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Bounds on the Symmetric Cutoff
Rate for QAM Transmissions over

Time-Correlated Flat-Faded Channels
Enzo Baccarelli,Member, IEEE

Abstract—This letter presents new upper and lower bounds
on the symmetric cutoff rate for block-coded quadrature-
amplitude-modulated (QAM) signaling over links affected by
time-correlated Rayleigh-distributed flat-faded phenomena. The
proposed bounds assume maximum-likelihood soft-decoding
with perfect channel-state-information at the receiving side and
hold for any form of QAM constellations. These bounds are
quickly computable and constitute an efficient means to estimate
the cutoff rate of systems employing very long codewords, so
that the exact evaluation of the cutoff rate results cumbersome.
Analytical and numerical evidence of the tightness of the
presented bounds is also provided.

Index Terms—Rayleigh channel, symmetric cutoff rate.

I. GOALS OF THE WORK

DATA transmissions on radio channels can be affected by
fading phenomena which present high time correlations

as in the case of links between low-speed units [2], [3];
in general, such time correlations cannot be fully removed
by interleaving/deinterleaving devices because of the limits
present on the overall allowable decoding delays. Thus, as a
consequence of the memory present in the resulting coding
channel, the corresponding cutoff ratedependson the length
of the transmitted codewords.

The goal of this contribution is twofold. First, in Section
II we develop a general formula for the exact computation
of the cutoff rate of flat-faded Rayleigh links which gen-
eralizes the expression reported in [2, eq. (14)] and holds
for any format of quadrature-amplitude-modulated (QAM)
constellations. Second, in Section III we present tighteasily
computable lower and upper bounds which constitute an
attractive tool for a quick estimation of the cutoff rate. The
bounds presentedare newand are the first to be presented
in literature for the kind of channels here considered (see [3]
and [4] for an extensive overview on this topic and [5] for
some generalizations to the case of intersymbol interference
(ISI)-impaired faded channels).
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II. EVALUATION OF THE SYMMETRIC CUTOFF

RATE FOR GENERAL QAM CONSTELLATIONS

Let us assume that an -ary information stream feeds a
block-encoder whose output is a
codeword of QAM symbols taken from an assigned-ary
complex constellation . Thus the corresponding (complex)
discrete-time sequence received at the
output of a noisy link affected by flat fading is given by

(1)

where is a (complex) zero-mean Gaussian thermal-
noise sequence with variance . Furthermore,

is a zero-mean stationary Gaussian
fading-sequence whose uncorrelated real components share a
common autocorrelation function (a.c.f.)

; so, the resulting -variate Gaussian fading-vector
exhibits a real covariance matrix

whose scalar entries
are defined as follows: .

Now, under the assumption of perfect channel-state-
information (CSI), the receiving maximum-likelihood (ML)
soft-decoder decides for the codeword which minimizes the
usual Euclidean-distance from the available observed vector

(see [2, eq. (6)]); hence, moving from
an application of the union–Bhattacharyya bound and then
using random-coding argumentations, it can be proved that the
symmetric1 cutoff rate for the depicted communication
system is given by the general formula [1, eqs. (5.6.1),
(5.9.35)], [2, eq. (7)]

(2)

where ) denotes the Gaussian probability density
function (p.d.f.) of the observed vectorconditional on and

and ) is the Gaussian pdf of the above introduced fading-
vector (hereinafter natural logarithms are used). The-fold
integrations present in (2) can be carried out by resorting

1According to a current taxonomy [4], the term “symmetric” means that
independently-selected and equidistributed codeword–symbols are assumed in
the derivation of (2).
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to standard formulas for the computation of multivariate
Gaussian integrals [2, eq. (B.5) and following text]; so, in
our case the final result looks as in the following:

(3)

with

(4)

where ,
is the diagonal matrix which gathers the squared

Euclidean distances in between the symbols constituting
the codewords and . Obviously, as it happens for [2,
formula (14)], the evaluation of (3) presents a computational
complexity which growsexponentiallywith the block-length

. In fact, for general QAM constellations the evaluation of
(3) requires the calculation of the th-order
determinants in (4) and this makesvery expensivethe cutoff
rate computation even for moderate values ofand (at this
regard, see also Remark 5 in Section III). However, such a
drawback can be effectively overcome through the exploitation
of the bounds presented in the next section.

III. T HE PROPOSEDUPPER AND LOWER BOUNDS

FOR THE SYMMETRIC CUTOFF RATE OF (3)

Let us indicate with and the minimum and maximum
squared Euclidean distances in between two constellation
points. Therefore, by developing the inner summation present
in (3) and then suitably upper-bounding the determinants in (4)
we get the following upper bound for the cutoff rate in (3):

(5)

where

Furthermore, by lower-bounding the same determinants in
(4) we also obtain the lower-bound for the cutoff rate in (3)
below reported:

(6)

The above bounds represent the main results of this con-
tribution and their properties are pointed out in the following
remarks.

Remark 1: The computational complexity of the lower-
bound in (6) is virtually independent from the values ofand

whereas the evaluation of the upper bound in (5) essentially
requires the calculation of the determinant of the
matrix . However, since this latter is a symmet-
ric positive-definite Toeplitz-type matrix, the computation of
the corresponding determinant can be quickly accomplished
through the usual Levinson–Durbin algorithm.

Remark 2: Since the following limiting expressions hold:

(7)

(8)

we can conclude that the proposed bound are certainly tight
for high and low levels of the average received signal-to-
noise ratio (SNR) per channel-symbol . Furthermore, the
numerical examples of Figs. 1–3 show that the bounds always
differ from the actual cutoff rate less than 8–10% so that they
look quite tight even for moderate values of.

Remark 3: It can be analytically proved that the values
assumed by the bounds in (5) and (6) increase when the
time-correlation of the fading-phenomena falls and a direct
comparison of the plots reported in Figs. 2 and 3 confirms
this property. So, in this respect the behavior of the presented
boundsclosely mimicsthat exhibited by the actual cutoff rate
in (3).

Remark 4: Since the derivations of the bounds in (5) and
(6) have been carried out by resorting todual bounding
argumentations, it could be expected that a “good estimate” of
the actual cutoff rate in (3) is simply given by the arithmetical
average

(9)
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Fig. 1. Behaviors of (3), (5), (6), and (9) versus the average SNR

c for the Rayleigh channel of (1) affected by fading phenomena
with time-correlation given by the Gaussian-shaped Watterson-like a.c.f.:
Rg(t) � exp[�(�BDTt)

2]. Block-lengthN of 32 and symmetric BPSK
constellation have been considered together with a value of the product
Doppler-spread� signaling-periodBDT of 10�4 (case of slow-faded
channel).

Fig. 2. The same as Fig. 1 for a 4 PSK symmetric constellation (N = 32,
BDT = 10�4; case ofslow-fadedchannel).

of the proposed bounds. Although an analytical proof of this
assertion is in general hard to obtain, however the numerical
examples reported in Figs. 1–3 directly support this claim.

Remark 5: For symmetric constellations the value assumed
by the inner summation in (3) is independent from the picked
out codeword which indexes the outer summation; therefore,
as in [2, eq. (14)] the numerical evaluation of (3) requires
the computation of ( ) th order determinants. For a
BPSK constellation with (see Fig. 1), the overall
computation can be carried out within a reasonable short time

Fig. 3. The same as Fig. 2 forBDT = 8 � 10�2 (N = 32 and 4PSK
constellation; case offast-fadedchannel).

via a standard PC clocked at 200 MHz. However, when the
constellation is 4PSK and is 32 as in Figs. 2 and 3, an exact
evaluation of the corresponding appears, indeed, very
hard to be accomplished since it should require the compu-
tation of ( ) determinants.2 So, in this case, we have
introduced some approximations for the numerical evaluation
of (3); they consist in computing, at first, only the upper and
lower leading terms present in the inner summation of (3)
which corresponds to the sets of codewords at (squared)
Euclidean distances ranging from to ( )
and from to with respects to the codewordpicked
out as a reference.3 Afterwards, the so obtained values for the
leading terms have been averaged to take into account for
the remaining (not explicitly computed) terms present in the
inner summation of (3). The resulting approximated cutoff rate
curves are plotted in dotted-lines in Figs. 2 and 3.
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[2] K. L.-Boull é and J. C. Belfiore, “The cut-off rate of time-correlated
fading channels,”IEEE Trans. Inform. Theory, vol. 39, pp. 612–617,
Mar. 1993.

[3] G. Kaplan and S. Shamai, “Achievable performance over the correlated
Rician channel,”IEEE Trans. Commun., vol. 42, pp. 2967–2978, Nov.
1994.

[4] S. Shamai and A. Dembo, “Bounds on the symmetric binary cut-off rate
for dispersive Gaussian channels,”IEEE Trans. Commun.,vol. 42, pp.
39–53, Jan. 1994.

[5] E. Baccarelli, “Performance bounds and cutoff rates for data channels
affected by correlated randomly time variant multipath fading,”IEEE
Trans. Commun., vol. 46, pp. 1258–1261, Oct. 1998.

2The evaluation of the432 determinants should require more than 58 years
when an ultra-fast (and somewhat unrealistic) computer that takes 10�10 s to
calculate a single determinant is used.

3The plots reported in dotted-lines in Figs. 2 and 3 have been numerically
evaluated by computing up to 234 leading terms.


