which has sufficient soft capacity to include the mBS and the result 

Figure 5.  An Example of Group Crossover 
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satisfies the connectedness and compactness, then the mBS is assigned to the sector. Otherwise, 
new sectors are added to include the mBSs. If no new sector is available due to the constraint of 
the hard capacity, then the mBSs are assigned to sectors which minimize the penalty of soft 
capacity, disconnectedness, or incompactness. Note that the major time-spending procedure in 
the repair process is to match each unassigned mBS to a proper sector among the K sectors. 
Since the comparison and selection of proper sector requires K logK operations, the time 
complexity is )log( KNKO , where N is the number of mBSs and K is the number of sectors. 

 
Repair Process 

Start; 

Compute the residual R=(RS1, RS2, ..., RSK, RH1, RH2, ..., RHT) ; 

∑−=
i

ikikk xTDSCRS  and ∑−=
i

imikm yTDHCRH ; 

For ( i=1 ; i≤N ; i++){ 

 If ( ∑ =
k

ikx 0  ){ 

 Compute ∑=
j

jkijik xpHP for all k ; 

If (There are sectors such that RSk ≥ TDi and RHm ≥ TDi for k ∈SECm){ 

 Select the sector k* that has the highest HPik ; 

   xik* = 1; 

   Update R ;  } 

} 

} 

For ( i=1 ; i≤N ; i++){ 

 If ( ∑ =
k

ikx 0  ){ 

 Compute ∑=
j

jkijik xpHP for all k ; 

Select the sector k* that has the highest HPik ; 

  xik* = 1; 

  Update R ;  } 

} 

End; 
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4.3 Parallel Genetic Algorithm (PGA) with Island Model 
In PGA with island model an independent GA is performed at each island and the best string 

discovered is broadcast to other islands. Grefenstette [12, 13] proposed several parallel 
implementations of GAs based on different communication methods among islands. 

Compared to the traditional GAs, the parallel GA is known to have advantages in overcoming 
the problem of premature convergence. Extension of distinct species and different search 
strategy at each island could maintain the diversity of the whole population for a longer period. 
The PGA that is employed in this paper has five islands and a central evaluator as in Figure 6.  

At each island we employ the group crossover and modified mutation operators. The 
modified mutation is the combination of the bit-flipping mutation in SGA and the group 
mutation in GGA. It operates not on the sector part but on the mBS part. It randomly selects an 
mBS to mutate and reassigns a sector by the repair process used in the group mutation. 

For the communication among islands the duplicate of the best chromosome of an island is 
migrated to the adjacent island at the end of a generation. The best chromosome is also reported 
to the central evaluator. Then the central evaluator evaluates the chromosomes with the 
objective function (1) presented in Section 3. The role of the central evaluator is to select the 
best among those reported from islands. If the best is better than that in the memory, then the 
evaluator broadcasts it to all islands. 

 
 
 
 

Central 

Evaluator

Island 5 

Island 1 

Island 4 

Island 2 

Island 3 

Figure 6.  The PGA with Island Model 
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5.  Computational Results 
 

In this section, we test the efficiency of the GAs for the microcell sectorization problem. The 
algorithms presented in the previous section was implemented in Visual C++ (Version 6.0), and 
run on a MMX-200 Intel Pentium based personal computer with 64 Mbytes of memory under 
Windows 98. 

Four test problems are generated as in Table 1 and Figure 7. Traffic is assumed uniformly 
distributes over microcells. Calls are generated by following Poisson process, where the average 
call duration time is equal to 2.5 minutes. The number of VBSs and sectors are assumed as in 
the table. In each problem, the compact index is given as in the table to be satisfied by the 
sectorization. The possible number of sectorizations increases exponentially with the number of 
microcells. The performance of proposed GAs will be investigated by comparing with the 
optimal solutions of the formulation in Section 3. 

The cost coefficients employed for the objective function (1) are 101 =c , 52 =c , 23 =c , 
and 154 == cc . Higher weights are given to c1 and c2, because to minimize the blocked calls 

by hard and soft capacity is the first priority in the sectorization. The weight by the soft handoff 
c3 is twiced of that by the softer handoff c4, since the soft handoff requires two channel elements 
while the softer handoff requires one. The forced handoff requires one or two channel elements 
as the softer or soft handoff. However, since the forced handoff only occurs at the beginning of 
sectorization period, equal weights are given to c4 and c5. 
 

5.2. Parameters for GAs 
Before investigating the performance of GAs for the sectorization problem, we need to 

compare the strategies for population selection and crossover methods. We also need to tune the 
parameters such as crossover probabilities and termination criteria. Experiments are performed 
by generating ten 37-cell problems with 200 chromosomes in each generation. 

Figure 7.  Microcell Structures of Four Examples 

(a) 12-cell  (b) 19-cell (c) 37-cell (d) 61-cell 
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Parameters for SGA 
In tournament selection two parents are selected and generate two children by crossover and 

mutation. This process is repeated to generate a new population for the solution convergence [4]. 
In this study three strategies for the formation of the new population are examined as in Table 2. 
In “Best N” dominant N-chromosomes are selected for the next generation among N parents 
and N children. In “Two Children” only the newly born children are included in the population 
for the next generation. The “Best Two of the Four” selects the dominant two chromosomes 
among the two parents and two children and the process is repeated until N chromosomes. Table 
2 shows that “Best-N” has relatively better performance than two other methods. Uniform 
crossover is used in all three strategies. 

Now, three crossover methods are compared by tuning the Pc. Table 3 shows the performance 
of one-point crossover with Pc = 1.0, two-point crossover with Pc = 0.9, and uniform crossover 
with Pc = 0.8 and gene exchange rate 0.4. From Table 3, it is clear that uniform crossover 
outperforms two other methods in our sectorization problem. 

Even if the mutation is an important operator in GA, the mutation probability Pm did not 
significantly affect our SGA. The mutation probability is set to Pm = 0.001 throughput the 
experiments of SGA.  

As a termination criterion in SGA, local trap time (LTT) is considered. The SGA stops when 
the best solution does not improve during LTT generations. Reasonable local trap times are 
obtained through computational experiments for the four microcell structures. The local trap 
times used for the termination of SGA are 10 generations for 12 and 19-cell problems and 40 
generations for 37 and 61-cell problems.  
 

  Parameters for GGA 
The selection method employed in GGA is the same strategy as in SGA. Tournament selection 
with Best-N chromosomes is performed with 200 individuals in each generation. As explained 
in Section 4.2, group crossover and group mutation are examined in GGA. Experiment are 
performed with crossover probabilities 0.8, 0.9, and 1.0. The best result is obtained with Pc = 0.9 
and gene exchange rate 0.4. Mutation probability is set to 0.001 as in SGA.  

The local trap time is also examined for the termination criterion of GGA. Computational 
results show that 10, 20, 40, and 100 generations for 12-cell, 19-cell, 37-cell, and 61-cell 
problems respectively are good tradeoff between solution quality and computational time.  

 
Parameters for PGA 
For PGA a population of size 200 is divided into five islands as in Figure 6. GGA is 
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performed at each island with the same crossover probability, gene exchange rate and mutation 
probability. The local trap times for the termination of PGA are obtained as 10 generation for 
the 12 and 19-cell problems and 30 generations for the 37 and 61-cell problems. 

 

5.2. Performance of the three GAs 
Based on the parameters obtained in the preliminary tests 12, 19, 37 and 61-cell problems are 

solved with the three GAs. To obtain optimal solution or lower bound CPLEX [14] is employed 
which solves linear optimization problems based on the branch and bound algorithm. The 
branch and bound solves the sectorization problem by repeatedly including the constraint (6) of 
the formulation. 

Computational results of three GAs and the CPLEX are shown in Tables 4, 5, 6 and 7. The 
Gap in Tables 4 and 5 represents the relative difference of the solution obtained by GAs from 
the optimal solution as in the following equation. 

Solution Obtained by GA – Optimal Solution  Gap = Optimal Solution  

In problems with 37 and 61 cells optimal solutions could not be obtained by the CPLEX in a 
time limit of 3600 CPU seconds. Thus the gap is obtained by the lower bound to the optimal 
solution and it is represented as Gap* in Table 6 and 7. 

From the tables it is clear that SGA provides optimal solutions in 12-cell problems. However, 
in problems with 37 and 61 cells the performance of SGA is not acceptable. 

Both GGA and PGA are proved very powerful for our sectorization problem. PGA presents 
solutions the gaps of which are less than 5% from the lower bounds even in 61-cell problems. 
The performance of GGA seams to be dependent on the computational time. The average gap of 
GGA from the lower bound is increased to 12.65% in 61-cell problems with the same local trap 
time used in the PGA. 

The effect of PGA for the microcell traffic balancing is further investigated. The analysis 
shows that the call blocking probability is dramatically reduced by the dynamic sectorzation 
compared to the fixed sectorization. The average reduction effect of the call blocking records 
62% in 37-cell and 55% in 61-cell problem. The reduction of handoff calls ranges 13~14% in 
37-cell and 7~13% in 61-cell problem compared to the fixed sectorization. For the handoff calls, 
note that the dynamic sectorization either makes the handoffs unnecessary or generates new 
handoffs depending on the sectorization of cells. 

 
 

6.  Conclusions 
 
Sectorization of microcells is examined to balance the traffic in the fiber-optic microcellular 
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CDMA system. Proper sectorization is considered to effectively use the channel elements in 
each sector that satisfies the soft and hard capacity. Connected and compact sectors are 
proposed to reduce handoffs and interferences. The microcell sectorization is formulated as an 
integer linear programming problem which minimizes blocked and handoff calls. 

Genetic algorithms are developed to solve the sectorization problem and the solutions are 
compared with optimal or lower bound solutions. Tournament selection with the “Best N” is 
adopted in the proposed three GAs. In the Grouping GA, repair process is employed to have 
feasible solutions after group-oriented crossover and mutation. The process assigns one or more 
sectors to microcells which are not sectorized due to the group-oriented operators. Parallel GA 
is also proposed with island model to enhance the performance of standard and grouping GAs. 
All the operators and the repair process used in the grouping GA are independently applied at 
each island. 

Computational experiments of the three proposed GAs are performed for the microcell 
sectorization with four different problems. Outstanding performance is illustrated by all the 
three GAs in small problems. The average gap from the optimal solution is less than 0.2% and 
1.5% for 12-cell and 19-cell problems respectively. For large problems optimal solution could 
not be obtained in appropriate time limit due to the problem complexities. The standard GA 
failed to search near optimal solutions. The gap is increased with the problem size. The parallel 
and grouping GAs demonstrate excellent quality in reasonable time. The performance by the 
parallel GA is very promising and the gap from the lower bound is less than 2.4% in 61-cell 
problems, which means the real gap from the optimal is clearly less than that.  
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Table 1.  Specification of Four Test Problems 

Problem # of microcells # of VBSs # of sectors 
Average 

traffic/microcell 
(Erlangs) 

Compactness 
Index 

12-cell 
19-cell 
37-cell 
61-cell 

12 
19 
37 
61 

1 
2 
3 
4 

3 
6 
9 

12 

9 
12 
9 
7 

0.50 
0.65 
0.60 
0.58 

 
 

 

Table 2. Comparison of Selection Strategies for New Population 
Problem Best N Two Children Best Two of the Four 

1 502.111 515.343 523.842 
2 768.203 767.615 812.652 
3 681.732 727.038 840.616 
4 1086.326 1071.018 1119.796 
5 513.587 566.694 529.267 
6 826.948 994.203 826.948 
7 1444.426 1356.372 1444.426 
8 367.577 361.158 489.898 
9 872.173 1010.103 1045.692 

10 823.630 823.630 827.715 
Numbers represent the objective function cost in Section 3. 

 

 

 

Table 3. Comparison of Crossover Methods 
Problem One-point Crossover Two-point Crossover Uniform Crossover 

1 587.592  725.861  502.111 
2 861.450  851.365  768.203 
3 778.148  749.052  681.732 
4 1069.675  1050.116  1086.326 
5 507.296  484.856  513.587 
6 982.043  959.919  826.948 
7 1328.447  1072.541  1444.426 
8 376.086  374.122  367.577 
9 869.766  985.473  872.173 

10 725.637  777.198  823.630 
Numbers represent the objective function cost in Section 3. 
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Table 4. Comparison of Three GAs for 12-cell Problems 

CPLEX  SGA  GGA  PGA 
Problem 

Optimal CPU-
Time  Solution CPU-

Time Gap Solution CPU-
Time Gap Solution CPU-

Time Gap 

1 244.490 15.98  244.490 2.00 0.00% 249.147 1.95 1.90% 249.147 2.43  1.90%
2 29.079  4.62  29.079  1.65 0.00% 29.079 1.44 0.00% 29.079  2.12  0.00%
3 287.497 17.63  287.497 2.14 0.00% 287.497 1.62 0.00% 287.497 2.59  0.00%
4 127.702 5.38  127.702 1.83 0.00% 127.702 1.63 0.00% 127.702 2.58  0.00%
5 179.937 5.27  179.937 1.81 0.00% 179.937 1.65 0.00% 179.937 2.58  0.00%
6 29.835  4.56  29.835  1.65 0.00% 29.835 1.44 0.00% 29.835  2.13  0.00%
7 335.673 12.91  335.673 1.83 0.00% 335.673 1.67 0.00% 335.673 2.40  0.00%
8 158.526 5.49  158.526 1.83 0.00% 158.526 1.62 0.00% 158.526 2.38  0.00%
9 248.398 14.39  248.398 2.85 0.00% 248.398 3.62 0.00% 248.398 5.42  0.00%
10 68.872  5.00  68.872  2.51 0.00% 68.872 1.65 0.00% 68.872  2.57  0.00%
  9.12   2.01 0.00%  1.83 0.19%  2.72  0.19%

 
 
 
 
 
 
 

Table 5. Comparison of Three GAs for 19-cell Problems 
CPLEX  SGA  GGA PGA  

Problem 
Optimal CPU-

Time  Solution CPU-
Time Gap Solution CPU-

Time Gap Solution CPU-
Time Gap 

1 576.769 828.94  576.769 7.41 0.00% 576.769 11.28 0.00% 576.769 9.54  0.00%
2 363.167 201.41  367.990 11.63 1.33% 363.167 8.49 0.00% 363.167 7.85  0.00%
3 679.120 3600.00 679.442 11.14 0.05% 679.442 17.20 0.05% 679.442 9.66  0.05%
4 456.780 955.82  460.604 8.53 0.84% 456.780 11.28 0.00% 456.780 10.07  0.00%
5 316.051 396.94  316.051 9.98 0.00% 316.051 12.97 0.00% 318.097 10.56  0.65%
6 630.927 2655.32 630.927 10.44 0.00% 630.927 10.88 0.00% 644.328 10.55  2.12%
7 654.360 3600.00 699.790 10.50 6.94% 695.070 16.14 6.22% 693.567 13.42  5.99%
8 361.270 326.86  363.556 8.45 0.63% 361.449 12.91 0.05% 363.556 9.52  0.63%
9 724.467 3600.00 732.998 11.49 1.18% 732.998 11.61 1.18% 732.998 8.47  1.18%
10 971.850 2182.19 971.850 8.47 0.00% 971.850 11.99 0.00% 1007.123 9.64  3.63%

  1834.75  9.80 1.10%  12.47 0.75%  9.93  1.43%
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Table 6. Comparison of Three GAs for 37-cell Problems 

SGA  GGA  PGA 
Problem 

CPLEX 
lower 
bound Solution CPU-

Time Gap* Solution CPU-
Time Gap* Solution CPU-

Time Gap* 

1 396.855  502.111  106.84  26.52% 405.271 82.64 2.12% 401.765  101.91  1.24%
2 763.933  768.203  102.02  0.56% 763.933 102.39 0.00% 763.933  270.62  0.00%
3 623.231  681.732  93.73  9.39% 628.601 91.08 0.86% 628.601  115.87  0.86%
4 941.034  1086.326 77.33  15.44% 941.034 131.28 0.00% 973.808  111.18  3.48%
5 468.106  513.587  78.39  9.72% 484.609 88.47 3.53% 504.383  140.38  7.75%
6 821.064  826.948  96.58  0.72% 822.146 92.75 0.13% 826.948  96.49  0.72%
7 1015.255 1444.426 48.29  42.27% 1023.638 138.69 0.83% 1043.027 150.31  2.74%
8 317.401  367.577  92.42  15.81% 325.485 143.87 2.55% 330.184  160.30  4.03%
9 838.291  872.173  104.71  4.04% 838.291 137.20 0.00% 847.401  158.58  1.09%
10 599.228  823.630  90.79  37.45% 605.046 154.20 0.97% 634.008  117.24  5.80%
   89.11  16.19%  116.26 1.10%  142.29  2.77%

 
 
 
 
 
 
 

Table 7. Comparison of Three GAs for 61-cell Problems 
SGA GGA  PGA 

Problem 
CPLEX 
lower 
bound Solution CPU-

Time Gap* Solution CPU-
Time Gap* Solution CPU-

Time Gap* 

1 898.635  997.342  217.41  10.98% 914.238 685.51 1.74% 930.583  348.54  3.56%
2 1143.405 1470.982 194.30  28.65% 1168.867 992.07 2.23% 1190.685 942.66  4.14%
3 579.169  964.475  201.31  66.53% 600.623 898.25 3.70% 579.169  604.84  0.00%
4 860.141  918.759  217.38  6.81% 914.196 772.25 6.28% 870.909  440.94  1.25%
5 798.904  871.898  271.80  9.14% 858.931 893.09 7.51% 815.307  357.36  2.05%
6 802.162  1110.336 129.80  38.42% 825.577 1437.95 2.92% 818.834  677.36  2.08%
7 660.817  1031.471 129.62  56.09% 662.811 1596.36 0.30% 687.196  453.13  3.99%
8 518.536  659.610  250.27  27.21% 518.536 500.04 0.00% 524.202  381.26  1.09%
9 784.835  1092.056 129.89  39.14% 840.262 931.10 7.06% 822.580  483.76  4.81%
10 826.035  1006.947 187.97  21.90% 873.041 1001.95 5.69% 833.077  445.39  0.85%
   192.97  30.49%  970.86 3.74%  513.53  2.38%

 
 

 


