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This paper addresses the vertical partitioning of a set of logical records or a relation into fragments.
The rationale behind vertical partitioning is to produce fragments, groups of attribute columns, that
“closely match” the requirements of transactions.

Vertical partitioning is applied in three contexts: a database stored on devices of a single type, a
database stored in different memory levels, and a distributed database. In a two-level memory
hierarchy, most transactions should be processed using the fragments in primary memory. In
distributed databases, fragment allocation should maximize the amount of local transaction process-
ing.

Fragments may be nonoverlapping or overlapping. A two-phase approach for the determination of
fragments is proposed; in the first phase, the design is driven by empirical objective functions which
do not require specific cost information. The second phase performs cost optimization by incorporating
the knowledge of a specific application environment. The algorithms presented in this paper have
been implemented, and examples of their actual use are shown.

1. INTRODUCTION

Partitioning in database design is the process of assigning a logical object
(relation) from the logical schema of the database to several physical objects
(files) in a stored database. Vertical partitioning subdivides attributes into groups
and assigns each group to a physical object. Horizontal partitioning subdivides
object instances (tuples) into groups, all having the same attributes of the original
object. We refer to the physical objects that are a result of vertical or horizontal
partitioning as horizontal or vertical fragments.

This paper considers the vertical partitioning problem. We use the term vertical
partitioning somewhat loosely, in the sense that we allow fragments to overlap,
so that partitions are not necessarily disjoint. The term clusters has been used in
the literature (e.g., [11]) to refer to nondisjoint fragments; but for the sake of
convenience we shall use the term partitioning to refer to both the disjoint and
nondisjoint cases.
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Vertical partitioning is used during the design of a database to improve the
performance of transactions: fragments consist of smaller records, and therefore
fewer pages in secondary memory are accessed to process a transaction. When
allocating data to a memory hierarchy, vertical partitioning is used to store the
attributes that are most heavily accessed in the fastest memory. In the design of
a multiple-site distributed database, fragments are allocated, and possibly repli-
cated, at the various sites.

Vertical fragments are ultimately stored in the database by using some physical
file structure; the actual implementation of storage structures for fragments is
not discussed in this paper.

In order to obtain improved performance, fragments must be “closely matched”
to the requirements of the transactions. The ideal case occurs when each
transaction “matches” a fragment, because the transaction has to access that
fragment only. If certain sets of attributes are always processed together by
transactions, the design process is trivial. But in real-life applications one rarely
comes across such trivial examples; hence, for objects with tens of attributes, we
need to develop a systematic approach to vertical partitioning. As pointed out in
[11], an object with m attributes can be partitioned into B(m) different ways,
where B(m) is the mth Bell number; for large m, B(m) approaches m™; for m =
15, it is =10°, for m = 30, it is *10%,

Not may previous attempts to solve this problem have been reported, and none
of them has considered all the possible applications of vertical partitioning. The
main contributions of our paper are in the following areas:

(i) We extend the work of Hoffer and Severance [13]. They defined an
algorithm in which attributes of an object were permuted in such a way that
attributes with “high affinity” were clustered together. Affinity among attributes
expresses the extent to which they are used together in processing. Starting from
the algorithm in [13], several algorithms are developed in this paper for deter-
mining the grouping of attributes into nonoverlapping or overlapping fragments.

(ii) We consider the application of partitioning to databases that use one level
of memory or a memory hierarchy. We also consider the application of vertical
partitioning to distributed databases by determining the allocation of fragments
to different sites, allowing nonreplicated or replicated fragments. Thus, we apply
vertical partitioning to a much more general environment in comparison to the
previous work.

(iii) A unique feature of our approach is the two-step design of fragments.
During the first step, vertical partitioning is governed by an empirical notion of
partitioning, where one expects that the need for a transaction to visit multiple
fragments should be minimized; this step does not require detailed cost factors.
During the second step, the design of fragments can be further refined by
incorporating estimated cost factors, which reflect the physical environment in
which the fragments are eventually stored. Cost factors are based on “logical”
performance measures; such measures are not tied to particular access methods
or transaction processing strategies.

Our computational experience with the vertical partitioning algorithms has been
very encouraging. In this paper we present examples of the partitioning of objects
in various ways, using different algorithms under different application environ-
ments. Results are supported by intuitive reasoning, to the extent possible.

ACM Transactions on Database Systems, Vol. 9, No. 4, December 1984.



682 . S. Navathe, S. Ceri, G. Wiederhold, and J. Dou

1.1 Problem Description

We refer to a logical record or a relation as an object to be partitioned; each
object consists of a set of attributes. An object can be vertically partitioned by
considering its projections onto different sets of attributes as new objects, called
fragments.

A binary vertical partitioning (BVP) generates two fragments. A BVP is said
to be nonoverlapping if the intersection of the two fragments is empty, otherwise
it is said to be overlapping.

The following is a general statement of the vertical partitioning problem (VPP):

Database and Transaction Specification. A database consisting of a set of
objects is given in terms of a schema definition. Each object has a set of attributes
with given lengths. A set of transactions is defined a priori for the database; our
assumption of knowing important transactions a priori is consistent with the
common practice of distributed applications and with the notion of precompiled
transactions of the R* Distributed Database System [24], or of transaction
classes in SDD-1 [19]. The transaction specification relevant to the vertical
partitioning of an object consists of the following information:

{i) the frequency (per unit time period) of occurrence of the transaction;
when the same transaction can be issued at multiple sites in a distributed
database, the frequency at each site is specified;

(ii) the subset of the attributes used for retrieval or update by the transaction;
(iii) the total number of instances of the object selected on the average by one
occurrence of the transaction.

This information is typically available after the “logical design” phase of the
overall database design activity (see [14, 22] and [23] for a discussion of the
overall database design process).

Approach. To place the VPP problem, as defined in this paper, in proper
perspective, one may refer to three kinds of decisions:

(i) logical decisions, concerning the structure and composition of the frag-
ments of an object;
(ii) distribution and allocation decisions, concerning the placement of frag-
ments at various storage devices or sites;
(iii) physical decisions, concerning the storage structure (file organization)
and access methods for each fragment.

The use of the terms logical and physical above is only for convenience: it is
difficult to argue where the exact boundary lies between these two types of
decisions. This paper concentrates on the logical and distribution decisions,
assuming that the physical decisions will be taken in a later phase of the design.
This, however, does allow the designer to use some “a priori” knowledge about
physical cost factors in performing the above two decisions.

Figure 1 shows the overall approach to the VPP problem in this paper. Vertical
partitioning will be addressed in two phases:

(1) Empirical design of fragments based on the specified logical access fre-
quencies of the transactions.
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Fig. 1. An overall approach to solving the vertical partitioning probiem (VPP).

(2) Design based on cost factors related to the physical environment; this
produces a refinement of fragmentation and, if applicable, the allocation
of fragments to multiple levels of a memory hierarchy or to multiple sites
of a distributed database.

Phase 1 allows the designer to make “reasonable” decisions in the absence of
detailed information about the cost factors; of course, phase 1 can be skipped if
this cost information is available at the beginning of the design. The early
determination of a “reasonable” fragmentation can be used for determining cost
factors experimentally, which in turn allows us to refine the design in phase 2.
Finally, in some cases, no adequate cost measures are available, and the first
approach is the only feasible one.

In the design decisions of phase 1, we use the notion of a “logical access” to a
record occurrence made by a transaction. This notion models the observation
that in current database systems it is in general not possible to retrieve into main
memory individual attributes, and, therefore, whenever a record occurrence is
accessed, all attributes within it are accessed. After the fragments have been
defined (and allocated), the physical decisions will be made so that the logical
accesses of the most important transactions can be performed efficiently.

In the design decisions of phase 2, we use cost factors that do not depend on
features of specific file or database system organizations. We realize that our
model can be enhanced by using the specific information from a given DBMS,
such as the available storage structures, file organizations, access methods,
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transaction processing strategies, and so on. But such a specific model can only
be used for a particular environment. We address the problem in a general way,
so that our method yields a general, yet reasonable, solution.

Identification of Occurrences Within Fragments. In an environment where a
single object is fragmented and allocated to one or more sites, it is necessary that
every object occurrence (tuple) in fragments be fully identified. This can be done
in two ways:

(i) by replicating the primary key of the object in every fragment;
(i1) by using tuple identifiers (TID), that is, system controlled identifiers for
each tuple of the original object, which are replicated into all the fragments.

If solution (i) is used, the attributes constituting the primary key are not
considered by the following optimization procedure, and are simply prepended to
each fragment after the optimization; if solution (ii) is used, then the attributes
constituting the primary key are treated like any other attributes.

1.2 Previous Related Work

The previous work on vertical partitioning can be grouped into two major
categories. In the first, an optimal solution of the problem is attempted, typically
under restrictive assumptions; in the second, a heuristic approach is used. We
are not aware of any systematic work on the vertical partitioning with overlapping
fragments and of its application in the context of distributed databases.

Hoffer [12] developed a nonlinear, zero-one program for the solution of the
vertical partitioning problem which minimizes a linear combination of storage,
retrieval, and update costs, under capacity constraints assigned to each subfile.
Babad [1] formulated the less restricted vertical partitioning problem for variable
length attributes as a nonlinear, zero-one program, In his model, one subrecord
is designated as the primary record, and all requests are addressed to that
subrecord and “dispatched” to other subrecords later. It is revealing that the final
example considered four attributes only, as the problem soon becomes unman-
ageable.

The simpler problem of partitioning a record between a fast, primary memory
and a slow, secondary memory has been formulated by Eisner and Severance in
[9]. The authors show the isomorphism of this problem with the mincut-max
flow network problem, which can be solved by the standard Ford/Fulkerson
algorithm. A disadvantage of the method is that the graph requires a number of
nodes and edges proportional to the sum of all attributes, users, and individual
attributes required by each user; this number can become very large in real-life
problems. In a follow-up paper, March and Severance [16] extended the previous
model to incorporate block factors for both primary and secondary memories.

Schkolnick [20] considered the problem of clustering records within an IMS-
type hierarchical structure, and determined an efficient solution method whose
complexity is linear in the number of nodes of the hierarchical tree.

Papers of the second category describe heuristic approaches to the attribute
partitioning problem. We agree with Hammer and Niamir [11] that the general
vertical partitioning problem is “heuristic in nature,” and that optimal methods
cannot deal with it adequately.
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Hoffer and Severance [13] measured the “affinity between pairs of attributes,”
and used the bond energy algorithm (BEA), developed in [17], to cluster attributes
according to their affinity. Their attribute similarity function uses the notion of
an attribute being “required for processing,” or “required only if the record is
selected,” or finally “not required.” We feel that in database systems the first
and the second cases cannot be distinguished because all attributes of the same
record are accessed together; therefore, we prefer the notion of logical accesses.
We do, however, distinguish between retrieval and update accesses because, when
an attribute is replicated in different fragments, an update transaction involving
that attribute has to visit all fragments. In [13] attribute length is used in the
evaluation of affinity—on the grounds that it should be less appealing to store
attributes together as their length increases and more appealing as their length
decreases; we do not consider length as a factor in determining affinity.

Hammer and Niamir [11] summarize the problems left unsolved by the ap-
proach in [12] in the following two points:

(i) The BEA determines an ordering of attributes, but it is still left to the
subjective judgment of the designer to decide how to “clump” the attributes
together to form fragments.

(i1) Similarity of pairs of attributes can be inadequate if the similarity among
larger groups of attributes is not taken into account.

Our present paper extends the results of [13] by giving algorithms for the design
of fragments that perform the activity at point (i) automatically and by taking
into account in our algorithms “blocks” of attributes with similar properties,
addressing point (ii).

Hammer and Niamir [11] developed two heuristics to be used in combination.
The “grouping” heuristic starts by assigning each attribute to a different partition;
at each step, all groupings of partitions of the current candidate solution are
considered, and the one that represents the greatest improvement over the current
candidate grouping becomes the new candidate. The process iterates until no
improvement is found over the current candidate. The “regrouping” heuristic
attempts to move attributes from their current partition to another partition.
Grouping and regrouping are iterated until no further benefit can be achieved.
When the set of all partitions is viewed as a lattice, grouping moves attributes
“up” and regrouping moves attributes “sideways” [11].

The major criticism of this approach is regarding the direction in which to
explore the lattice—while Hammer and Niamir proceed “up” by grouping, we
proceed “down” by splitting. The rationale behind this approach is that the
“optimal” solution, in our opinion, is much closer to the group composed of all
attributes, assumed to be our starting point, than to groups that are single-
attribute partitions, as assumed in [11]. A typical solution will not incur too
much splitting because of the disadvantage of storing too many small subrecords.
Thus, in our approach, the “moves” along the lattice will be in a direction that
promises optimality; Hammer and Niamir, on the contrary, recognized that their
approach introduces many discrepancies at the first iterations (in fact, they
introduced the regrouping heuristics to get rid of these discrepancies).

Some other research is related to the present paper. Chang and Cheng discussed
both horizontal and vertical partitioning [6]. Their paper uses the term horizontal
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.

partitions for the issues addressed here (usually called vertical partitioning). They
developed a methodology for the decomposition of an object into fragments, but
did not give a precise evaluation of the factors that should guide the decomposi-
tion. Dayal and Bernstein [8] have studied the fragmentation problem from a
more theoretical viewpoint, giving rules through which objects can be lossless
decomposed into fragments.

Ceri, Negri, and Pelagatti [3] analyzed the horizontal partitioning problem,
dealing with the specification of partitioning predicates and the application of
horizontal partitioning to different database design problems. Ceri, Navathe, and
Wiederhold [4] have proposed a model for designing distributed database schemas
that incorporates the notion of horizontal partitioning. The paper describes a
linear integer formulation of the horizontal partitioning problem without repli-
cation and then presents heuristic algorithms for the decomposition of the
problem into smaller subproblems and the introduction of replication, assuming
the nonreplicated solution as a starting point. The present paper complements
our past work on horizontal partitioning.

Finally, several papers have addressed the general problem of allocating data-
base objects over multiple sites, without taking object partitioning into consid-
eration; among them are [7, 10, 15, 18].

1.3 Algorithms for the Vertical Partitioning Problem—Organization of the Paper

In this section we provide an overview of the structure of the paper by discussing
the various algorithms that are used to solve the VPP. The algorithms are
discussed in detail in Sections 2 and 3.

As shown in Figure 2, the input to the algorithms is twofold:

(a) The logical accesses of transactions to the object.
{b) The relevant design parameters, such as cost of storage, cost of accessing a
record occurrence, cost of transmission.

Input (a) is required for phase 1 of the VPP; input (b) for phase 2.

The given information about the usage of attributes by transactions is initially
converted into a square matrix, called the attribute affinity matrix. This matrix
is diagonalized by the algorithm CLUSTER, described in Section 2.1, which is
essentially the bond energy algorithm [17]. In that paper the algorithm has been
shown to be useful in partitioning a set of interacting variables into subsets such
that the subsets either do not interact or interact minimally.

We distinguish the following three environments for the vertical partitioning
problem:

(a) single site with one memory level;

(b) single site with several memory levels (i.e., devices of different speeds,
capacities, and costs); and

(c) multiple sites.

Problem (a) can be solved by using either nonoverlapping or overlapping frag-
ments. These are produced by the use of the algorithms SPLIT_NONOVERLAP
and SPLIT.OVERLAP, respectively—described in Sections 2.2 and 2.3; these
two algorithms automate the manual grouping of attributes required in [13]. The
algorithms are invoked repeatedly (see Section 2.6) until no further nartition
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Fig. 2. Algorithms for solving the vertical partitioning problem in different application environ-
ments.

occurs; they can use empirical objective functions for phase 1, described in
Sections 2.2 and 2.3, or objective functions based on cost factors for phase 2,
described in Section 3.2,

Problem (b) is a special application of the VPP, where an object may be
resident on secondary memory and only a “highly active” part of it will be stored
in primary (fast) memory. This problem uses the PRI_SEC algorithm, described
in Section 2.4, in place of the SPLIT algorithms mentioned above. The PRI_
SEC algorithm can also use either an empirical objective function for phase 1,
described in Section 2.4, or an objective function based on cost factors, described
in Section 3.3. If the fragments have to be allocated among multiple levels of
memory, the PRI_SEC algorithm needs to be applied at each level (see Section
3.3).

Problem (c) considers the VPP problem in a distributed database environment.
The SPLIT_ZNONOVERLAP algorithm is used to design the fragments in phase
1; the allocation of fragments to sites requires cost factors and must be done in
phase 2. Algorithms MUTLI_ALLOCATE_N and MULTI_ALLOCATE_R, de-
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scribed in Sections 3.4 and 3.5, respectively, determine the allocation of fragments
to sites with and without replication.

Variations of the algorithm are described throughout Section 2; in particular,
the algorithm SHIFT, which produces the pairwise permutation of the first row
and column of the clustered affinity matrix with the last rows and columns, and
the algorithm CLUSTER, which recomputes affinity after producing intermedi-
ate partitionings, can be used at every iteration of the SPLIT algorithms. We
anticipate that these algorithms will be used in a highly interactive setting, where
the designer can select the best combination of algorithms. Conclusions and
further research problems are described in Section 4.

2. ALGORITHMS BASED ON EMPIRICAL OBJECTIVE FUNCTIONS

Vertical partitioning algorithms require the specification of data and transaction
parameters shown in Tables I and IL

Table I presents the parameters that refer to a database object having ten
attributes on a single site. The 0/1 entries in the ATTRIBUTE USAGE (AU)
matrix show whether or not a given attribute is used by a given transaction. The
ACCESS column shows for each transaction the frequency of access to object
instances per unit time period (e.g., a day). The ATTRIBUTE LENGTH (AL)
row gives the number of bytes of each attribute. The TYPE column shows the
type of the transaction, depending upon whether the transaction retrieves (R) or
updates (U) it. In this paper, for ease of notation, we give the same treatment to
attributes within one transaction (i.e., all attributes are considered to be either
retrieved or updated). In an actual environment some attributes may be retrieved
and some may be updated; this calls for recording some additional information
for transactions that involve updates. Dealing with this general case, however,
does not change the basic structures of the algorithms.

Table II shows the parameters for a multiple-site problem with four sites. The
access column is now transformed into an ACCESS MATRIX, giving the number
of transaction accesses from each site.

In the single object (file) VPP problem all the attributes of the object appear
in the attribute usage matrix and attribute length row; in a database VPP
problem, one can either imagine one data usage per object or a global data usage
table of all the transactions against all the attributes. From a global table, one
would select the relevant columns for a given object and all transactions that
utilize at least one attribute from the object, and construct individual data usage
tables.

2.1 Affinity Among Attributes

The first step in the design of a vertical partition is to construct an ATTRIBUTE
AFFINITY (AA) matrix. Figure 1 shows an example of an attribute affinity
matrix derived from the attribute usage in Table I. AA is a symmetric square
matrix which records the affinity among the attributes a;- and a;- as a single
number, aff;-;»(= aff;-;-), defined below.

Let the following parameters be defined for each transaction k:

up; = 1 if transaction k uses attribute a;
= 0 otherwise (u;; is an element of matrix AU).
ACM Transactions on Database Systems, Vol. 9, No. 4, December 1984,
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Table II. Additional Parameters for a Multiple
Site VPP
Multiple site accesses per time
period

Site 1 2 3 4

T1 10 15 0 0

T 2 16 20 10 10

T 3 0 0 15 10

T 4 10 15 0 10

TS5 5 10 5 5

T#6 10 5 5 5

T 5 10 5 5

T8 5 5 2 3

type, = ‘r’ (retrieval transactions)

‘b’ (update transactions).
number of accesses to object instances for one occurrence of transac-
tion & (single site).
ny; = number of accesses to object instances for one occurrence of transac-
tion & at site j (multiple sites).

freq, = frequency of occurrence of transaction k (single site).
freqy; = frequency of occurrence of transaction k at site j (multiple sites).

acc, = nyfreq, (single site)

= Y,; n;freq; (multiple sites).

n;

acc;, measures the number of accesses of transaction k& to the object instances per
time period.
The affinity measure is

aff;;» = > accy.
k| ug;=1Aup»=1

The attribute affinity defined above measures the strength of an imaginary
bond between the two attributes, on the basis of the fact that attributes are used
together by transactions. Note that affinity as defined here is not site specific;
we use affinity information for determining the composition of fragments. In
Section 3 we shall discuss how the site-specific access measures can be employed
to determine the allocation of fragments in distributed databases.

The algorithms developed below will cluster groups of attributes with high
affinity in the same fragment, and keep attributes with low affinity in separate
fragments. One may refine the notion of affinity to take different factors into
account; the elaborate formulation of affinity given in [13] could be used. We
stress that the particular definition of affinity has no bearing whatsoever on the
design of the subsequent algorithms; all they presuppose is that the affinity
matrix has been defined.

2.2 Clustering of Attributes

The AA matrix is processed by the algorithm CLUSTER. The algorithm employs
the bond energy algorithm (BEA) of [17], which is a general procedure for
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permuting rows and columns of a square matrix in order to obtain a semiblock
diagonal form. The algorithm is typically applied to partition a set of interacting
variables into subsets which interact minimally.

The objective function used by the BEA tends to surround large values of the
matrix with large values, and the small ones with small values. It maximizes the
following expression:

E aff,-,-(aff,v,j_l + affi,j“ + aff,'_u + affi+1,j)
ij

where
affi,() = affo’j = aff,-,,,ﬂ = aff,,ﬂJ- = (.

The algorithm is heuristic, and it considers only a small number of the possible
permutations of the columns; it has a complexity O(n*). The algorithm takes
advantage of the following features:

(i) the AA matrix is symmetric, and hence allows a pairwise permutation of
rows and columns, which reduces the complexity;

(ii) because of the definition of aff; ;», the initial AA matrix is already semiblock
diagonal, in that each diagonal element has a greater value of any element
along the same row or column (aff;.;; = aff; ;- and aff;.;; = aff;-;-, for any i’
and i”). This feature motivates, from a practical point of view, the
definition of diagonal elements of the matrix, which have no physical
meaning.

The application of the CLUSTER algorithm to the initial AA matrix of Figure
3a produces the new AA matrix in Figure 3b. The blocks along the main diagonal
of AA correspond to groups of jointly accessed data items which are candidates
for constituting vertical fragments.

So far our procedure is similar to that of [13]. After diagonalizing the AA
matrix, Hoffer and Severance suggest a tentative assignment of groups of attri-
butes to fragments. We have designed the three basic algorithms: SPLIT_NON_
OVERLAP, SPLIT_OVERLAP, and PRI_SEC in order to perform a less sub-
jective clustering of attributes into fragments for the single-site, binary partition-
ing problems;’ extensions of the basic algorithms allow one to deal with n-ary
partitions and multiple sites.

2.3 Partitioning an Object Into Nonoverlapping Fragments

The SPLIT_NON_OVERLAP algorithm uses the clustered affinity matrix to
partition an object into two nonoverlapping fragments. Assume that a point x is
fixed along the main diagonal of the clustered AA matrix, as shown in Figure 3c.
The point x defines two blocks U (for “upper”) and L (for “lower”). Each block
defines a vertical fragment given by the set of attributes in that block.

Starting from the attribute usage matrix, we define A (k) as the set of attributes
used by transaction k as follows:

A(k) = {i|uw = 1}.

! These algorithms were proposed by S. Ceri and implemented by J. Dou and S. Ceri.
ACM Transactions on Database Systems, Vol. 9, No. 4, December 1984.
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Attribute 1 2 3 4 5 6 7 8 9 10
1 75 25 25 0 75 0 50 25 25 0
2 25 110 75 0 25 0 60 110 75 0
3 25 75 115 15 25 15 25 75 115 15
4 0 0 15 40 0 40 0 0 15 40
5 75 25 25 0 75 0 50 25 25 0
6 0 0 15 40 0 40 0 0 15 40
7 50 60 25 0 50 0 85 60 25 0
8 25 110 75 0 25 0 60 110 75 0
9 25 75 115 15 25 15 25 75 115 15

10 0 0 15 40 0 40 0 0 15 40
(a)

Attribute 5 1 7 2 8 3 9 10 4 6
5 75 75 50 25 25 25 25 0 0 0
1 75 75 50 25 25 2% 25 0 0 0
7 50 50 85 60 60 25 25 0 0 0
2 25 25 60 110 110 75 75 0 0 0
8 25 25 60 110 110 75 75 0 0 0
3 25 25 25 75 75 115 115 15 15 15
9 25 25 25 75 75 115 115 15 15 15

10 0 0 0 0 0 15 15 40 40 40

4 0 0 0 0 0 15 15 40 40 40

6 0 0 ] 0 0 15 15 40 40 40
(b)

Attribute 5 1 7 2 8 3 9 10 4 6
5 75 75 50 25 25 25 25 0 0 0
1 75 75 50 25 25 25 25 0 0 0
7 50 50 85 60 60 25 25 0 0 0
2 25 25 60 110 110 75 75 0 0 0
8 25 25 60 110 110 75 75 0 0 0
3 25 25 25 75 75 115 115 15 15 15
9 25 25 25 75 75 115 115 15 15 15

X
10 0 0 0 0 0 15 15 [ 40 40 40
4 0 0 0 0 0 15 15 40 40 40
6 0 0 0 0 0 15 15 40 40 40
(e)

Fig. 3. (a) Initial attribute affinity matrix (AA); (b) attribute affinity matrix in semiblock diagonai
form; (c) nonoverlapping splitting of AA into two blocks L and U.
Using A(k), it is possible to compute the following sets:
T = {k|k is a transaction}
LT ={klA(k) C L}
UT = {k|A(k) C U}

IT=T-{LT U UT)
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T represents the set of all transactions; LT and UT represent the set of
transactions that “match” the partitioning, as they can be entirely processed
using attributes in the lower or upper block, respectively; IT represents the set
of transactions that needs to access both fragments.

CT= Y acc
kET
CL= Y acc
kELT
CU= Y acc
keUT
Cl= Y acc
kelT

CT counts the total number of transaction accesses to the considered object. CL
and CU count the total number of accesses of transactions that need only one
fragment; CI counts the total number of accesses of transactions that need both
fragments. We consider n — 1 possible locations of point x along the diagonal,
where n is the size of the matrix (i.e., the number of attributes). A nonoverlapping
partition is obtained by selecting the point x such that the following goal function
2z is maximized:

max z = CL X CU - CI% 1)

The partitioning that corresponds to the maximal value of the z function is
accepted if z is positive, and is rejected otherwise.

The above objective function comes from an empirical judgment of what should
be considered a “good” partitioning. The function is increasing in CL and CU
and decreasing in CI. For a given value of CI, it selects CL and CU in such a way
that the product CL X CU is maximized. This results in selecting values for CL
and CU that are as nearly equal as possible. Thus, the above z function will
produce fragments that are “balanced” with respect to the transaction load.
Notice that in Section 2.5, where we deal with memory hierarchies, we present a
goal function that attains the opposite result (i.e., produces “unbalanced” parti-
tionings).

Recalling that CT'= CL + CU + ClI is a constant value, it is possible to visualize
the z surface in the space of CL and CU (see Figure 4). Notice that z = 0 in
absence of a partitioning, where either (CL = 0 and CU = CT') or (CU = 0 and
CL = CT) and CI = 0; z takes its minimum feasible value at (0, 0), where
it is z = —CT?, and its maximum feasible value at {CT/2, CT/2), where it is
z = CT?/4. Figure 4 also shows the intersection of z with the z = 0 plane;
partitions corresponding to points in the dashed area are accepted (because it
isz=0).

The proposed algorithm has the disadvantage of not being able to partition an
object by selecting out an embedded “inner” block. For example, consider the
clustering of attributes shown in the AA matrix in Figure 5a, which is a reasonable
result for the bond energy algorithm (the example was actually produced by
applying the BEA algorithm). The best binary partition in this case is the one
that places the attributes between points x1 and x2 on the diagonal into one
fragment, and all other attributes into the other; this solution is not one of those
considered by the SPLIT_NON_OVERLAP algorithm.
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Fig. 4. A surface representing the function z used by the SPLIT_NON_OVERLAP algorithm.

This disadvantage can be avoided by using the procedure SHIFT, which moves
the leftmost column of the AA matrix to the extreme right, and the topmost row
of the matrix to the bottom (see Figure 5b). SHIFT is called a total of n times,
so that every diagonal block gets the opportunity of being brought to the upper
left corner in the matrix; the SPLIT_NON_OVERLAP algorithm is used to
select the best partition after each application of SHIFT. Figure 5c shows the
AA matrix in which, by applying SHIFT three times, the “inside” block of Figure
5a has been taken to the upper left corner. When the SHIFT procedure is used,
the complexity of the algorithm increases by factor n. Experience has shown that
the use of the SHIFT procedure improves the solution of the BVP problem in
several cases.

2.4 Partitioning an Object Into Overlapping Fragments

A binary overlapping splitting consists of two clusters of attributes with a
nonempty intersection. A representation of overlapping clusters on the AA matrix
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Attribute 3 2 1 7 6 4 5 10 8 9
3 10 10 10 0 0 0 0 0 0 0
2 10 10 10 0 0 0 0 0 0 0
1 10 10 10 0 0 0 0 0 0 (]

x1
7 0 0 0 50 50 50 50 0 0 0
6 0 0 0 50 50 50 50 0 0 0
4 0 0 0 50 50 50 50 0 0 0
5 0 0 0 50 50 50 50 0 0 0
x2
10 0 0 0 0 0 0 0 10 10 10
8 0 0 0 0 0 0 0 10 10 10
9 0 0 0 0 0 0 0 10 10 10
(a)

Attribute 2 1 7 6 4 5 10 8 9 3
2 10 10 0 0 0 0 0 0 0 10
1 10 10 0 0 0 0 0 0 0 10
7 0 0 50 50 50 50 0 0 0 0
6 0 0 50 50 50 50 0 0 0 0
4 0 v 50 50 50 50 0 0 0 0
5 0 0 50 50 50 50 0 ()} 0 0

10 0 0 0 0 0 0 10 10 10 0

8 0 0 0 0 0 0 10 10 10 0

9 0 0 0 0 0 0 10 10 10 0

3 10 10 0 0 0 0 0 0 o | 10
(b

Attribute 7 6 4 5 10 8 9 3 2 1
7 50 50 50 50 0 0 0 0 0 0
6 50 50 50 50 0 0 0 0 0 0
4 50 50 50 50 0 0 0 0 0 0
5 50 50 50 50 0 0 0 0 0 0

10 0 0 0 0 10 10 10 0 0 0
8 0 0 0 0 10 10 10 0 0 0
9 0 0 0 0 10 10 10 0 0 0
3 0 0 0 0 0 0 0 10 10 10
2 0 0 0 0 0 0 0 10 10 10
1 0 0 0 0 0 0 0 10 10 10

(e)

Fig. 5. (a) Clustering of attributes with a block “inside” the matrix; (b) the SHIFT procedure after
one iteration; (c) the best nonoverlapping split at the third iteration of the SHIFT procedure.

is given in Figure 6: notice that now two points x; and x, are needed along the
diagonal. The upper fragment comprises the attributes from the first one up to
x;, and the lower comprises the attributes from x; to the last one; attributes
between x; and x, constitute the intersection.
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Attribute 5 1 7 2 8 3 9 10 4 6
5 75 75 50 25 25 25 25 0 0 0
1 75 75 50 25 25 25 25 0 0 0
7 50 50 85 60 60 25 25 0 0 0
2 25 25 60 110 110 75 75 0 0 0
8 25 25 60 110 110 75 7% 0 0 0

X1 momm e e
3 25 25 25 75 75 115 115 15 15 15
9 25 25 25 75 75 115 115 15 15 15
x2
10 0 0 4] 0 0 15 15 40 40 40
4 g 0 0 0 0 15 15 40 40 40
6 0 0 0 0 15 15 40 40 40

Fig. 6. Overlapping splitting into two blocks L and U.

In the algorithm SPLIT_OVERLAP we consider the n X (n — 1)/2 possible
combinations of locating points x; and x, along the main diagonal. The case with
%, = Xy, corresponding to nonoverlapping splittings, is also considered.

The same objective function is used as in Eq. (1) above, but with a different
evaluation of sets LT and UT. Transactions that update attributes from the
intersection I = L N U have to be directed to both fragments in order to preserve
the consistency of replicated data. On the other hand, by sharing the attributes
from I in both L and U, more read transactions can be satisfied by either L or U
alone, as compared with the nonoverlapping case. As before, LT and UT represent
the set of transactions that “match” the two fragments, while IT represents the
set of transactions that need to access both fragments. We have

LT = {k|(typex = ‘T’ A A(k) C L) V (typex = ‘0 A A(k) C (L - 1))}
UT = {k|(typer = T A A(k) C U) V (typex = ‘v A A(k) C (U - D))}
IT =T - (LT U UT).

From the above sets, we compute the counts CL, CU, CI as before and use them
in the goal function (1). To keep the formulation free of cost factors in the
empirical design phase, we do not incorporate the additional storage cost of
attributes in I here. This cost factor is instead taken into account in the cost
optimization phase of Section 3.

Notice that LT N UT is not void (it includes the retrieval transactions that
use attributes from the intersection I only (i.e., (A(k) C I)), and therefore the
equation CT = CL + CU + CI does not hold any more.

It is also possible to use the SHIFT procedure described in the previous section
in the SPLIT_OVERLAP algorithm. As before, the complexity of the problem
increases by factor n.

2.5 Partitioning Into Primary and Secondary Fragments

The PRI_SEC algorithm is designed to produce a “biased” partitioning into a
primary and a secondary fragment. It is applicable to the problem of allocating
an object to multiple-storage devices.
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Attribute 5 1 7 2 8 3 9 10 4 6
5 75 75 50 25 25 25 25 0 0 0
1 75 75 50 25 25 25 25 0 0 0
7 50 50 85 60 60 25 25 0 0 0
2 25 25 60 110 110 75 % 0 0 0
8 25 25 60 110 110 75 75 0 0 0
3 25 25 25 75 75 115 115 15 15 15
9 25 25 25 75 75 115 115 15 15 15

10 0 0 0 0 0 15 15 40 40 40
4 0 0 0 0 0 15 15 40 40 40
6 0 0 0 0 0 15 15 40 40 40

Fig.7. Splitting into a primary (U) and a secondary (L) fragment.

Consider a BVP where a logical object is to be partitioned into two blocks U
and L; U is the block containing the “more important” attributes (i.e., those used
more frequently) and L is the block containing the “less important” ones.
Attributes in U will typically be assigned to the faster (PRImary) memory, while
those in L (or the entire object) to a slower (SECondary) memory.

The PRI_SEC algorithm partitions the clustered AA matrix into two non-
overlapping blocks L and U that meet the above criteria. To do so, it is necessary
to bring the “less important” block to the bottom right corner of the matrix (see
Figure 7). This is accomplished by the procedure SHIFT, described in Section
2.3, called by PRI_SEC. Also in this case, SHIFT is called a total of n times, so
that every block gets the opportunity of being brought to the lower right corner
in the matrix. After each shift of the AA matrix, every point x along the main
diagonal is considered for definining L and U; thus, (n — 1) X n possible solutions
are examined.

Let the following parameters and counts be defined:

li: length of attribute i,
TL =Y I: total length of the object,

UL = ¥ I: length of attributes in the upper block.
ey

CT and CU are computed as in the nonoverlapping problem (see Section 2.3).

The partition evaluation function needs to be asymmetric in order to maximize
the number of transactions that are satisfied by using just the attributes of U.
By the very fact that we are considering this problem, we have assumed that the
entire object cannot be conveniently stored in primary memory. Hence, a coun-
teracting objective is to keep the size of U, in terms of the total length of
attributes in it, to a minimum. This effect is produced by maximizing the following
objective function:

CU UL
== - =2 2
maxEECr T TL @

The splitting that corresponds to the maximal value of the z function is

accepted if z is positive, and rejected otherwise.
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In this function, CU/CT is the ratio of the transaction volume satisfied by the
upper block (U) to the total transaction volume; UL/TL is the ratio of the size
of the fragment defined by U to the size of the object. Whenever z is positive,
the former ratio exceeds the latter, implying that the primary block (U) is able
to carry a fraction of the transaction load that is higher in comparison to its
relative size. Maximizing this function intuitively selects a “good” block U. The
above objective function was selected in preference to several other candidates—
one worth mentioning, which gives similar results, is

CUXTL

CT x UL’ ')

max z =

2.6 Repetitive Use of Binary Partitioning

The solution of the general VPP problem may consist of several fragments; thus
the algorithms that we have presented for the BVP problem have to be extended
from binary to n-ary partitioning. Consider the AA matrix in Figure 8; assume
that the three well-defined blocks shown in the figure correspond to the final
fragmentation. If a nonoverlapping n-ary partitioning is to be accomplished by
an algorithm, the algorithm in general has to try using 1 or 2 or ... n — 1 points
along the diagonal as candidate break points to define the partitions. The
complexity of such algorithm would be O(2"). The complexity of an algorithm
for the overlapping problem would be even greater.

To avoid the combinatorial complexity, we propose solving the VPP problem
by repetitively applying the BVP algorithms. At each iteration the fragments
produced by the algorithms are considered as two distinct objects, and the BVP
algorithm is applied to further partition each of them. This generates two distinct
subproblems. In each subproblem only those transactions are considered by the
SPLIT algorithms that have some intersection with the considered fragment,
and all other transactions are disregarded; thus, decisions about further splitting
are not influenced by irrelevant transactions.? The process terminates when no
further partitioning is indicated.

This approach is suboptimal compared to the general n-ary partitioning, but
it drastically reduces the complexity of the computation of the n-ary VPP; for
large n, the overall complexity can be considered equivalent to the complexity of
the first application of SPLIT. The approach is not only computationally very
attractive, but it takes advantage of the following two facts:

(i) The selection of the best partition at each binary split corresponds to
taking the most promising decision; to this extent, the approach can be
classified as a “greedy” heuristic.

(ii) At each iteration of the solution procedure, new fragments are generated
which give rise to a new BVP for each fragment. These subproblems are
totally independent, in the sense that each considers a fragment as an
object in its own right. Each new subproblem considers all the relevant

2 A slight error is introduced in the overlapping case for retrieval transactions that use attributes
from intersection I only (i.e., A (k) C I), because these transactions are considered in both problems,
while a transaction will eventually use one of the fragments only; this error can be avoided by
arbitrarily assigning these transactions to one of the two fragments.
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Attribute 5 1 7 2 8 3 9 10 4 6
5 75 75 50 25 25 25 25 0 0 0
1 % 75 50 25 25 25 25 0 0 0
7 50 50 85 60 60 25 25 0 0 0
2 25 25 60 110 110 75 75 0 0 0
8 25 25 60 110 110 75 75 0 0 0
3 25 25 25 75 75 115 115 15 15 15
9 25 25 25 75 1% 115 115 15 15 15

10 0 0 0 0 0 15 15 40 40 40
4 0 0 0 0 0 15 15 40 40 40
6 0 0 0 0 0 15 15 40 40 40

Fig.8. A n-ary partitioning.

Attribute 5 1 7 2 8 3 9 10 4 6 Iteration

Part* level
1 X X X 2
2 X X X X 2
3 X X X 1

Attribute 5 1 7 2 8 3 9 10 4 6 Iteration

Part* level
1 X X X 9
2 X X X 9
3 X X X 9
4 X X X 3
5 X X X 3
Attribute 5 1 7 2 3 9 10 4 g |[eration
level
PRI X X X X X X 1
SEC X X X
PRI X X X X 9
SEC X X
PRI X X X X 3
SEC X X X X X X

* abbreviates partition in all subsequent figures.

Fig.9. Results of repetitive application of SPLIT_NON_OVERLAP, SPLIT_OVERLAP, and PRL_
SEC.

transactions that use attributes of the fragment, without any loss of
information from the original problem.

Figure 9 shows the output of the repeated application of the algorithms SPLIT_
NON_OVERLAP, SPLIT_OVERLAP, and PRI_SEC to the partitioning prob-
lem whose input parameters are shown in Table L.
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In Figures 9a and 9b, the output includes the final fragmentation produced by
the SPLIT algorithm. Each fragment in the final solution is associated with the
iteration level in the binary split tree at which that fragment was produced. For
example, in Figure 9a, the fragment including attributes 10, 4, and 6 was produced
at the first iteration, and the remaining fragment including attributes 5, 1, 7, 2,
8, 3, and 9 was further divided into two fragments, including attributes 5, 1, 7
and 2, 8, 3, 9, respectively, at the second iteration.

In Figure 9c, the output includes the solutions produced at each iteration of
the BVP problem using the PRI_SEC algorithm; the final solution is to have
attributes 5, 1, 7, and 2 in the primary memory.

In the nonoverlapping and overlapping algorithms, the iterative approach can
take advantage of the following two options in the BVP algorithms:

(i) the evaluation of the affinity measures can be repeated for each subproblem
independently, by considering only the relevant transactions. Procedure
CLUSTER is then applied to produce the semiblock diagonal form of the
new affinity matrix.

(if) the procedure SHIFT can be called by the SPLIT algorithms; notice that
the use of the procedure SHIFT is mandatory in the case of the PRI_SEC
algorithm.

Computational experience has shown that the repetitive application of CLUS-
TER improves the performance of the partitioning algorithms, because decisions
that are made at each iteration rely on current values of attribute affinity. On
the other hand, the application of SHIFT does not substantially improve the
performance of partitioning algorithms. Recall the discussion in Section 2.3 about
the need of selecting blocks “inside” the affinity matrix for the BVP. In the VPP,
without applying SHIFT, it is likely that “inside” blocks are selected after some
iterations, thus the two versions of SPLIT algorithms, with and without SHIFT,
lead to the same result with a different sequence of splittings. Notice that the
use of SHIFT at the first iteration is very expensive, since it increases the overall
complexity of the VPP problem by factor n.
It is possible to enforce some constraints on the partitioning process:

(i) Impose a limitation on the number of partitions that can be produced; this
constraint is motivated by the limitation on the overall number of files
that can be supported by the system.

(ii) Impose a minimum size on fragments; this constraint can prevent parti-
tioned records from becoming too small.

These constraints and the appropriate use of CLUSTER and SHIFT proce-
dures can be properly controlled by a knowledgeable designer. We contemplate
the use of an interactive design tool in which all these procedures are available
to the designer, intermediate results are shown, and the designer is able to direct
the design sequence.

3. VERTICAL PARTITIONING BASED ON COST OPTIMIZATION

In the previous section we have given algorithms that use empirical objective
functions, suggested by our intuition of the problem. The disadvantage of the
approach is in its lack of precision; such an approach is attractive, however, as it
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Cost factors

Problem type
Ci Cc2 C3 C4
S M H L —
H L H H —_
M L M M H

Fig. 10. The relative importance (L = low, M = medium, H = high) of coefficients C1, C2, C3, and
C4 in different application environments (S = single site; H = single site, several memory levels; M
= multiple sites).

is possible to evaluate the convenience of partitioning without requiring absolute
measurements of costs, which are seldom available or accurate.

As we suggested in Figure 1, the empirical design should be followed by a cost
optimization phase. For each of the three application environments of VPP
defined in Section 1.3, it is possible to estimate the total cost of vertical
partitioning in terms of certain cost factors. They are

Cl. cost of irrelevant attributes accessed within a fragment (per byte);
C2. cost of accessing fragments for retrieval and updates (per access);
C3. storage cost (per byte);

C4. transmission cost (per byte).

Note that the above cost factors are relative and that they represent an estimate
of the design parameters associated with a particular physical environment.
Figure 10 shows the relative importance (low, medium, or high) of these cost
factors in the three types of application environments, as expressed in the
database design literature in general [23] and as it applies to present-day systems.
The relative importance of the factors stems from the following:

(a) Single site with one memory level. The costs C1 and C2 are both related to
unnecessary I/0. The cost C2 also includes the CPU cost of putting the data
from the fragments together and of applying updates simultaneously to frag-
ments. Hence, C2 is the most important cost factor, followed by C1. In compari-
son, C3 is less important because storage is becoming less and less expensive,
and C4 is not applicable.

(b) Single site with several memory levels. In this case, the costs of accessing
fragments and of storage are both equally important, since there is a trade-off
between them. C1 is relatively less important, and C4 is not applicable.

(c) Multiple sites. In the case of a distributed database, the transmission cost
is dominant {2, 5]; however, local access and storage costs cannot be disregarded
[21]. Therefore, we have shown C4 as having high importance, C2 and C3 as
having medium importance, and C1 as having low importance.

In the following, we give simple expressions for weighing these cost factors in
the three types of problems. The objective function we will consider throughout
the rest of the paper is

minz = ), wc;. 3)
1=si=<4
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The VPP and solution algorithms for a specific problem are identified by a five-character subscript:
11, 12,33, 14, 5
il: single site, one memory level
single site, several memory levels (heterogeneous devices)
multiple sites
multiple sites, nonreplicated
multiple sites, replicated
single site
nonoverlapping
overlapping
several memory levels
algorithm SHIFT used
algorithm SHIFT not used
algorithm CLUSTER used
algorithm CLUSTER not used

i2:

i3:

i5:

lalwl ozl wmz22Twn

Fig.11. Classification of the VPP and of options within algorithms.

This objective function can be used in the SPLIT_NONOVERLAP, SPLIT_
OVERLAP, and PRI_SEC algorithms instead of the empirical objective functions
(1) and (2) described in Section 2.

3.1 Notation and Definitions

This subsection is devoted to the definition of some additional notation. It
includes a summary of some notation from Section 2, which is retained. To
denote one particular problem and solution method, we use five “switches,”
explained in Figure 11. Subscripts i1, 2, i3 define the nature of the problem,
while subscripts i4, i5 define the choice of algorithms used for the solution. In
Figures 12, 13, 15, and 16 the “problem type” column on the left contains this
five-character subscript.

In a BVP problem, the sets LT and UT include the transactions that can be
entirely processed in the upper (U) or lower (L) block; their definition is the
same as in Section 2.4 (overlapping fragments), and it applies also to the .
nonoverlapping and the primary-secondary fragments, where the intersection
I =L N U is void. The set IT includes transactions that need to access both
fragments.

LT = {k|(typer = ‘0’ A A(k) T L) V (type, = ‘W A A(k) € (L — 1))}
UT = {k|(type, = 0" A A(k) C U) V (type, = 0’ A A(k) C (U — D)}
IT=T-(LTUUT)
The set S, includes the blocks required by a given transaction k; it is
Sy=|{L}if ke LT
S, = (U} if k€ UT
S.=1{L, UlifkeIT
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The counts CL and CU weigh all transactions that need to access either block L
or block U; the count CI weighs transctions that need to access both blocks.

CL= Y acc,
keELT
CU= Y acc
keUT
Cl= Y acc
kREIT

In the multiple site problem, we use F to denote a fragment being allocated and
allocy to denote the allocation sites for fragment F; allocr may contain either a
single site in nonreplicated VPP or multiple sites in the replicated VPP.

3.2 The VPP for a Single Site with One Memory Level

The partitioning of an object on a single site with homogeneous devices requires
the repeated use of the SPLIT algorithms, introduced in Sections 2.3, 2.4, and
2.6.

The specific weight factors for this problem, to be used in the objective function
(3), are

wl =Y acc; Y Y A

k FES;, (EF)A(i§AR))
w2=CL+CU+2xCI
w3 = E l,'

iel

The weight w1 sums the length of irrelevant attributes accessed by transactions;
it evaluates the inefficiency of the transfer from mass memory to main memory,
where only relevant attributes will be used.

The weight w2 counts the number of accesses made by transactions to all the
partitions; it evaluates the number of input-output operations that are required,
assuming that this number is proportional to the total number of the records
accessed.

The weight w3 counts the amount of memory that is necessary to store the
overlapping attributes, which are replicated on both partitions.

Figure 12 shows an application of the VPP for a single site, overlapping
partitioning with one memory level which uses the goal function (3); the cost
factors were set as follows: C1 = 1, C2 = 1000, C3 = 100. In the figure, the result
of all possible combinations of use of the SHIFT and CLUSTER procedures is
shown. Notice that the use of CLUSTER reduces the number of partitions in
the result.

3.3 The VPP for a Single Site with Multiple Memory Levels

The partitioning of an object between a fast (and costly) and a slow (and cheap)
memory device requires the repeated use of the PRI_SEC algorithm, described
in Sections 2.5 and 2.6. The cost C1 is deemed irrelevant to this problem; the
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Problem type: Attribute 5 1 7 2 8 3 9 10 4 6 Iteration
S-0-- Part level

1 X X X 2

2 X X 2

3 X X X 2

4 X X X X X X X 2
Problem type: Attribute 5 1 7 2 8 3 9 10 4 6 Iteration
S-0S- Part level

1 X X X 2

2 X X 2

3 X X X 2

4 X X X X X X X 2
Problem type: Attribute 6 10 4 9 3 8 5 7 1 2 Iteration
S-0-C Part level

1 X X X X X X X 2

2 X X X X 2

3 X X X X X X X 1
Problem type: Attribute 5 1 8 9 10 4 7 6 2 3 Iteration
S-08C Part level

1 X X X 2

2 X X 2

3 X X X X X X X X 1

Fig.12. The use of the objective function (3) in the SPLIT_OVERLAP problem, combining in all
possible ways the use of SHIFT and CLUSTER procedures.

weight factors to be used in the objective function (3) are

w2 = CL
wld = 2 l,‘
[1=383

The weight w2 counts the number of accesses made by transactions to the
secondary memory, while w3 counts the amount of data in the fast memory.

A generalization of the primary-secondary memory allocation problem, the
memory hierarchy allocation problem (MHAP), is defined as follows: “Partition
an object into m levels of memory such that data is allocated from level 1 to level
m, 1 being the costliest and m being the cheapest memory, so as to minimize the
total cost of storage and processing for that object.”

The proposed solution method consists of invoking PRI_SEC m — 1 times;
each time a pair of memories is considered, starting from the two levels m and
m — 1. After having solved the first problem, the primary partition is temporarily
assigned to memory m — 1 and the secondary partition is assigned to memory m.
Then, memories m — 2 and m — 1 are considered, and the fragment assigned to
memory m — 1 is evaluated for further partitioning. If at some iteration i no
partition is assigned to the memory at level i — 1, the solution method proceeds
considering the two noncontiguous levels of i and ¢ — 2. The procedure terminates
when level 1 is reached.
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Problem type: Attribute 3 9 2 8 7 5 1 10 4 6 Iteration

H level

levels 1 and 2 PRI X X X X X 1
SEC X X X X X

levels 2 and 3 PRI X X X X 1
SEC X

Fig.13. The use of the PRI_SEC algorithm to solve the MHAP problem.

Clearly, each partitioning problem is characterized by a different value of the
coefficients C2 and C3, which reflect the differences in price and performances
of the considered pairs of memories. Figure 13 shows an example of the MHAP
problem with three levels. The cost factors between level 1 and 2 were set to C1
= 100, C2 = 1; those between levels 2 and 3 were set to C1 = 20, C2 = 3. Note
that at each iteration for the given two levels of memory it is important to
consider the ratio of costs, and not the absolute cost.

3.4 The VPP on Multiple Sites with Nonreplicated Allocation

The VPP on multiple sites with nonreplicated allocation is solved by a repetitive
use of the MULTI_ALLOCATE_N algorithm described in Figure 14a. The
algorithm applies to an object O and produces a nonoverlapping binary split into
two blocks L and U; the splitting process is the same as in the SPLIT_
NONOVERLAP algorithm, and can take advantage of the use of SHIFT or
CLUSTER algorithms as described before.

For each possible partition L and U, the algorithm attempts all possible
fragment allocations (i.e., m? cases for m sites) and selects the pair with the least
cost. The weight factors w1, w2, and w3 are computed in the same way as for
the single-site, homogeneous devices VPP (see Section 3.2). However, in a
multiple-site problem the transmission cost C4 is predominant; the weight factor
w4 is given by

wi=Y ¥ Y  myfreqy Y L
& FES), j|allocy#j i€FNAR)

The weight w4 counts the number of bytes selected from records on remote
sites that need to be transmitted to the transaction site.?

A table of partitions versus allocations is maintained, which stores the alloca-
tion sites for each fragment produced by the algorithm. If an object O is split
into two objects L and U by the algorithm, then the entry for O is deleted, and
two entries for L and U are inserted. The process of splitting is repeated until no
partition may be split with any further gain.

Figure 15a shows the solution of the nonreplicated, multiple-site VPP problem,
whose input parameters are specified in Tables I and II. Cost factors were set as
follows: C; = 1, C; = 100, C3 = 10, and C, = 1000.

3This simple transaction model applies to typical applications using distributed file systems or
unsophisticated distributed databases, where the system collects the information at the site of the
transaction and then executes the transaction there. A more complicated transaction model, which
is more realistic for advanced systems, is in [4]).
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procedure MULTI_ALLOCATE_N (0)

begin
for all points x on the diagonal of clustered matrix AA (determining L and U) do
for all possible allocations j1 of L do
for all possible allocations j2 of U do
begin
evaluate 2(L, U, j1, j2)
if there is improvement then remember L, U, j1, j2
end
if there was improvement then
begin
delete (0, jO)
store (L, j1)
store (U, j2)
MULTI_ALLOCATE_N (L)
MULTI_ALLOCATE_N (U)
end
end

Table of partitions and allocations

Allocation
jo

Partition
0

Fig. 14(a). Algorithm MULTI_ALLOCATE_N.

procedure MULTI_ALLOCATE_R(F)
begin
start from allocy = nonreplicated solution of MULTI_ALLOCATE_N
repeat
try all sites not in allocr
let j be the most beneficial
allocy = allocp U j
until
no further benefit
end

Fig. 14(b). Algorithm MULTI_ALLOCATE_R.

3.5 The VPP on Multiple Sites with Replicated Allocation

To consider the replicated allocation in the multiple-site case, we first solve the
problem of nonreplicated partitioning using the algorithm MULTI_ALLO-
CATE_N; then we apply the algorithm MULTI_ALLOCATE_R to each frag-
ment in the solution of that problem independently. The algorithm MULTI_
ALLOCATE_R is shown in Figure 14b.

The MULTI_ALLOCATE_R algorithm applies to each normalized fragment
F individually, and proceeds by allocating it to the sites that are not in allocg,
until no further benefit is obtained. The algorithm can be classified as a “greedy”
heuristic, as at each iteration the most convenient site is selected for replication.

The objective function considers only those costs that depend on the degree of
replication of a single fragment F’; cost C1 is irrelevant, and the following weight
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Problem type: Attribute 5 1 7 2 8 3 9 10 4 6 Allocation Depth level
MNN-—3 Part 1234

1 XXXXXXX X 1

2 X XX X 1

Fig. 15(a). Results of the application of the algorithm MUTLI_ALLOCATE_N.

Problem type: Attribute 5 1 7 2 8 3 9 10 4 6 Starting Final
MRN—3 Part allocation allocation *
1 2 3 4 1 2 3 4
1 XXXXXXX X X
2 X XX X X X

Fig. 15(b). Results of the application of the algorithm MULTI_ALLOCATE_R.

factors are computed:

w2 = ) Y nfreqs;
k| (typer="0")A(A(k)NF=®) j

w3 =Y |allocy| Y I

i€P iep
w4 = 2 2 nkjfreqkj E li.
E|A(R)NF#® j|jeallocy iE(FNA(K)

The weight w2 counts the number of update operations that have to be applied
to each copy of the replicated fragment in order to preserve their mutual
consistency.

The weight w3 counts the amount of memory that is required for storing the
replicated copies. The weight w4 counts the number of bytes that need to be
transmitted to the site of the transaction, as in Section 3.4.

Notice that retrieval transactions are now likely to find a local copy of the
required information, thus w4 decreases with the increase of replication; however,
update and storage costs, represented by w2 and w3, grow with the number of
copies, thus establishing a trade-off.

Figure 15b shows the results produced by applying the MULTI_ALLOCATE_
R algorithm to the solution of the nonredundant allocation problem shown in
Figure 15a. It shows that the algorithm finds it profitable to allocate an additional
copy of fragment 2 at site 3.

4. CONCLUSIONS

In this paper we have presented several algorithms for determining vertical
fragments and discussed their application to the design of databases. All the
algorithms described in the paper have been implemented in PASCAL; the run
for the final example shown in Figure 16, with 20 attributes and 15 variables,
used only 1 second of CPU time on a DEC-2060 system.

Our approach is similar to that of Hoffer and Severance [13], in that we use
the notion of affinity of attributes to permute them and produce an initial
clustering. However, we have designed algorithms for an automatic selection of
vertical fragments, which substitutes for the designer’s subjective judgment, as
proposed in [13].
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Clustering of attributes on affinity matrix

Attribute 4 6 8 1 5 9 13 12 2 14 18 17 11 10 3 7 19 20 15 16
4 65 55 55 55 55 5 O 0 5 10 O 0 010 5 15 10 10 0 O
6 55 65 55 8 65 15 10 10 15 0 0 0 ©0 01 5 0 0 0 O
8 55 55 95 8 70 5 0 0 5 0 10 10 2515 5 5 0 0 10 10
1 55 65 85 105 80 25 10 10 15 0 10 0 15 15 15 5 0 0 0 10
5 55 65 70 80 90 15 10 10 25 10 O O 10 0 15 5 10 0 0 O
9 5 15 5 25 15 75 60 80 65 50 10 0 0 0 15 5 0 0 0 10
13 6 10 0 1010 60 75 75 75 65 15 ¢ 0 0 10 0 0 15 15 15
12 010 0 1010 60 75 75 7 65 15 0 0 0 10 O 0 15 15 15
2 5 15 5 1525 65 75 75 90 75 15 0 10 0 15 5 10 15 15 15
14 10 0 0 O 10 50 65 65 75 8 15 0 10 10 O 10 20 25 15 15
18 0 0 10 10 0 10 15 15 15 15 90 65 60 50 50 50 5 20 30 40
17 0 010 0 0 0 O 0O O 06560 7565 65 66 5 5 15 15
11 0 02 1510 0 0 0 10 10 8 75 100 80 85 8 10 0 10 10
10 10 015 15 0 0 0 0 O 10 5 8 8 9 65 75 10 10 0 O
3 5 15 5 1515 15 10 10 15 O 50 65 65 65 80 70 0 0 0 O
7 5 5 5 5 5 5 0 0 5 10 50 65 65 75 70 8 10 10 0 0O
19 1 0 0 010 0 O 0 10 20 5 5 10 10 0 10 75 65 55 55
20 10 0 0 0 O 0 15 15 15 25 20 5 0 10 O 10 8 80 70 70
15 0 010 0 O 0 15 15 15 15 30 15 10 0 0 0 55 70 80 80
16 0 010 10 0 10 15 15 15 15 40 15 10 0 O 0 55 70 80 90

Problem type: S-N

Atiribute 4 6 8 1 5 9 13 12 2 14 18 17 11 10 3 7 19 20 15 16 Iteration
Part level
1 X X XXX 1
2 X XX X X 2
3 XXX XXX 3
4 XX X X 3

Fig. 16(b). Solution of the final example (single site, nonoverlapping VPP).

The algorithms do not require very sophisticated input data. In fact, according
to the well-known 20-80 rule, a limited number of important transactions (20
percent) typically account for most of the use of the database (80 percent), and
therefore it is sufficient to collect input data for them. Moreover, we have kept
the required information about the database usage to a minimum; we require
only the specification as to whether an attribute is used by a transaction and the
number of logical accesses to the object being considered.

We postulate the integration of these algorithms into an interactive design
tool. With such a tool, the designer will typically be able to select a proper mix
of algorithms and to use partial results to steer the design appropriately. This
tool is applied for the initial design of the database, or for the reconfiguration of
the database at an intermediate stage of its life cycle.

Further extensions of this work will be in the direction of developing site-
specific affinity measures for distributed databases, of incorporating different
transaction processing strategies, and of considering new applications of vertical
partitioning, such as parallel processing of transactions.
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