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40, Bd du Pont d’Arve, 1211 Genève 4, Switzerland
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Abstract

A wavelet-based forecasting method for time series is introduced. It is based on a
multiple resolution decomposition of the signal, using the redundant “à trous” wavelet
transform which has the advantage of being shift-invariant.

The result is a decomposition of the signal into a range of frequency scales. The
prediction is based on a small number of coefficients on each of these scales. In its simplest
form it is a linear prediction based on a wavelet transform of the signal. This method uses
sparse modelling, but can be based on coefficients that are summaries or characteristics
of large parts of the signal. The lower level of the decomposition can capture the long-
range dependencies with only a few coefficients, while the higher levels capture the usual
short-term dependencies.

We show the convergence of the method towards the optimal prediction in the au-
toregressive case. The method works well, as shown in simulation studies, and studies
involving financial data.
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1 Introduction

The wavelet transform has been proposed for time series analysis in many papers in recent
years. Much of this work has focused on periodogram or scalogram analysis of periodicities
and cycles. For financial time series prediction, Bjorn (1995), Moody and Lizhong (1997) and
Soltani et al. (2000) discussed the use of the wavelet transform in the case where the market
can be modelled by a fractional Brownian motion (fBm), a 1/f fractal process, which implies
the presence of correlations across time. Wavelets would appear to be very appropriate for
analyzing non-stationary signals (Swee and Elangovan, 1999), and a link between wavelets
and the difference operator was made in Xizheng et al. (1999).

Several approaches have been proposed for time-series filtering and prediction by the
wavelet transform, based on a neural network (Zheng et al., 1999; Bashir and El-Hawary,
2000), Kalman filtering (Cristi and Tummula, 2000; Hong et al., 1998), or an AR (autore-
gressive) model (Soltani et al., 2000). In Zheng et al. (1999) and Soltani et al. (2000), the
undecimated Haar transform was used. This choice of the Haar transform was motivated by
the fact that the wavelet coefficients are calculated only from data obtained previously in
time, and the choice of an undecimated wavelet transform avoids aliasing problems. See also
Daoudi et al. (1999) which relates the wavelet transform to a multiscale autoregressive type
of transform.

Section 2 presents the à trous Haar wavelet transform, and section 3 shows how this
transform is well-suited to design a Multiresolution AR model (MAR). A set of experiments
illustrating the method is discussed in section 5.

2 Wavelets and Prediction

The continuous wavelet transform of a continuous function produces a continuum of scales as
output. Input data, however, is usually discretely sampled, and furthermore a “dyadic” or
two-fold relationship between resolution scales is both practical and adequate. The latter two
issues lead to the discrete wavelet transform.

The output of a discrete wavelet transform can take various forms. Traditionally, a triangle
(or pyramid in the case of 2-dimensional images) is often used to represent all that we have
to consider in the sequence of resolution scales. Such a triangle comes about as a result
of “decimation” or the retaining of one sample out of every two. The major advantage
of decimation is that just enough information is kept to allow exact reconstruction of the
input data. See for instance Chui (1992), Daubechies (1992), Mallat and Falzon (1998) and
Vidakovic (1999) for more details about the wavelet transform. Therefore decimation is ideal
for an application such as compression. A major disadvantage of the decimated form of output
is that we cannot simply – visually or graphically – relate information at a given time point at
the different scales. With somewhat greater difficulty, however, this goal is possible. What is
not possible is to have shift invariance. This means that if we had deleted the first few values
of our input time series, then the output wavelet transformed, and decimated, data would
not be the same as heretofore. We can get around this problem at the expense of a greater
storage requirement, by means of a redundant or non-decimated wavelet transform.

A redundant transform based on an N -length input time series, then, has an N -length
resolution scale for each of the resolution levels that we consider. It is easy, under these
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circumstances, to relate information at each resolution scale for the same time point. We do
have shift invariance. Finally, the extra storage requirement is by no means excessive.

The à trous wavelet transform (Shensa, 1992; Dutilleux, 1987; Percival and Walden, 2000)
decomposes a signal X = (X1, . . . , XN ) as a superposition of the form

Xt = cJ,t +
J∑

j=1

wj,t

where cJ is a coarse or smooth version of the original signal X and wj represents “the details
of X” at scale 2−j . See Starck et al. (1998) for more information. Thus, the algorithm outputs
J + 1 subbands of size N . The indexing is such that, here, j = 1 corresponds to the finest
scale (high frequencies).

The non-decimated Haar algorithm uses the simple filter h = (1
2 , 1

2). Consider the creation
of the first wavelet resolution level. We derive it from the input data by convolving the latter
with h. Then:

cj+1,t = 0.5(cj,t−2j + cj,t) (1)

and

wj+1,t = cj,t − cj+1,t (2)

At any time point, t, we never use information after t in calculating the wavelet coefficient.
This algorithm is different from the invariant discrete wavelet transform (Coifman and

Donoho, 1995), and from the implementation of the Maximal Overlap Discrete Wavelet Trans-
form (MODWT) described in Cohen et al. (1997). It is similar to the implementation described
in Percival and Walden (2000). It has the following advantages:

• It is simple to implement. The computational requirement is O(N) per scale, and in
practice the number of scales is set as a constant.

• Because we do not shift the signal, the wavelet coefficients at any scale j of the signal
(X1, . . . , Xt) are strictly equal to the first t wavelet coefficients at scale j of the signal
(X1, . . . , XN ) (N > t).

This second point is very convenient in practice. For instance, if the data are regularly
updated (i.e. we get new measurements), we do not have to recompute the wavelet of the full
signal. Figure 1 shows which pixels of the input signal are used to calculate the last wavelet
coefficient in the different scales. A wavelet coefficient at a position t is calculated from the
signal samples at positions less than or equal to t, but never larger.

3 Linear and Non-Linear Multiscale Prediction

In this section, we use the above decomposition of the signal for prediction. Instead of using
the vector of past observations X = (X1, . . . , XN ) to predict XN+1, we will use its wavelet
transform.

The first point is to know how many and which wavelet coefficients will be used at each
scale. A sparse representation of the information contained in the decomposition is the key.
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Figure 1: This figure shows which pixels of the input signal are used to calculate the last
wavelet coefficient in the different scales.

After some simulations and for theoretical reasons that will become clear, the wavelet and
scaling function coefficients that will be used for the prediction at time N + 1 have the form
wj,N−2j(k−1) and cJ,N−2J (k−1) for positive value of k, as depicted in Figure 2. Note that for
each N this subgroup of coefficients is part of an orthogonal transform.
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Figure 2: Wavelet coefficients that are used for the prediction of the next value.

3.1 Stationary Signal

Assume a stationary signal X = (X1, . . . , XN ) and assume we want to predict XN+1. The
basic idea is to use the coefficients wj,N−2j(k−1) for k = 1, . . . , Aj and j = 1, . . . , J and
cJ,N−2J (k−1) for k = 1, . . . , Aj+1 (see Figure 2) for this task. One example is to feed a neural
network with these coefficients w and c as inputs, one or more hidden layer(s) and XN+1 as
the output. With one hidden layer with P perceptrons, this writes as

X̂N+1 = g2




P∑

p=1

b̂pg1(
J∑

j=1

Aj∑

k=1

âj,k,pwj,N−2j(k−1) +
AJ+1∑

k=1

âJ+1,k,pcJ,N−2J (k−1))


 . (3)

The prediction of financial future in Section 5 is based on this kind of model. We can
imagine using virtually any type of prediction that use the previous data XN , . . . , XN−q and
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generalize through the use of the coefficients w and c instead. One of the simplest model for
prediction beeing autoregressive, we show how to proceed in this case.

Recall that to minimise its mean square error, the one-step forward prediction of an AR(p)
process is written X̂N+1 =

∑p
k=1 φ̂kXN−(k−1). Estimating φ̂k by MLE, by Yule-Walker, or

by least squares, has the same asymptotic efficiency. In order to use the decomposition, we
modify the prediction to the AR multiscale prediction:

X̂N+1 =
J∑

j=1

Aj∑

k=1

âj,kwj,N−2j(k−1) +
AJ+1∑

k=1

âJ+1,kcJ,N−2J (k−1) (4)

whereW = w1, . . . , wJ , cJ represents the Haar à trous wavelet transform of X (X =
∑J

j=1 wj+
cJ). For example, choosing Aj = 1 for all resolution levels, j, leads to the prediction

X̂N+1 =
J∑

j=1

âjwj,N + âJ+1cJ,N . (5)

Figure 2 shows which wavelet coefficients are used for the prediction using Aj = 2 for all
resolution levels j, and a wavelet transform with five scales (four wavelet scales + the smoothed
array). In this case, we can see that only ten coefficients are used, including coefficients that
take into account low-resolution information. This means that a long-term prediction can
easily be introduced, either by increasing the number of scales in the wavelet transform, or
by increasing the AR order in the last scales, but with a very small additional number of
parameters.

To further link this method with a prediction based on a regular AR, note that if on each
scale the lagged coefficients follow an AR(Aj), the addition of the predictions on each level
would lead to the same prediction formula (4).

This Multiresolution AR prediction model is actually linear. However, we can easily extend
this to any model, linear or non-linear, that uses the coefficients wj,N and cJ,N to predict the
future signal. As an example, in the following section, a neural network with these coefficients
as input and with XN+1 as output is discussed.

To estimate the Q =
∑J+1

j=1 Aj unknown parameters grouped in a vector α, we solve the
normal equations A′Aα = A′S that follow from least squares, with:

A′ = (LN−1, . . . , LN−M )
L′t = (w1,t, . . . , w1,t−2A1 , . . . , w2,t, . . . , w2,t−22A2

, . . . , wJ,t, . . . , wJ,t−2JAJ
, cJ,t, . . . , cJ,t−2JAJ+1

)

α′ = (a1,1, . . . , a1,A1 , a2,1, . . . , a2,A2 , . . . , aJ,1, . . . , aJ,Aj , . . . , aJ+1,1, . . . , aJ+1,AJ+1
)

S′ = (XN , . . . , Xt+1, . . . , XN−M+1)

Note that A is a Q×M matrix (M rows Lt, each with Q elements), α and S are respectively
Q- and M -size vectors, and Q is larger than M .

Interval prediction can also be obtained from the multiresolution decomposition by mim-
icking the method used on each scale. In the Multiscale AR case, following the prediction
equation (4), and assuming Gaussian innovation, the 1 − α confidence interval for XN+1 is
given by [X̂N+1 ± z(1 − α/2)σ̂], where z is the quantile of the standard normal distribution
and σ̂ is an estimation of the innovation standard deviation. One choice for σ̂ is given by the
square root of (Aα− S)′(Aα− S)/(M −Q).
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3.2 Signal with a Piecewise Smooth Trend

The previous prediction is valid for a zero mean signal. When a trend is present, several
methods exist to remove the trend before conducting the analysis. By virtue of the multiscale
decomposition, we can take advantage of the fact that the multiscale decomposition automat-
ically separates the trend from the signal. We thus propose to predict both the trend and the
stochastic part within the multiscale decomposition. The idea is that, in many instances, the
trend affects the low frequency components, while the high frequencies may still be purely
stochastic. Therefore we can separate our signal X into two parts, the low and the high
frequencies L and H:

L = cJ

H = X − L =
J∑

j=1

wj

XN+1 = LN+1 + HN+1

The smoothed vector of the wavelet transform is first subtracted from the data, and we have
now that the signal H is zero-mean. Our prediction will be the coaddition of two predicted
values, one on the signal H by the AR Multiscale model, and the second on the low frequency
component by another method. The AR-Multiscale model gives:

ĤN+1 =
J∑

j=1

Aj∑

k=1

aj,kwj,N−2j(k−1) (6)

The estimation of the Q =
∑J

j=1 Aj unknown parameters proceeds as previously, except
that the coefficients c are not used in Li and that S is based on Ht+1.

Many methods may be used for the prediction of LN+1. For a smooth trend, the problem
is simplified by the fact that L is very smooth. We use polynomial fitting of degree 3 in our
experiments.

The AR order at the different scales must now be defined. A global optimisation of all Aj

parameters would be the ideal method, but is too computer intensive. However, by the relative
non-overlapping frequencies used in each scale, we can consider selecting the parameters Aj

independently on each scale. This can be done by standard methods, based on AIC, AICC
or BIC methods (Shumway and Stoffer, 1999).

4 Convergence

The proposed method can be viewed as a generalisation principle that can be applied to
virtually any time series model. For example, instead of fitting an AR model to the raw data,
we propose to fit an AR model to each scale of the multiresolution transform. The following
theorem shows that if the true process is actually AR, our forecasting procedure will converge
to the optimal procedure and that it is even asymptotically equivalent to the best forecast.

Theorem 1 Suppose that {Xt} follows a causal AR process of order p with parameter φ′ =
(φ1, . . . , φp), i.e. Xt = φ1Xt−1 + · · · + φpXt−p + εt, where {εt} are IID(0, σ2). If the selected
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orders Aj on each scale are greater than or equal to p/2j for j = 1, . . . , J and AJ+1 ≥ p/2J ,
then the multiresolution model is such that, with increasing sample size, α̂ has the following
asymptotic property:

N1/2(α̂−α) ⇒ N (0, σ2(R′W ′
BΓBWBR)−1),

where α, defined in Section 3 is equal to Ωφ, ΓB = [γ(t − k)]t,k=1,...,B is the autocovariance
matrix where γ(l) is the autocovariance of the series at lag l. Related to the wavelet transform,
Ω, R,WB and B are defined in the proof.

The parameter α is the coefficient of the best linear predictor of Xt+1 based on previous
observations.

The proof may be found in the Appendix. This theorem shows that the estimator converges
towards the parameter that allows the best prediction, if the underlying process is simply
autoregressive. However, if this model is not true, only a few coefficients at the lower resolution
scales can capture autocovariances at much higher lags, as shown by the ΓB matrix resulting
from this theorem. Note that B can be very large while the number of coefficients in the
model stays reasonable.

5 Experiments

In this section, we will compare our methodology to different benchmark methods on simu-
lated and real data. We will first use three different types of time dependencies. The first
is a Gaussian white noise model with unit variance, where the signal at any time-point is
independent of the past. The optimal prediction for this signal is the constant prediction.
This experiment allows us to check whether a given method is able to avoid overfitting the
empirical dependencies that will be present.

The second noise structure tested is a pure AR(4) noise, with parameter φ′ = (0.5, -0.5,
-0.1, 0.3) and with a unit Gaussian innovation. The optimal prediction is of course a model
with an AR(4) structure. For these two noise structures, we can compare our procedure with
the optimal one.

The last noise structure is fractional ARIMA(1, 0.49, 0), with parameter φ1 = −0.5 and
with a unit Gaussian innovation. This type of signal is more difficult to predict for any
method, due to its long-range dependency.

The simulation process runs as follows: For a given type of noise, we generate 50 signals of
size 1000. For each signal, we use the 500 first points to estimate the model parameters, which
are then kept fixed. We forecast the 500 last points one by one, based on all the previous
ones, with the given estimate. The forecast values are then compared to the true values and
the standard deviation of the prediction error is computed on the 500 differences.

Figure 3 shows the boxplots of the 50 standard deviations of the 50 samples. A boxplot
gives in the centre the median value for the response and the box contains 50% of the responses,
giving an idea of the variability between the samples. Hence the best method is the one for
which the boxplot is closest as possible to 1, and as compact as possible. The different methods
displayed are: the proposed method with 3 levels of wavelet coefficients and the low resolution
scale (multires), a constant forecast (mean of the points, constant), an AR model, where the
order is selected with a BIC selection criterion (AR BIC), and an AR(4) forecast (AR4). The
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Figure 3: Left panel: boxplots of the error of prediction based on 500 predictions on 50
samples when the signal is pure white noise for 4 different methods: the proposed method
(multires), a constant forecast (constant), an AR model, with a BIC selection criterion for the
order (AR BIC) and an AR(4) forecast (AR4). Centre and right panels: same methods when
the signals are AR(4) and fractional ARIMA.

left panel of Figure 3 is for samples that follow the white noise model, the centre panel is for
the AR(4) model and the right panel is for the fractional ARIMA. The constant estimation
is optimal for the white noise and the AR(4) estimation is optimal in the second case.

We see from the left panel of Figure 3 that the forecast capabilities of all methods are
basically the same for the white noise model. No method is trapped in overfitting the possible
sample dependencies. Both the multiresolution method and the AR-BIC model can select
the number of parameters, and seem to have selected very few. Their predictions are merely
slightly better than the AR(4) method that has to keep 4 parameters.

For the AR noise, both AR methods are merely slightly better than the multiresolution
approach. This shows that although the latter has many parameters to choose from, it is
able to downplay all unnecessary information and to use only a few important parameters to
forecast these simple signals. As expected, the constant approach is inadequate.

Concerning the fractional noise, the proposed method is better than the two AR meth-
ods, while the constant approach is again inadequate. Note that both the AR-BIC and the
proposed method have to select the number of parameters in their respective models. Due to
a more flexible model, the latter seems to catch better the long-range particularities of the
signal, and gives better forecasts. See McCoy and Walden (1996) for another view of the same
phenomenon.

A close look at the average number of coefficients kept by the multiresolution method (not
shown) reveals that it is adaptive to the nature of the signal: for the white noise and the
AR(4) signals, few if any coefficients are kept in the lower scales while for the fractional noise,
more coefficients are kept. This confirms that this method can adapt to the nature of the
autocorrelation function.

Concerning interval prediction, we use the same data and the same methods to do our
comparison. In each case, we compute how many times the true values XN+1 are within the
interval [X̂N+1 ± 2σ̂]. For the best method, this should be as close as possible to the actual
level of confidence, which is 95.45. For the three different types of noise, the results are similar
to the ones for the error of prediction. This shows again the robustness of the Multiresolution

8



9
3

9
4

9
5

9
6

9
7

9
8

multires constant AR BIC AR4

a
c
tu

a
l 
le

v
e

l 
in

 p
e

rc
e

n
t

Actual level for Samples from  wn

9
2

9
4

9
6

9
8

multires constant AR BIC AR4

a
c
tu

a
l 
le

v
e

l 
in

 p
e

rc
e

n
t

Actual level for Samples from  ar

8
5

9
0

9
5

1
0

0

multires constant AR BIC AR4

a
c
tu

a
l 
le

v
e

l 
in

 p
e

rc
e

n
t

Actual level for Samples from  frac

Figure 4: Accuracy of the interval prediction of the form [X̂N+1 ± 2σ̂] for the same data and
the same methods as for Figure 3. The nominal level is 95.45 (horizontal line) and the best
method is the one which boxplot of actual level is as close to this line and as compact as
possible.

AR model to adapt to different noise types.
It is important to note that the performance of the proposed technique is only indicative

and we have tested it with the simplest approach consisting of using an AR model for each
scale. One can of course plug more advanced methods into it, over and above AR, that are
more suitable for the signal at hand.

We now turn to two appraisals with real data. Yearly minimal water levels of the Nile
River for the years 622 to 1281, measured at the Roda gauge near Cairo, provide a standard
benchmark data set. These data are known to exhibit long-range dependence, and do not
appear to have a trend. A wide range of parameters was used. The best AR model found,
AR(2), gives an error standard deviation of 67.6497. A multilayer perceptron (MLP, back-
propagation, 3 layers, 4 input units) was found to give an error standard deviation of 66.1845.
An MAR(1) model, with 5 wavelet resolution scales, gave an error standard deviation of
64.9241. Figure 5 (top panels) show the Nile data (upper left) and the difference between
known value and one-step ahead predictions on the rightmost half of the data (upper right).

Local area network traffic has been frequently used to exemplify long-memory processes.
Assuming a similar process to hold for web access data, we used a set of 34,727 successive
hourly numbers of bytes transferred from a web server. An AR(30) model gave a standard
deviation error close to a very wide range of other AR models, 150595. An MLP based on an
input window size of 6 values gave a standard deviation error of 148351. An MAR(2) model
gave a standard deviation error of 149600. The latter, a little worse than the non-linear MLP
and better than any non-multiresolution AR fit, took a few seconds computational effort,
compared to many hours on a multiple processor machine for the MLP. Figure 5 (bottom
panels) shows the web access data (lower left), with the ordinate rescaled for clarity, and with
the final 2000 values of the data set used only. The lower right panel shows the difference
between known value and one-step ahead predictions (again with ordinate rescaled for clarity).

In summary, these examples of time series exemplify lack of trend, lack of seasonality, and
stationarity. We find MAR to be superior to an AR model in both cases. In the first case,
MAR out-scores the non-linear MLP, while in the second case a non-linear model is found to
be somewhat superior to MAR but at the cost of vastly increased computational requirements.
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Figure 5: Top: Nile river level. Bottom: hourly rates of data access on a web site. Left panels:
original data. Right panels: right parts show differences between target values and one-step
ahead predictions.

For a set of financial futures data (daily highs, 6160 values), we used a non-multiresolution
autoregressive AR(1) model to provide a baseline. An MAR(2), i.e. multiresolution AR(2),
model provided better results. Respectively, standard deviation prediction error results of
13.96 and 13.90 were obtained. Using the final 1000 values, alone, provided a nearly identical
result. Figure 6 illustrates the fit between predicted and target.

Using the first 4901 data values further improved this linear MAR(2) prediction to 11.32.
Expecting to find even better results with nonlinear prediction based on the multiscale de-
composition, we experimented with a range of neural network approaches. Surprisingly, we
found worse results consistently across a range of neural network approaches. Backpropaga-
tion with different training algorithms gave rise to local optima with consequent problems in
training. In these experiments we took a training set of size just over 1000 data values, and
a test set of nearly 5000 (providing therefore a very demanding job for training; one reason
for having a relatively small training set was to economize on training time). Consistent with
an MAR(2) model, and also with Figure 2, the number of input data values was 10, and the
number of output data values was 1. The Matlab Neural Network Toolbox was used. We next
used a radial basis function network, and a generalized regression neural network. Standard
deviation prediction errors of 82.78 and 71.93, respectively, were found for the test set. An
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Figure 6: Financial futures, 6160 successive daily highs. Right: forecast minus actual for the
second half of the data set.

explanation for these poor results was clear from a plot of output predicted values: they were
relatively very flat and did not differ greatly from the mean data value. Note that this is not
overtraining, which would imply excellent results on the training set, and poor generalization
when used on the test set. To further explain these difficulties in training, we carried out a
principal components analysis on the 10-dimensional input data. Variances and covariances
were used, i.e. the data were centred. The principal component explained 97.27% of the vari-
ance. This was not surprising given the presence, without any normalization, of large-valued
smooth coefficients and low-valued wavelet coefficients (cf. Figure 2). The multiple regression
correlation was 0.993.

We conclude that for these financial futures, in the absence of input data normalization,
using order 2, 4-band, multiresolution data (cf. Figure 2), a linear mapping proved far more
stable than more sophisticated nonlinear alternatives.

Our discussion in terms of linearity and nonlinearity has been in terms of the mapping of
inputs defined by wavelet coefficients vis à vis the output target value (cf. again Figure 2). We
conclude with a remark on the linearity or nonlinearity of the mapping of a window of original
time series data onto the output target value. Clearly in the case of the MAR model using the
Haar à trous wavelet transform, our overall method is linear. But two distinct linear mappings
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are used. The wavelet transform is a particular set of moving averages and moving differences.
One could envisage an alternative and perhaps nonlinear mapping here. The mapping from
wavelet space to target predicted value is a Euclidean least squares mapping in the case of the
MAR model. Our motivation is clear, viz. to avail of resolution scale information in our data
signal. In the case of MAR Haar à trous the overall mapping is linear, but the least squares
fit criterion is not one which can be simply expressed.

6 Conclusion

In this article, we propose a prediction method that is based on a time-frequency decomposi-
tion of the signal called the “à trous” wavelet transform. This very flexible procedure permits
capturing of short-range as well as long-range dependencies with only a few parameters. In
its simplest form this method is a generalisation of the standard AR method: instead of a
linear prediction based on past values, we use a linear prediction based on some coefficients
of the decomposition of the past values. Our proposal has been extended to neural networks
and can easily be extended to generalise other sophisticated methods such as GARCH. The
concept is very simple and easy to implement, while the potential is very significant.
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A Proof of the Theorem

First note that the estimator can be written as α̂ = (A′A)−1A′S. Define Tp = (S1, . . . , Sp)
where S′t = (XN−t, . . . , XN−M−t+1). Since the signal follows an AR(p) process, we can write
S = Tpφ + ε, where ε′ = (εN , . . . , εN−M+1) are the uncorrelated errors (innovations) of the
series.

Let B be the smallest power of two that is larger than or equal to 2jAj for all j = 1, . . . , J
and to 2JAJ+1. Let WB be the B × B matrix of the orthogonal wavelet transform with the
Haar basis with J wavelet scales. For any given time t, this represents the smallest orthogonal
transform that contains all the coefficients in Lt.

The matrix Ω is a (usually small) part of WB. Define Π to be the first p columns of WB.
At each time t, Π allows us to recover the p values (Xt, . . . , Xt−p+1) from the B coefficients of
the orthogonal transform. However, we do not need all B coefficients, and by the condition
that Aj ≥ p/2j , the coefficients in Lt are sufficient (all other coefficients have only zeros in the
Π matrix). We can therefore remove all rows of Π that do not correspond to elements in Lt

to obtain the Q× p matrix Ω. We have that (Xt, . . . , Xt−p+1)′ = Ω′Lt for all t. By inspection
of A and Tp, the previous equation can be written as Tp = AΩ. This Ω is also used to define
the parameter α. We have

N1/2(α̂−α) = N1/2
[
(A′A)−1A′(Tpφ + ε)−α

]

= N1/2
[
(A′A)−1A′(AΩφ + ε)− Ωφ

]

= N(A′A)−1(N−1/2A′ε).
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Define U t = εtLt. Clearly,

N−1/2A′ε = N−1/2
N∑

t=1

U t.

Note that all the elements in Lt depend only on the observations prior to Xt and are therefore
independent of εt. Then E(U t) = 0 and E(U tU

′
l) = 0 for t 6= l. To compute the covariances

of U t, we first define the B × Q matrix R that selects the rows of WB corresponding to
elements of Lt. It is composed of ones and zeros. Letting X ′

t = (Xt, . . . , Xt−B+1), we have
that L′t = X ′

tWBR. Now,

E(U tU
′
t) = σ2E(LtL

′
t)

= σ2E(R′W ′
BX ′

tXtWBR)

= σ2R′W ′
BΓBWBR.

The proof of the asymptotic normality of the sum of U t is the same as in the proof of
Proposition 8.10.1 in Brockwell and Davis (1991), which implies that

N−1/2A′ε ⇒ N (0, σ2R′W ′
BΓBWBR).

If we define TB the same way as Tp but with B columns, we have that A = TBWBR and

N−1A′A = N−1R′W ′
BT ′BTBWBR

→ R′W ′
BΓBWBR,

in probability and thus N(A′A)−1 converges in probability to (R′W ′
BΓBWBR)−1. By one of

Slutsky’s theorems, we obtain the stated result. Finally, α is the coefficient that leads to the
same prediction as with the true model parameter φ.
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