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Today a considerable amount of video data in multimedia databases requires so-
phisticated indices for its effective use. Manual indexing is the most effective method
to do this, but it is also the slowest and the most expensive. Automated methods have
then to be developed. This paper surveys several approaches and algorithms that
have been recently proposed to automatically structure audio–visual data, both for
annotation and access.C© 1999 Academic Press
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1. INTRODUCTION

Digital video is becoming an increasingly common data type in the new generation
of multimedia databases [1–14]. Many broadcasters are switching to digital formats for
broadcasting, and some of them already have a significant amount of video material avail-
able in digital format for previewing. Improved compression technologies and increased
Internet bandwidth have made webcasting a real possibility. The production of multime-
dia material distributed on CD-roms has been increasing dramatically during the last few
years and the introduction of the new DVD technology is now opening new possibili-
ties. The ever growing amount of digital video poses new challenges, both of storage and
access, as vast repositories are being built at an increasing pace. As shown by the Web
explosion, the usefulness of vast repositories of digital information is limited by the ef-
fectiveness of the access methods. The key issues are those ofcontents descriptionand
of information space navigation. While textual documents in digital form are somehow
self-describing (i.e., they provide explicit indices, such as words and sentences that can
be directly used to categorize and access them), digital video documents do not provide
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such an explicit content description. In order to access video material in an effective way,
without looking at the material in its entirety, it is therefore necessary to annotate the video
sequences, providing an explicit content description targeted to the user needs. Digital
video is a veryrich medium, and the characteristics into which users may be interested
are quite diversified, ranging from thestructureof the video, i.e. its decomposition into
shots and scenes, to the most representative frames or sequences, the identity of the people
that appear in it, their movements and dialogues, and the accompanying music and audio
effects.

Indexing digital video, based on its content, can be carried out at several levels of ab-
straction, beginning with indices like the video program name and name of subject, to
much lower level aspects of video like the locations of edits and motion properties of video
[15, 16]. The cost of manually generating such indices is inversely related to the level of
abstraction of the index. For example, the indexing effort for video library applications
which model video by title is much less than the indexing effort for a multimedia authoring
application which indices video based on the content and style of the shots used to compose
the video. Manual video indexing requires the sequential examination of the entire video
clip in order to annotate it. This is a time-consuming, subjective, and expensive process;
an hour long footage can take up to 10 h (depending on its contents) to be completely
described and archived. The automation of the indexing process becomes then essential
when the granularity of the video access increases.

A growing body of research studies the problem of how video indexing could benefit
from the use of automated procedures [17–20] to make the process faster and cheaper. It is
in this context that the use of computer vision techniques can help. A diagram showing the
video analysis flow is reported in Fig. 1, where the contributions fromimage processing
techniques are put into the wider context of video annotation and retrieval.

The most basic contribution is to automatically decompose the video stream into shots.
This decomposition suggests temporal limits for the annotations to the professional arch-
ivists, and eases nonlinear access to the video stream. Motion analysis techniques can
be used to classify camera work (e.g. panning) and to detect and track moving objects.
Besides providing useful indices for subsequent retrieval, this analysis is useful for the new
compression standard MPEG-4 [21], which is able to code separately multiple video objects.
These objects could then be accessed individually to assist the presentation and manipulation
of the original scene in a flexible way. General object recognition is still outside the reach of
computer vision techniques, but, within limited domains, object detection and recognition
are now possible. Two important examples are faces and captions, which often have the role
of highlights(e.g. within newscasts). Once shots have been detected, representative frames
(key frames) can be selected automatically, using image processing techniques. A video
stream can be then abstracted and transformed into a (very) reduced set of still images.
Audio analysis can also provide dialogue transcripts with important hints to video content.
The information available at this stage can be used to structure the video into scenes and
story units, which are at a semantic level appropriate for video browsing and retrieval. The
usefulness of key frames is not limited to the compact presentation of video sequences or
to the computation of the abstract. They can be described by their color distribution or
texture quality and can be accessed using novel techniques such as visual query by example
[22–25]. The importance of annotation of multimedia material is so high that a new member
of the MPEG family, MPEG-7:Multimedia Content Description Interface, has been created
to unify the efforts in the field.
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FIG. 1. The structure of a computer-assisted video indexing system. The shaded blocks are analyzed in the
present paper.

Research in (semi)automated video indexing will then be useful in the following video
management tasks:

• support to the activity of professional video archivists;
• packaging of annotated and compressed audio visual material (MPEG-4,7)
• development of video browsing/retrieval tools and interfaces for edutainment and video

production.

The structure of this paper is based on the diagram of Fig. 1. Section 2 presents techniques
for the segmentation of a video stream into shots and Section 3 considers the extraction
of highlights. Motion analysis is considered in Section 4, while key framing and video
structure recovery are covered in Sections 5 and 6, respectively. Each section presents a
set of algorithms and is ended by some remarks which provide an assessment of current
technology and discuss open issues. The state-of-the-art is then summarized and put into
future perspective in the final section. A short glossary ends the paper.

2. SHOT DETECTION

Indexing text requires the use of words and phrases as pointers to sentences, paragraphs,
pages or documents. In a similar way, indexing video material requires the selection of
key frames and sequences as pointers to higher level units, such as scenes or stories. The
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FIG. 2. An example of cut detection using luminance histogram differences.

most basic video unit, after the single frame, is theshot, a contiguously recorded sequence.
Different shots are concatenated in a variety of ways, the simplest being acamera break
or cut, characterized by an abrupt change from one frame to the next (see Fig. 2). Shots
can also be concatenated by edited transitions such as fades in/out, dissolves, and wipes
(see Fig. 3). Several algorithms for the detection of shot boundaries are presented in this
section.

2.1. Cut Detection

Recent research on cut detection may be grouped in two categories. The first category
consists of cut detection methods that use video in uncompressed form. The second category
consists of methods that directly detect cuts in compressed video.

2.1.1. Algorithms on Uncompressed Video

The methods in this category are generally frame difference methods based on pixel-by-
pixel comparison or on the distribution (histograms) of image values (color or luminance)
on the entire frame (or on a set of covering subregions). Many algorithms rely on the use of
histogram comparisons, because the global nature of histograms makes them less sensitive
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to the typical changes within a shot, thereby reducing the number of false positive with
respect to pixel-by-pixel comparisons.

A compilation of several algorithms is presented in the following paragraphs.

• Three frames approach [26]. Letr , s, t be three consecutive frames andDrs, Dst the
measure of frame dissimilarities; the observer motion coherence OMC, defined by

OMC(r, s, t) =
∣∣∣∣Drs − Dst

Drs + Dst

∣∣∣∣ (1)

returns a value close to one if there is a change in the three frames under consideration, and
a value close to zero otherwise. The authors proposed the two dissimilarity measures,

D′i j =
∑

x,y[Fi (x, y)− Fj (x, y)]2√[∑
x,y F2

i (x, y)
][∑

x,y F2
j (x, y)

] (2)

D′′i j =
∑

x,y |Fi (x, y)− Fj (x, y)|∑
x,y |Fi (x, y)+ Fj (x, y)| , (3)

whereF(x, y) represents the image luminance at pixel of coordinates (x, y).
• Pixel-by-pixel comparison [27]. The absolute intensity difference between correspond-

ing pixels of consecutive frames is computed and a camera break is assumed whenever the
percentage of pixels whose difference is above a given value is greater than a given threshold.
The same method can be applied to color pixels, e.g. by taking the average RGB differences.
A much more complex algorithm based on a statistical model of therange of pixel value
changesis given in [28].
• Likelihood ratio [27]. The comparison operates at the level of blocks. An image is

subdivided into a set of blocks and a likelihood ratioLi is computed for each corresponding
block, in t th and (t + 1)th frames,

Li =
[
σ 2

t + σ 2
t+1

2 + (µt −µt+1

2

)2]2

σ 2
t σ

2
t+1

, (4)

whereµ is the arithmetic average andσ is the standard deviation of the intensity histograms.
A camera break is assumed when a sufficient fraction of blocks satisfyLi >v, wherev
represents an appropriate threshold.
• Histogram comparison [27]. The area between the intensity (or color) distribution of

two consecutive frames is computed:∑
j

|Ht+1( j )− Ht ( j )|. (5)

A camera break is assumed whenever the area gets greater than a given threshold. Color
distributions (using the RGB space) are computed by using a six-bit code (two bits per
component). A variant to using the area between the distributions is given by theχ2-test to
compare two binned distributions,∑

j

(Ht+1( j )− Ht ( j ))2

Ht+1( j )+ Ht ( j )
, (6)
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where H ( j ) represents thej th bin. Another commonly used formula is the so-called
histogram intersection, ∑

j

min(Ht+1( j ), Ht ( j ))

max(Ht+1( j ), Ht ( j ))
. (7)

Other histogram differencing formulas are used and some of them are compared in [29].
Differences among the separate histograms of multiple color components can be combined
through a weighted average. The performance of the algorithm depends on the chosen color
space; several color spaces (RGB, HSV, YIQ, L∗a∗b∗, L∗u∗v∗, Munsell) are compared in
[29] and the Munsell space is found to be the best performer. Equations (5), (6), (7) can be
used for multidimensional histograms (see also [30]) with no modifications.
• Incremental ratio [31] of between frames differences:

δ = D( ft+1, ft )

D( ft , ft−1)
. (8)

The difference between two successive frames is obtained by dividing each frame into a
grid of n2 subregions, each of them originating a difference valueDj according to

Dred
j ( ft , ft+1) =

∑
i

ai

∣∣mred
i (t + 1)−mred

i (t)
∣∣ (9)

and similarly for the other color components, wheremred
i (t) represents thei th moment

of the histogram of thered component for thet th frame, anda is a vector of parameters
experimentally tuned. The between frames difference is computed by adding the three color
differences for each region, discarding thek largest values, and averaging the remaining
ones. Ifδ is above a given value, a camera break is assumed.
• Yakimovsky likelihood ratio test [26].

y =
(
σ 2

0

σ 2
t−1

)(
σ 2

0

σ 2
t

)
, (10)

whereσ 2
t−1, σ

2
t represent the variances of the pixel luminance values of the past and current

frames whileσ 2
0 is the variance of the pooled data from both the histograms. A camera

break is said to occur between the previous and the current frames if the value ofy exceeds
a certain threshold.
• Kolmogorov–Smirnov test [26]. It is based on calculating the cumulative distributions

C1(x),C2(x) of the pixel luminances in two consecutive frames and measuring the maximum
absolute difference between them. If the distributions are approximated by histograms, a
defective estimate of the distance is obtained by

D = max
j
|C1( j )− C2( j )|, (11)

where j denotes the bins.
• Net comparison algorithm [32]. A set of nonoverlapping image regions is considered.

The regions, which do not need to cover the whole image, are compared at successive frames
by computing the difference of the average luminance values. Whenever the number of
regions exhibiting a difference above a given threshold exceeds a predefined level, a camera
break is assumed.
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Multipass approaches are also introduced in [27] to reduce the computation time. A first
scan of video material is done using a reduced threshold for camera breaks and undersam-
pling in time the available frames. The video stream is then examined in correspondence
of the candidate breaks at full temporal resolution.

2.1.2. Algorithms on Compressed Video

Increased efficiency is the major motivation for the second category of methods, using
compressed video. Certain coefficients in encoded video, e.g. DCT coefficients in MPEG
or Motion-JPEG video [33], carry information that can be directly used to detect cuts,
saving unnecessary decompression. The MPEG coding standard relies on three different
kinds of frames: intrapictures (I), predicted pictures (P), and interpolated pictures (B–for
bidirectional prediction). A frame of type P is predicted from the previous I frame, while
a B frame is predicted and interpolated from its preceding and succeeding I and P frames.
The residual error after motion compensation is then DCT coded. When a block-residual
error exceeds a given threshold, motion compensation prediction is abandoned and straight
DCT coding is used. High residual error values are likely to occur in nearly all blocks across
a camera shot boundary, making the fraction of blocks for which no motion prediction is
available a good indicator of the presence of a camera break [34]. The same algorithm can
be applied to H.263 streams [35] that also rely on motion compensation for coding. Similar
algorithms are presented in [36, 37].

A method using a compressed video has been proposed in [38] and is based on the
correlation between DCT coefficients of consecutive frames of Motion-JPEG compressed
videos. A subset of DCT blocks corresponding ton connected regions are chosen for the
comparison. For each block, a random subset of the AC coefficients is chosen and used
to derive a vector representation for each frame in the sequence. Successive frames are
compared using the inner product9 of the corresponding vectors. When the frames are
similar,|9| ≈1. The value ofD= 1− |9| can be used as a measure of frame dissimilarity;
a cut is detected wheneverD exceeds a predefined threshold. A variant is presented in
[34]; frame dissimilarity is computed by taking a normalizedL1 distance of the vectors
and applied to the I frames of an MPEG stream. It should be noted that the low temporal
resolution inherent to the use of I frames may introduce false positives that must be removed
by subsequent processing.

Another algorithm working on a compressed Motion-JPEG video is presented in [39];
camera breaks are characterized by steps in the size of the compressed frames.

Patel ad Sethi [40] use an MPEG-1 stream to detect video shots. Besides comparing
the global luminance histograms obtained from I frames, two additional comparisons are
performed using both the row and the column intensity histograms. The authors use only
I frames because they are the only accessible frames in MPEG video that can be pro-
cessed independently of other frames. The histograms are computed using the first coef-
ficient of each 8× 8 DCT encoded block, which represents the average block intensity.
A Gaussian averaging is performed on the histograms to reduce the sensitivity to inten-
sity changes due to illumination and small motion. The comparison is done by apply-
ing theχ2-test on the three pairs of histograms. The significance probability that each
histogram pair is drawn from the same distribution is computed. The three significance
probability values are then used to generate two comparison decisions for cut and gradual
transitions.
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A different approach that relies on an implicit static model is proposed by Ardizzoneet al.
[41]. They use a three-layer perceptron, whose input patterns are subsampled luminance
images derived from an MPEG video stream.

The main advantage of methods working on compressed videos is that they do not require
a complete reconstruction of the image. Some of the above algorithms only work on DC
coefficients. This is equivalent to working on a subsampled version of the original image:
the complexity is then 64 times smaller (as approximations to the DC coefficients for P and
B MPEG streams are cheap to compute).

2.2. Gradual Effects Detection

Gradual transitions (edits) are an important class of effects that includes fades (in/out),
dissolves (cross-fades), mattes, and wipes (seeGlossary). A different kind of transitions
is due to panning and zooming, but these are not usually related to shot changes. Up to
the 1950s, dissolves were considered very specific punctuation signs within the filming
language; a dissolve, for example, used to indicate a place shift within the same action or a
flashback. The presence of specific effects could then be used as a clue for detecting scene
changes, as opposed to simple shot detection.

The development of modern video editing technology has increased the use of edited
transitions in video production. While the above-mentioned four classes of editing effects
do not cover the full space of video editing effects (e.g. Adobe Premiere, a software tool for
video editing, provides you with more than 75 different transition effects), they represent
the most widely used effects. Furthermore, gradual transitions occur less frequently than
cuts, reducing the impact of gradual effect detection on the overall performance of a video
analysis system.

Several algorithms have been proposed so far to detect gradual transitions. Some of them
are reviewed in the following sections.

2.2.1. Plateau Detection

Comparison based on sucessive frames alone is not adequate for the detection of gradual
transitions because changes are small when an edit is present. An alternative is to use every
kth frame instead, i.e. to perform uniform temporal subsampling. However, the larger sepa-
ration between two frames, used for comparison, implies larger difference statistics within a
shot, especially in the case of camera/object motion. The phenomenon of a very sharp peak
in the middle of very small variations no longer holds. A detector for gradual transitions can
be obtained as follows [42]. Let us compare thei th frame to the following (i + k)th frame.
We obtain a sequence of delayed interframe distances{Dk

i = d(Xi , Xi+k)}. If we choose
k greater than the length of the gradual transition, measured in frames, the sequence{Dk

i }
exhibits a plateau of maximal width. A significant plateau at locationi is characterized by a
sequence of similar valuesDk

j , j = i − s, . . . , i + s, which are consistently higher than the
preceding or successive values (see Fig. 3):

Dk
i ≥ l × Dk

i−bk/2c−1 or Dk
i ≥ l × Dk

i+bk/2c+1, l À 1. (12)

The value ofs is proportional to the difference betweenk and the transition length. The
method applies to linear and nonlinear gradual transitions; it is the shape of the rises and
falls at the plateau boundaries that changes. False detections can be reduced by requiring
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FIG. 3. An example of dissolve detection using the plateau algorithm.

that the plateau values be higher than the average frame differences at the hard cuts. A
similar approach is reported in [43].

2.2.2. Detection by Modeling

Another important approach to the detection of video effects has been proposed in
[31, 44] and is based oneffect modeling. Mathematical models of edited transitions based
on video production techniques are formulated and used to systematically design the feature
detectors for spotting them in digital video. The shot boundary detection approach requires
analytical (or at least statistical) models of the shots while the edit detection approach re-
quires models of the edits. However, the space of all possible shots is ill defined while the
space of edits is much smaller. A dissolve operation from sceneX to sceneY is a sequence
of frames represented by

E(t) =
[

(t − T2)

L2
Y

]
t∈[T2,T2+L2]

+
[(

1− (t − T1)

L1

)
X

]
t∈[T1,T1+L1]

, (13)
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whereT1, T2 represent the times at which the (intensity) scalings ofX,Y begin andL1, L2

are the durations for which the scalings last. A fade-in is a special case withX= 0 while
a fade-out is characterized byY= 0. If we look at a fade-out, we can see that, under the
assumption that the only source of variation is the scaling

F(t) =
δE
δt

X(x, y, t)
= − 1

L
(14)

holds, whereL represents the length of the dissolve, expressed in frames. An indicator of
constancy is suggested in [44, 45]

Constancy= N (X)

σ (X)(1+ |Cx − cx| + |Cy − cy|) , (15)

whereN (X) is the number of nonzero pixels in imageX, σ (X) is the standard deviation of
the pixel values, and (Cx,Cy), (cx, cy) represent the centroid of imageX and the geometric
image center, respectively. The different possible dissolves can be classified according to
their start/end times. The method is effective, except when very similar sequences are being
dissolved with precisely equal fade rates over the dissolve. A similar approach can be used
to detect spatial edits, such as translates. As shown in [44], assuming that there is no scene
action in progress during the edit

T(x, y, t) =
δE
δt
δE
δx

= αx (16)

holds when the edit is a pure translation in thex direction, whereE(t) represents the
sequence of edited frames. Again, the effect can be detected by looking for a constant
imageT(x, y, t).

A method for detectingmattesis proposed in [31]. They are similar to fades, apart from
the fact that luminance varies over the frames following a geometrical law. Once a fade has
been detected, the central frames are considered; if the luminance has a big discontinuity,
due to the presence of a black mask that partially covers the frame, a matte is detected.

2.2.3. Feature-Based Detection

Another interesting approach to the detection of gradual effects, as well as hard cuts,
has been presented in [46]. During a cut or a dissolve, new intensity edges appear far from
location of old edges. Edge pixels that appear/disappear far from existing edge pixels are
considered asentering/exiting edge pixels. Cuts, fades and dissolves can be detected by
counting the entering and exiting edge pixels, while wipes can be detected by looking at
their spatial distribution. The algorithm is based on the following steps:

• framesFt andFt+1 are aligned using a global motion compensation algorithm;
• edges are computed by applying the Canny algorithm to a smoothed version of the

frames;
• the binary edge maps are dilated by radiusr , so that the condition on the mutual

distance of edge pixels can be easily verified by set intersection;
• the fraction ofenteringedge pixelsρin andexitingedge pixelsρout are computed.
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Breaks are detected by looking at the edge change fractionρ= max(ρin, ρout). A cut leads
to a single isolated high value ofρ while the other scene breaks lead to an interval whereρ’s
value is high. During a fade-in the valueρin is much higher thanρout. The reverse happens
for fade-outs. A dissolve is characterized by a predominance ofρin during the first phase and
of ρout during the second phase. The technique works properly also on heavily compressed
image sequences.

2.2.4. Twin Comparisons

A simple technique is introduced in [27] to detect gradual transitions: thetwin-comparison
approach. The basic idea is that the frames before and after a gradual transition are usually
markedly different. Histogram differences between successive frames in an edited transition
are smaller than those across a camera break, but higher than those within a single shot. A
reduced threshold can then be used to detect potential edited transitions. For each of the
resulting candidates a progressive difference is computed over the subsequent frames; if the
cumulative difference exceeds the threshold used for camera breaks, an edited transition is
assumed.

2.2.5. Step-Variable Method

Xiong et al. [47] propose a novel algorithm to detect gradual transitions that extends the
idea behind the Net comparison method [32]. The new method, called the Step-Variable
method, subsamples video data, both in space and in time, and can detect both camera breaks
and edits. The differenceDi j between framei and framej = i + S is computed, whereS
is larger than the longest expected gradual transition. IfDi j is lower than a predefined
threshold, framesi and j are moved forward byS/2, and the comparison is done again.
Otherwise, framesi and j are gradually collapsed untilD(i+1) j andDi ( j−1) are not significant
any more. Ifi − j = 1, a camera break is declared betweeni and j . Otherwise, a gradual
transition is declared.

2.3. Remarks

The methodology for measuring the effectiveness of shot detection algorithms relies
on the comparison with a ground truth derived from human annotation. If an algorithm
requires parameter tuning (e.g. selection of an optimal threshold), the material should be
divided into three disjoint sets: a training set, a validation set, and a test set. Parameters
are chosen, optimizing the performance measure on the training/validation sets, and the
performance of the tuned system on the test set is finally reported as an estimate of the
algorithm performance. A commonly used parametric performance measure is

C(α, v) = αSm(v)+ (1− α) Sf (v), (17)

whereSm(v), Sf (v) represent missed/false shot boundaries with respect to the available
ground truth,v the tunable algorithm parameters, andα ∈ [0, 1] represents the trade-off
between precision and recall. Whenα= 1, maximal importance is given to missed tran-
sitions and over-segmentation will be favoured. A low value ofα will under-segment the
video, whileα= 0.5 provides a balanced result. Optimal parameters are then obtained by
solving minv C(α, v). A complete characterization of each algorithm is given by its ROC
(receiver operating curve), providing the number of missed boundaries as a function of false
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TABLE 1
Average Values of Weighted False Alarm/

Missed Detection Errors for Cut Detection
using Histogram Comparison on Different
Color Spaces Using Eq. (17) with α= 0.25

Cut detection

Color space Performance

LUV 0.343
MTM 0.343
OPP 0.352
HSV 0.374
LAB 0.380
YIQ 0.390
XYZ 0.430
RGB 0.455
YYY 0.466

Note.The performance is averaged over the bin-
to-bin difference and histogram intersection methods
which were found to be the best performing ones.
The testing material contained only cuts. As most of
the color space denominations are standard, we just
note that MTM stands forMathematical Transform
to Munsell, YYY uses only luminance information,
while OPP stands for opponent color axis space and
is defined byR−G, 2B− R−G, R+G+ B.

boundaries. Extensive tests of color space influence on the performance of histogram-based
methods are described in [30] and reported in Table 1. Extensive tests of algorithms have
been reported in [48, 49] and the results are summarized in Tables 2 and 3. Let us note that
the algorithms for cut detection are usually able to detect gradual transitions when they are
applied to a temporally subsampled video stream or when a very low triggering threshold is

TABLE 2
The Performance of Some Commonly Used Algorithms for Video Segmentation

Shot detection

Algorithm Ref. Correct (%) False (%)

Absolute frame difference [48] 73 56
Red histogram difference [48] 94 175
Weighted histogram difference [48] 94 135
χ2 red histogram diff. [48] 95 137
Red histogram intersection [48] 94 174
Pure moment invariants [48] 54 105
Range of pixel value changes [48] 95 68
Feature based [48] 92 59
Luminance histogram [49] 99 521
Twin comparison [49] 98 151
16 region histograms [49] 96 205
Motion compensated differences [49] 95 541

Note.The percentage of correct and false detections are given with respect to the true number of shot boundaries.
For each algorithm the maximum performance in terms of found shot boundaries is reported. The testing material
contained both cuts and edited transitions. The reference column reports the article describing the test.
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TABLE 3
The Performance of Several Algorithms Working

on Compressed Video Streams

Shot detection: Compressed video

Algorithm Correct (%) False (%)

Armand [38], Zhang [34] 95 2490
Menget al. [36] 65 338
Liu and Zich [37] 30 42
Yeo and Liu [95] 69 4
Sethi and Patel [26] 45 274
Shen and Delp [43] 68 69

Note.The percentage of correct and false detections are given with
respect to the true number of shot boundaries (only cuts are considered).

used. The results in Table 2 show that the corresponding recall is quite high, but precision
is adversely affected.

The performances of available algorithms for cut detection (with the exception of the
methods based on pixel-by-pixel differences) are high. Detection of edited transitions, in
particular dissolves, is proving more difficult and current algorithms need to be improved.
The main reason for the unsatisfactory performance stems from the assumptions made in
algorithm design. In particular, the assumption of stationary scenes at cross-fades is often
violated. However, edited transitions account for a smaller percentage of shot boundaries
than cuts, thereby reducing the impact of the corresponding algorithm performance on the
final quality of video segmentation. This is true in particular for some categories of video,
most notably raw footage to which video producers refer for the creation of new programs.

Overall, histogram-based algorithms provide good performance and speed and can be
used to detect both cuts and dissolves. Furthermore, histograms provide a compact descrip-
tion of images that can be reused in other processing steps of a visual indexing system:
image description for retrieval purposes, selection of representative frames (see Section 5),
and video abstracting (see Section 6), by characterizing thecolor moodof shots and scenes.
Algorithms relying on motion vectors provide high speed (if the motion vectors are avail-
able as in MPEG-1,2 or H.263) and motion information can be used in other important
tasks, namely the classification of camera work, motion indexing, and detection of action
scenes. Algorithms working only on the I frames of the MPEG sequences suffer from a
higher number of false detections and do not provide a frame-accurate detection of shot
boundaries, due to the lag between I frames.

An important open issue in the field of video segmentation is the synergetic integration
of multiple shot detection algorithms. Work along this direction should provide effective
strategies for combining computationally cheap detectors (missing only a few shot bound-
aries, at the cost of producing many false positives) acting as preprocessing filters, with
more sophisticated (model-based) detectors reducing the number of false positives to an
acceptable level.

3. HIGHLIGHTS EXTRACTION

Detection of shot boundaries is an important step towards the automated extraction of
meaningful video segments. A further step is to characterize the resulting shots by extracting
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TABLE 4
The Performance of Face Detection Algorithms

on a Common Database

Face detection

Algorithm Correct (%) False (%)

Osunaet al. [54] 74.2 13
Sunget al. [51] 79.9 3
Lew and Huijsmans [52] 94.0 43
Rowleyet al. [57] 92.9 43

Note.The percentage of correct and false detections are given with
respect to the true number of faces.

some high-level information from the corresponding frames. This information could derive
from the recognition of well-defined objects within the frames (such as frontal views of
faces), from the reading of captions, or from the detection of well-defined events (such as
flashlights). The following sections survey algorithms which are capable of detecting such
highlights.

3.1. Faces

Locating and recognizing faces in video sequences can provide useful information for
segmenting the video stream (let us consider the typical structure of a news program, when
the different segments are introduced by the anchor person) and for indexing it (e.g., by
recognizing the actor or politician present in a given video segment). Also, knowing the
image size of the detected faces can help in classifying the shot as close, medium, or far, an
important information for video producers. Several successful algorithms for face detection
have been reported in the literature and are presented in the following sections (see also
Table 4).

Approaches based on principal component analysis (to focus on the relevant dimensions
in pattern space) and probability density estimations, e.g. using mixture models, have proven
to be particularly effective for this task [50, 51]. An information-theoretic approach to the
selection of an optimal face template is presented in [52].

Moghaddamet al.[53] apply an unsupervised technique for visual learning to the proba-
bilistic visual modeling, detection, recognition, and coding of human faces. This technique
is based on density estimation in high-dimensional spaces using an eigenspace decomposi-
tion. These probability densities are then used to formulate amaximum-likelihoodestima-
tion framework for visual search and target detection for automatic object recognition and
coding.

A rather novel approach, usingsupport vector machines, a new method for training
polynomial and neural network classifiers, is reported in [54].

An efficient system for detecting faces in MPEG video streams has been proposed in
[55]. The algorithm consists of three main steps:

1. selection of possible face locations using skin-tone statistics;
2. detection of rectangular image regions satisfying appropriate shape constraints (size

and aspect ratio);
3. verification of face detection by analysis of the energy distribution of DCT coefficients.
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The first two steps are carried out using only the DC coefficients of the MPEG mac-
roblocks; there is no need to completely decode the frames. The third step requires the
complete set of DCT coefficients and can be carried out efficiently only for I frames.

An alternative approach to detect faces is presented in [56]. A large set of face examples
and backgrounds (counterexamples) is used to train a Kohonen network. This results in
a compressed base due to the vector quantization properties of the Kohonen networks. A
multilayer perceptron (MLP) is extensively trained on this base to output a class (face or
background) and a confidence value for each input pattern. The compressed base is then
tuned to a specific environment by adding relevant faces and backgrounds. The MLP is
then briefly trained (tuned) to the environment. The detection phase consists in scanning
each image of a sequence at various resolutions. For each location and size of the scanning
window, the window content is normalized to a standard size and then normalized in mean
and variance to reduce the sensibility to lighting conditions. All local decisions are then
fused spatially, taking into account the relative position of the localized faces.

Another neural network-based face detection system is presented in [57]. Rowleyet al.
use a retinally connected neural network examining small windows (20× 20 pixels) of a
gray-scale image and deciding whether each window contains frontal views of faces. They
use a bootstrap algorithm for training the net to eliminate the task of manually selecting
nonface training examples, which must be chosen to span the entire space of nonface images.

3.2. Captions

Captions in video programs such as news, documentaries and coverage of sport events
provide important information on the underlying stories. They can be used to reinforce
spoken words, to highlight the time stamps of the events or to present additional information.
In sports, they are used to inform on the current score and timings of the games and offer a
possibility to log automatically salient events. Satoet al.[58] claim that only one half of the
content of superimposed captions is present in the audio or closed caption information and,
therefore, textual information can be used to improve video indexing. After a caption has
been located, it could be isolated from the background and then read by an OCR program,
or the frames with text could be eliminated from the video stream, e.g. for the insertion into
new productions, depending on the application (Table 5).

There are several approaches to locating captions in a video stream [42, 59, 60–62, 58,
63–65]. Some of them focus on the detection of caption events. Others aim at detecting text
within a single frame (for example, key frames or captioned frames previously detected)

TABLE 5
The Performance of Some Caption Event

Detection Algorithms

Caption events

Algorithm Correct (%) False (%)

Yeo [42] 95 3
Ariki [59] 92 0
Sato [58] 92 ?

Note.The percentage of correct and false detections are
given with respect to the true number of captions.
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and use the temporal dimension for validating the text extraction and reading, tracking it
frame by frame.

The basic observation of the algorithm presented in [42] is that a caption most often
appears or disappears in the middle of a video shot. The extraction of an embedded caption
is then achieved by the detection of its appearance/disappearance: thecaption event. The
appearance of the caption can be abrupt or gradual. Abrupt captions are characterized by
high interframe pixel differences which are often localized at the bottom of the image. The
algorithm presented in [42] uses the low-resolution DC images of an MPEG stream. Image
differences over the lower fourth of the frame are considered within a shot span. Caption
appearance/disappearance events are characterized by local maxima of image differences
and are differentiated among themselves by the amount of gradient in the vertical direction.
The frame is selected as a start caption event if this value is higher than that in the previous
frame. The detection of gradual caption proceeds along similar steps with the exception
that the cumulative pixel difference is not computed on adjacent frames but on frames that
arek (typically 20) frames apart.

Another work following the approach based on interframe detection and within-frame
reading is presented in [59], where TV news articles are analyzed in order to extract frames
containing superimposed captions for indexing purposes. The main assumptions on text
are: uniform color and brightness, clear character edge, disjoint characters, stationary and
horizontally aligned text. Captioned frames are located by the following steps: (1) for each
frame compute the number of bright pixels having approximately the same gray-level in
the subsequent frame; (2) mark the frames in which this number falls in a certain range;
(3) search for a sequence of at least 21 marked frames. An average frame is computed
by averaging the frames in the found interval. Horizontal edges are then computed and
rectangular regions corresponding to text lines are located by analyzing theY- and X-
signatureof the edge map. Small regions are filtered away. After the binarization and noise
removal of each text region, characters are recognized. After a morphological analysis, noun
words are extracted and used as indices of the TV articles. Articles are then classified by
topics into 10 classes by using an index–topic table that includes about 12,000 indices.

A straightforward strategy can be found in [58], where captions are detected to help in
the generation of a short synopsis of the original video sequences. A caption region is taken
to be a horizontal rectangular structure of clustered sharp edges, primarily due to characters
with high contrast intensity. The detection algorithm proceeds by application of a horizontal
differential filter, thresholding to extract edge features, smoothing, clustering, and boundary
rectangle computation. The image quality is improved by (1) a subpixel interpolation in order
to increase the resolution of each caption and (2) multiframe integration in order to reduce
the variability in the background and to increase the contrast. Characters are extracted by
means of the integration of the results of four directional filters applied to the preprocessed
image. Experiments were performed on seven 30-min programs with 256 captioned frames,
392 text lines, 961 words. The detection rates are 91.8%, 89.6%, and 76.2%, respectively.
False detections have not been reported. The word recognition rate is 70.1%.

A different approach that is not limited to static captions but is suitable also for moving
text is presented in [62]. Starting from features of artificial text and text in commercials,
each frame is analyzed in order to produce a bitmap containing only the textual information.
Each frame is segmented using a split-and-merge algorithm. Regions with low contrast or
unacceptable geometry are removed from further consideration. Once candidate characters



94 BRUNELLI, MICH, AND MODENA

are detected, they are tracked across frames by means of feature comparison, building chains
of characters from their appearance to their disappearance in the video sequence. Linear
moving text, as well as text over moving background, benefits from this tracking. Characters
are then clustered into text objects and fed to an OCR program. The responses from multiple
instances of each character can be integrated using a majority rule. Experiments were
performed on 10 videos for each of three different classes (feature films, commercials,
newscasts) for a total of 22 min of video. The total number of characters was 3059, thereof
correctly segmented 2848; segmentation rates within each class were 96%, 66%, 99%,
respectively. The character recognition rate ranged from 41% (newscasts) to 76% (title or
credit sequences in films).

In [61] a method for the automatic extraction of text lines from color video frames
is presented. Target frames are selected from shots detected by a scene-change detection
method. The input image is segmented by histogram color quantization in the RGB space
with the Euclidean distance. A threshold controls the number of resulting regions. Each
color plane gives rise to a binary image whose components are independently analyzed.
After an heuristic filtering step anY-signatureis computed for each bitmap; for each row
an index, 0 or 1, is computed which depends on the number of runs and on the number
of foreground pixels in the row. Long sequences of consecutive 1’s in the signature, along
with some geometric considerations, identify line candidates. A second heuristic filter is
applied to remove components which contain long runs or wide filled boxes. For each line
candidate the vertical projection profile is computed.Text segmentcandidates are identified
by the intervals in the profile with consecutive positive values. A test depending on several
geometric characteristics is defined in order to establish if a text segment candidate is an
actual text segment. Finally a third heuristic filtering is applied to the text segments which
pass the previous test. The experiments were performed on 50 images with 124 text lines
giving 86% detection rate. False detections were not reported.

In [60] an analogue method for the identification of caption and noncaption text in color
images (and therefore in video frames) is proposed. The reported accuracy is 72% for
6952 video frames, selected from eight different videos. It is subjectively computed by
considering the correctly located important text in the images.

3.3. Flashlights

In news video, it often happens that important events, such as the appearance of an
important person, are marked by the light of the photographers’ flash units (e.g. [42] reports
49 events in a 5-min long sequence depicting a Democratic Convention in the U.S.). There
can be multiple flashlights over a few frames originating a burst of false cut detections due
to the large differences among the frame descriptors. An algorithm to detect flashlights is
reported in [42], where it is observed that flashlights manifest themselves as two sharp peaks
of approximately the same value in the plot of the interframe differences over a window of
approximately half a second. As reported in [66] the recall and precision of the algorithm
are 40% and 100%, respectively; as the algorithm tends to merge nearby flash events, the
practicalperformance is actually higher.

3.4. Remarks

Detection ofgenericobjects in images is still out of the capability of current algorithms.
Effective algorithms have been developed for at least two classes of objects which are
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relevant to video indexing systems: text and faces. Frontal appearances of faces can be
detected efficiently and with good effectiveness (see Table 4). Detection of nonfrontal views
must be improved, but this may not be particularly significant as far as video indexing is
concerned. Face detection algorithms can be used to spot specific person appearances in
video by exploiting the availability of transcripts (see [67], where a system is able to infer the
name of a given unknown face by using face similarity measures and co-occurence of face
pattern and nouns in the transcripts). Current face detection algorithms are not optimized
for video streams; tracking of candidate faces across multiple frames could improve the
effectiveness of the algorithms, as already has been done for text recognition.

Text can be located (see Table 5) and read within frames providing useful indices even
if the word recognition rate is not very high (from 70% to 80%). Accurate detection of
gradual caption events remains a difficult task and problems arise when there are rapidly
moving objects in the captioned frames [42]. While the working hypothesis of the reported
algorithms, such as text brightness and horizontal alignment, are adequate for many prac-
tical applications, their relaxation is one of the central problems in text lines location and
extraction.

4. MOTION ANALYSIS

The most discernible difference between still images and moving pictures stems from
movements and variations. In order to obtain a more precise and complete semantic infor-
mation from video, we need the ability to classify objects appearing in a video sequence
based on features such as shape or color, as well as their movements [68]. By describing
the movements derived from motion analysis, a dual hierarchy is introduced, consisting of
spatial and temporal parts for video sequence representation. Besides providing information
on objects trajectories, analysis of motion is useful to detect objects, to recover the kind
of camera operation (e.g. zoom, pan, tilt), and to create salient video stills by mosaicking
several frames.

4.1. Spatio-Temporal Segmentation

The time-varying nature of video data can be used to facilitate automatic segmentation of
independently moving objects and significant structures, providing alayeredrepresentation
of video. The different layers are used to identify significant objects in the scene for feature
computation and querying.

An algorithm for the computation of such representations is presented in [69, 70]. Co-
herent motion regions are identified iteratively by generating hypotheses of motion and
classifying each location of the image to one of the hypotheses. Each hypothesis is defined
by a set of six parameters describing an affine motion model. This model can describe mo-
tions typically encountered in video sequences, such as translation, rotation, zoom, shear,
and any linear combination thereof. Image segmentation, based on the affine motion model
results in the identification of piecewise linear motion regions. As a scene usually con-
sists of many moving objects, it is necessary to use multiple motion models that compete
for region support at each iteration. Regions characterized by the same motion model are
grouped together into alayer, even if they are not connected. Each region can then be
tracked over subsequent frames by using its descriptive motion model. The resulting set
of layers can be used as the target for manual annotation and for tracking related objects
(and eventually propagating their labeling across frames). Another important application is
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in the new compression standard MPEG-4, where this information can be used to improve
compression.

Ayer and Sawhney [71] describe a formalization of the layered representation, based on
maximum likelihood estimation of mixture models and the minimum description length
principle (MDL). These techniques are used to select the appropriate number of motion
models, to compute the corresponding parameters, and to decide the spatial support layer
for each model.

Another type of spatio-temporal analysis is introduced by Changet al.[72]. They present
VideoQ, a web-based video search system, where the user queries the system using animated
sketches which assign motion and other attributes (spatio-temporal ordering, shape, and the
more familiar attributes of color and texture) to any part of the scene. A collection of regions
exhibiting consistency across several frames in at least one feature becomes avideo object.
The features of each video object are then matched against the features of the objects in
the databases. In the database population phase, the individual videos are decomposed into
separate shots and then, within each shot, video objects are tracked across frames. For
each shot the global motion (i.e. background motion) is automatically estimated using a
six-parameter affine model [73] and used to compensate the global motion component of all
objects in the scene. Segmentation and tracking of image regions is based on the fusion of
color, edge, and motion information computed using a hierarchical block-matching method
[74]. Each object is characterized by the motion of its centroid and by its color, texture,
and shape features. The VideoQ system proved successful in retrieving video clips such as
soccer players, high jumpers, and skiers.

Another algorithm using spatio-temporal information is described in [75]. Sahoria has
developed a system to analyze and index surveillance videos based on the motion of objects
in the scene. A segmentation and tracking module extracts trajectories from compressed
video using the motion vectors from the MPEG-1 compressed video. Median filtering is
first performed to remove noise from the vector field which is then clustered using theL1

norm on the space of motion vectors to extract regions with uniform motion. The tracking
process attempts to match objects between two motion fields based on the amount of overlap
of their segmentation maps. The resulting trajectories are used in a video retrieval system,
where the search is based on hand-drawn queries. Sahoria’s algorithm is more successful in
tracking vehicles (93% correct detections) than people (78% correct detections). This is due
to the complex motion patterns of people in the scene which are not accurately described
by the MPEG motion vectors.

4.2. Camera Work

Camera operation information is very significant for the analysis and classification of
video shots [76], since it often explicitly reflects the communication intentions of the film
director. There are six main different camera works: panning, tilting, zooming, tracking,
booming, and dollying. Each of these operations induces a specific pattern in the field of
motion vectors from a frame to the next. Simple methods for detecting panning (tilting)
and zoom operations have been proposed in [77, 34]. In order to detect camera operation,
the motion vectors can be obtained by optical flow techniques [77] or by coding algorithms
such as MPEG [34] or H.263. The first step aims at discriminating between static/motion
scenes; this can be done simply by looking at the average size of the motion vectors.
The motion vector field for any combination of panning and tilting will exhibit a single
strong modal vector value which corresponds to the direction of camera movement. Most
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of the motion vectors will be parallel to this vector. This may be checked by analyzing the
distribution of the direction of the motion vectors; a pan/tilt is characterized by a small
standard deviation of the distribution as noted in [77] or by a small absolute deviation from
the modal direction as suggested in [34]. Zooming is characterized by a flat appearance of
the direction distribution. Alternatively zooming operations are characterized by vectors of
opposite sign at the frame edges. This means that the magnitude of the difference between
vertical (or horizontal) components exceed the magnitude of both components. This simple
approach can be fooled by the motion of large objects. More generally, the problem of
recovering camera motion can be seen as that of estimating an affine transformation which
accounts for the dominant global view transformation. A thorough treatment can be found
in [78, 79, 73].

4.3. Motion Indices

In image processing, it is generally hard to extract moving objects from motion pictures
and even harder to recognize the objects. However, it is possible to estimate the motion
of objects without exactly detecting the objects. The use of object motion to index video
material to subsequently retrieve scenes has been investigated in the literature [80–83].

Ardizzoneet al. [84] present a motion-based video indexing technique related to the
optical flow field. This method is based ona priori video segmentation to extract shots
[41]. Once the shots are extracted, key frames are detected using heuristic techniques and
characterized via their optical flow field. To compute this instantaneous velocity field a
few frames adjacent to the key frame are needed. Once the optical flow field is computed,
its content has to be coded to allow content-based queries. To this aim, the flow field is
spatially split into four regions of equal size to preserve spatially related information. For
each region, the flow field mean and the histogram of directions are computed.

The approach presented in [81] is based on a three-step procedure: the automatic estima-
tion of motion vectors in the frame sequence, the description of motions in spatio-temporal
space, and the retrieval of sequences. The motion vectors estimated by block-matching are
mapped in (blocked) spatio-temporal space. The vectors are then aggregated into several
representative vectors by hierarchical clustering. The representative vector of a cluster is
defined as the vector which is closest to the mean vector of the cluster and has the longest
life in the cluster. Adequate specification of the motion condition is a difficult problem for
the user. A retrieval system should then take into proper account the scale, directional, and
temporal uncertainty that usually characterize the queries. The solution proposed in [81]
makes use of elastic matching to overcome the problem.

A different approach is proposed in [82]. The main idea is to describe motion using
a restricted alphabet of 16 characters, each of which denotes a particular kind of motion
(e.g. north, north-east, etc.). For each character, two 16-bit hash functions are used. These
functions are employed to build theappearanceand theorder signaturesbyor-ing the keys.
Theappearance signatureis computed using the motion classification in each frame, while
theorder signatureis built using the motion classification of each successive frame. The
resulting signatures are then used as motion indices on which the retrieval can be based. A
framework which uses MPEG macro-block tracking is presented in [80].

4.4. Mosaicking Video

A compact video representation is an important step toward efficient video coding, in-
dexing, and annotation. It has been observed [85] that representing a complete video shot
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with a single image is a significant forward step for the video representation problem. A
new class of images,salient stills, is introduced in [86]. These images do not represent one
discrete moment of time as a single frame; one image reflects the aggregate of temporal
changes that occur in a moving image sequence with the salient features preserved. By
the application of an affine transform and nonlinear temporal processing, multiple frames
of an image sequence, which may include variations in focal length or field of view, are
combined to create a single still image. The still image may have multiresolution patches,
a larger field of view, or higher overall resolution than any individual frame in the original
sequence. It may also contain selected salient objects from any one of the sequence frames.

A common scenario in video sequences is that of a mostly fixed background being imaged
with or without independently moving objects. The dominant background changes in the
image plane are mostly due to motion and camera operations. Once camera work has been
accurately recovered [87, 73, 86] for a set of frames, a reference frame can be chosen and
all subsequent frames arewarpedinto the coordinate system of the reference frame. The
resulting image, themosaic, is usually bigger than the constituent frames. Temporal median
filtering of the mosaicked frames leads to the deletions of the outliers (moving objects) if
their locations are not highly correlated over time. An interesting application is found in
[88], where mosaics are used to describe the trajectories of soccer players.

4.5. Remarks

Very sophisticated algorithms have been proposed so far for camera work estimation and
segmentation of multiple moving objects. Reliable estimation of motion between subsequent
frames is a computationally intensive task. Good algorithms exist for the estimation of dense
optical flow fields [89], but they are currently too complex to be applied to large video
databases. Many motion/camera work algorithms rely on sparse motion fields obtained by
block matching techniques similar to those employed by the MPEG encoders. The major
drawback of these algorithms is that they do not account for possible affine transformation
of the blocks being matched. This limitation is restrictive as, with the exception of pan/tilt
camera operations and object motion parallel to the focal camera plane, image blocks
can present severe affine deformations. The effect is more marked if the video material is
digitized at a low frame rate.

5. KEY FRAMES EXTRACTION

Different algorithms have been proposed for extracting some representativekey frames
from shots, relying on the visual differences between shots [90, 91], or on the motion patterns
[92]. The observation that directors frequently use camera motion to build complex messages
into a single shot, and actors pause to emphasize gestures, leads to the idea of motion-based
key frame detection. The algorithm presented in [92] uses optical flow analysis to measure
the motion in a shot and selects key frames at the local minima of motion. In the first step
the optical flow is computed using Horn and Schunk’s algorithm. The sum of magnitudes
M(t) of the components of optical flow at each pixel are computed for each framet ,

M(t) =
∑
i, j

|ox(i, j, t)| + |oy(i, j, t)|, (18)

whereox(i, j, t), oy(i, j, t) are the horizontal and vertical components of the optical flow at
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location (i, j ). The second step identifies local minima ofM(t); the key frames are selected
at the minimum ofM(t) in each interval. In the same paper the idea of a hierarchical
key frame selection methodology is also proposed; the shot should be first classified into
categories and an appropriate key frame selection algorithm should then be chosen.

Related to the idea of selecting key frames at local minima of motion activity is the
proposal by Liuet al. [93] of detecting significant pauses in a video stream as useful
indices. Their approach is based on aχ2-test between the intensity distribution of the frame
representing the possible start of a pause and the subsequent frames. Good results have been
obtained even in the presence of slow camera motion.

The algorithm for key frame extraction, proposed in [91], is based on a variant of the
algorithm used for shot detection in the same paper. The first frame of each shot is selected
first as a representative frame and a suitable distance between images is chosen. Subsequent
frames are then compared to the first frame, looking for a frame whose difference is above a
given thresholdTS. If such a frame is found, it is considered as a key frame if it is followed
by a continuous sequence of frames differing by at leastTS from the previous key frame
and providing a cumulative differenceTB> TS from itself.

Another algorithm is proposed in [90] as an aid to compute efficiently the similarity of
shots. To match the contents of video shots in a way that agrees with human perception of
similar contents, similarity is more suitably measured in terms of the intersection of the flow
of imagery paths. In particular the distance between two shots is defined as the minimum
distance among the constituent frames. The proposed dissimilarity measure between images
is based on the normalized difference of luminance projections,

dl p( fi , f j ) = 1

255· (J + K )
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wherel r
k( fi ), l c

k( fi ) represent the luminance projection for thekth row and thekth column,
respectively. Video shots are then clustered hierarchically by successive grouping of the
most similar pairs. The resulting dendrogram provides a visual representation of the hier-
archical cluster. A sudden jump in the proximity level of the dendrogram is used to select
automatically the proper partition of the video shots. Computation of shot similarity as
outlined above is expensive. The paper proposes a combined spatial–temporal subsampling
of the video stream. The spatial subsampling is obtained by considering only the DC (or
DC+ 2AC) image components, as derived by an MPEG or Motion-JPEG stream. Tempo-
ral subsampling, i.e. selection of representative frames, is obtained by adding a frame to
the shot representatives whenever its dissimilarity from the last selected representative is
greater than or equal to a given thresholdε. As the dissimilarities used are normalized to the
interval [0, 1], whenε= 0 all frames are selected as representatives, while whenε= 1 only
the first frame is considered. Thresholdε can be chosen so that a very high percentage (ap-
proximately 95%) of the shot dissimilarities computed using only the representative frames
is in good accordance (within 20%) with the values derived from the complete set of frames.

6. RECOVERING VIDEO STRUCTURE

Efficient and reliable methods for the segmentation of the visual part of a video into shots
have already been reviewed in Section 2. In actual motion picture or video documents there
can be up to 1000 cuts per hour. In order to browse quickly through the video material, both
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FIG. 4. An automatically generated abstract (TOP), compared to a lightable presentation of a 5-min long
video clip showing a single frame per shot. The abstract is obtained by clustering the key frames of the shots.

for indexing and retrieval, it is necessary to find objects which span longer time intervals
than shots, possibly representing scenes, story units, or abstracts [36, 94–96, 90, 97, 88, 98]
(Fig. 4). Capturing higher level video structure is the basis for effective video abstracting
and is mainly useful in the following tasks:

• fact finding, where subjects try to locate video segments covering a specific event;
• gisting, where subjects want to get the essence of a video without looking at it in its

entirety.

The following sections present some algorithms to recover video structure.

6.1. Video Abstracting

Pfeifferet al. [99] give the following definition of reduced video representation or video
abstracts:

A video abstractis a sequence of still or moving images (with or without audio) presenting the content of a
video in such a way that the respective target group is rapidly provided with concise information about the
content while the essential message of the original is preserved.
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A still-image abstract is a collection of extracted salient images (key frames) from shots
(see Fig. 4). A moving-image abstract is a collection of sequences of images from the
original movie and is a movie itself. Pfeifferet al. [99] present techniques for automatically
producing moving-image abstracts. The basis of their approach to video abstracting for
feature films is based on the following observations:

• action scenes are important and should be included in the video abstract;
• processing of visual stimuli within the human visual system is mainly based on per-

ception of contrast: high contrast scenes should be presented in the abstract;
• colors are very important to transfer emotions: scenes characteristic of the color mood

should be included;
• the sequence of scenes must be preserved to provide consistent context;
• presented scenes must be long enough (at least 3 seconds) to provide the viewer with

enough time to completely analyze them.

A set of consecutive shots is grouped into a single scene whenever the Aristotelian
properties of unity of space, place, time, and action hold. While automated scene detection
is currently in its infancy, some edit effects (such as fades and dissolves) can be considered
an hints to changes of scene (not only of shot boundary). A single scene can also be inferred
when a sequence of shots can be broken into two (or more) sequences, each of them built
from similar shots (shot reverse-shottechnique).

A simplified approach is proposed in [100, 29], where a hierarchical segmentation of
the video stream is obtained by using a decreasing threshold for the detection of cuts
using histogram differences. The first frame of each subsequence is taken to be the rep-
resentative one. In order to avoid an excessive number of subsequences from fast-paced
episodes, a minimum subsequence length is imposed. The ability of this method to ob-
tain a hierarchical structure depends on the types of video sequences. Some character-
istics of the derived structure could be profitably used to categorize the sequences (see
also [101]).

The structure of a video can also be explored by looking at the distribution over time
of several, simple shot descriptors. An interesting example is reported in [102], where the
feature filmIndiana Jones and the Last Crusadeis analyzed. The plots of the activity of
a shot (i.e. the average amount of net pixels changing during the shot), the duration of the
shot, and the brightness of the shot point to the overall structure of the film. The plot of
the activity highlights the four main action sequences of the film. These also correspond
to subaverage duration of the shots; shots tend to get shorter when the action picks up.
Another clue is provided by the average brightness of the shots; action-packed scenes tend
to be brighter.

Another simple approach to detecting scenes has been proposed in [31]. After subdividing
a video into shots, the first and last frames of each shot are selected as its representatives.
A semantic analysis is performed on them, sequentially looking forsimilar frames, which
reveal unity of action. The feature used to highlight natural color image similarity is the
shape of their color histograms. SimilarityGi j of shotsi and j is computed by integrating
a local measure of similarityLi j (such as cross-correlation) on the cumulative histograms
of frames of the compared shots:

Gi j =
∫

Li j (x) dx. (20)
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To make the measure more reliable, histograms are smoothed before computing the corre-
lation. The similarity measure is applied to the three components of color. In order to infer
the presence of a scene, the representative frames of one shot are compared with all the
preceding frames that are supposed to belong to the same scene. If no match is detected,
then aconfidence counterassociated with those frames is incremented by one; otherwise if a
similar framei is found, the counters of all the frames followingi are reset, the current frame
replaces framei , and the inference is made that those shots all belong to the same scene.
Whenever a frame confidence counter overcomes a threshold represented by the maximum
allowed number of different shots in the same scene, then a scene end is detected if a unitary
scene had been inferred or an absence of judgement about the semantics is concluded.

More sophisticated models are needed to capture a structuring of the video stream that
closely correlates with human perception. In the following subsection we review three
different approaches relying on visual similarity [96], general media-knowledge-based rules
[103], and a program-specific model [104].

6.2. Video Structure by Visual Similarity

The whole presentation [96] is based on the concepts of time constrained clustering of
video shots and on the construction of a scene transition graph to automatically parse a
video program, extract story structures, and identify story units. The proposed framework
for the video analysis can be decomposed into the following functional blocks:

1. Shot segmentation. The boundaries of shots are determined by detecting changes in
the visual characteristics of frames.

2. Time-constrained clustering of video shots. The shots are matched and clustered on
the basis of their visual contents and temporal localities to further condense repetitive shots
of similar contents. Clustering is based on the shot distance,

D̂(Si , Sj ) =
{

D(Si , Sj ), dt (Si , Sj ) ≤ T,

∞, dt (Si , Sj ) > T,
(21)

wheredt (Si , Sj ) is the temporal distance between two shots andD is the shot distance defined
as the minimum distance of constituent frames. The following constraint is imposed to the
clusters:The distance between a shot of cluster Ci and a shot of any other cluster Cj must
be higher than the diameter of Ci . Hierarchical clustering using a complete-link method
satisfies this constraint and is used to generate shot clusters with a cluster-to-cluster distance
defined as the maximum distance between any two shots.

3. Building of scene transition graph (STG). The clusters from the previous step are
structured as a directed graph: each cluster represents a node and a (directed) link (edge)
from clusterA to clusterB is inserted whenever a shot inB is immediately subsequent to
a shot inA. The STG representation allows some form of analysis of video through the
analysis of the graph. One important feature in a graph is acut edge, i.e. an edge whose
removal disconnects the graph.

4. Scene segmentation. Story units are extracted by finding thecut edgesof the STG.
Each unit is a connected subgraph by itself.

The algorithm does not requirea priori models and has been tested on a variety of programs:
cartoons, movies, documentaries, and sitcoms.
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6.3. Video Structure by Media-Based Rules

A quite different approach is presented in [103]. The algorithm is based on the observation
that in a temporal medium, local clues need to be given to the viewer or listener in order to
help him or her identify macroscopic changes. In motion pictures and videos, there are a
wide range of local clues for macroscopic changes, from the use of special transition effects,
modifications of soundtrack, changes of editing rhythm, and modifications of the type of
images due to changes in settings or to special effects.

Let a shotSi be characterized by its durationTi , representative imageRi , introductory
transition effectEi (which can be a cut,C, or a gradual transition,G), and by its second
and penultimate imageSECi andPENi , respectively. The following rules, derived from
intensive analysis of video documents, readings in film theory, and discussions with film
and video directors, teachers, critics, and analysts, are proposed:

• Transition effect rules. The complete list of transition effects can be seen as a word on
the alphabet{C,G}. Transition effect rules are based on the recognition of subwords which
are of the formCi G j Ck:

R1. If i > 2, j = 1, k> 2, then there is a sequence limit at the beginning of theG
transition effect.

R2. If i > 2, j > 2, k> 2, and Sm is the shot introduced by the first gradual tran-
sition effect, andSm+ j is the shot introduced by the last gradual transition effect, then
there is a sequence which begins at most 2 shots beforeSm and which ends at the end of
Sm+ j−1.

R3. If i > 2, j = 2, k> 2, andSm+1 is the shot surrounded by gradual transition effects,
then it is likely thatSm+1 is an important shot in a sequence.
• Shot repetition rule:

R4. If similar shots are found at a distance of no more than three shots, then there has
been no sequence break.
• Contiguous shot setting similarity rule. The idea is to introduce a distance between

shots which is related to the difference in the shot settings. A possibility is to compare the
mean and the standard deviation of the distribution of hue-saturation vectors in the reference
images:

R5. If the reference imagesRi , . . . , Rk of a succession of shotsSi , . . . , Sk differ
(according to an appropriate setting-distance) less than a predefined thresholdT and are
preceded and followed by shots whose reference imagesRi−1, Rk+1 differ from Ri , Rk,
respectively, more thanT , the shotsSi , . . . , Sk constitute a sequence.
• Editing rhythm. Montage rhythm is a powerful tool for the structuring of viewer per-

ception. Rhythm changes can be detected by looking at the prediction error of an order-2
autoregressive modelling of shot durations:

T ′n = aTn−1+ bTn. (22)

R6. If Tn> 2T ′n or Tn< 0.5T ′n, thenSn is likely to be the first shot of a new sequence.
• Soundtrack rule:

R7. If there is no music during 30 s and music appears in the soundtrack, then there
is a sequence limit at the beginning of the music.

In order to obtain a macrosegmentation from these data, it is necessary to

• merge compatible starting and ending points;
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• resolve conflicts by use of precedence rules (e.g., R1 and R7 are considered more
important than R4 and R5);
• add segments where none was detected;
• choose representative images using the information on the rules which originated the

sequences.

The algorithm does not associate any confidence with the recognition of shots and tran-
sitions and rule importance is not characterized in a quantitative way but only through
precedence relations.

6.4. Video Structure by Program Modeling

Some video material presents a constrained structure that lends itself to simple yet ac-
curate modeling. In such cases, it is possible to exploita priori knowledge to parse the
relevant programs. A television news program is a good example of this kind of video. The
algorithm proposed in [104] consists of three steps:

1. Temporal segmentation. The video sequence is divided into shots. In this study, both
thepixel-by-pixel comparisonandhistogram comparisonalgorithms are used.

2. Shot classification. Shots are classified into anchor person shots (A shots) and news
shots. Three models are constructed for anA shot: region (anchor person, news icon, news
program title bar, anchor person name bar, and background), frame (as a spatial arrangement
of region models), shot (as a sequence of frame models). To identifyA shots, instead of
using predefined model images, the authors have developed an approach that first locates
potential A shotsby using temporal features. They then acquire model images from these
candidates for model matching. After the shot is confirmed to be anA shot, a model image
is obtained as the arithmetic average of the shot frames.

3. Visual abstraction. Key frames are extracted using the algorithms reported in [91].

The index information for each news item includes the number of shots in the news item,
the starting time, the duration, and, most importantly, a set of key frames that represent the
visual content of each shot. Text descriptions about the news content can be input by an
operator.

6.5. Remarks

It is important to note that the first two categories of analyzed algorithms (video abstract-
ing and video structure by visual similarity) can be applied to nearly all video material, as
they make no use of video specific attributes, relying only on very general assumptions. Re-
covering video structure by media-based rule is more appropriate for feature movies, where
thefilm language is more amenable to categorizations. The last approach,video structure
by program modeling, which heavily relies on a detailed model, can only be applied to the
video productions corresponding to the employed model. While restricted, it is of great
interest because newscasts are among the most frequently accessed video items in digital
libraries and webcasts.

Evaluation of algorithms that try to recover higher level video structure is complex and
costly. As far as we know, no publicly available databases exist so far for evaluation and
few experimental studies have been reported. One of them [105] compares the effectiveness
of several video abstracting techniques forfact findingandgisting. The main results of this
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study is that human–computer interface issues are extremely critical and must be carefully
considered in order to exploit the results of automatic video analysis.

Automatic video abstracting techniques, while providing useful results for casual brows-
ing, do not yet provide high quality results, due to the difficulty of capturing the semantic
of the video message.

Automatic recovery of video structure is still in its infancy and good results have been
obtained so far only for highly structured videos, such as news. Recovering video structure
is one of the most open research areas in the field, and probably the one where image
processing techniques alone seem unable to provide quality results. More integrated ap-
proaches to the solution of this problem, relying on the synergic use of speech recognition
and image understanding, are now appearing in the literature. A notable example is provided
by Informedia [106], where the technique ofspotting by associationhas been introduced
in the analysis of newscasts. The basic assumption of this technique is that an important
video segment must have mutually consistent image and language data. Video transcripts
(obtained from closed-captions or by speech recognition techniques) are parsed to detect
key sentences (clues to situations such as speech/opinion, meeting/conference, visit/travel,
location) which are then associated to image clues (e.g. face close-ups, people, outdoor
scenes). Topics are then identified by consistent image/language clues.

Another important aspect of video analysis, related to the recovery of video structure,
which is only now beginning to be considered, is the characterization of video clips as
units that can be compared as a whole by video retrieval systems [107]. Another attempt
to capture the semantic of the video message is reported in [108], where low-level visual
features, such as color characteristics, editing effects, and rhythm, are linked to the infor-
mation being transmitted by commercial videos. The resulting system is able to categorize
a commercial video into one of four available semiotic categories and can be used by mar-
keting professionals to check the consistency of an advertising campaign, making sure that
the transmitted message fits within the required category.

7. FINAL CONSIDERATIONS

Effective use of multimedia material requires efficient ways to describe it in order to
browse and retrieve it. In this review several algorithms have been analyzed that provide
support for:
• user annotation, by segmenting the video stream into meaningful units, enabling ef-

fective nonlinear browsing through the material;
• automatic image and shot annotation, through computer-derived visual indices and

constrained object recognition (e.g. captions and faces);
• automatic video abstracting and structuring, providing compact representations for

browsing large video archives.

The available algorithms provide good coverage of the issues relevant to the development
of a computer-aided video indexing system (CAVIS). While the field is already mature
enough to provide tools which are effective in helping users access multimedia data, many
issues remain open:

• automatic video segmentation performance, while acceptable in some applications,
should be further improved. Little work has been done so far to integrate in a synergetic
way several segmentation algorithms; development in this area is expected to increase the
overall performance, in particular by reducing the number of detected false shot boundaries;
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• system evaluation needs large annotated databases which can be used for testing the
algorithms; no such databases are currently available;
• there is no widely accepted methodology to assess the performance of CAVIS systems

in high level tasks such asfactingandgisting; without such a methodology it is extremely
difficult to quantize the progress in the field;
• tackling high level information retrieval tasks requires an increasingly multidisci-

plinary approach; integration of the contribution from the different research fields (vision,
speech recognition, natural language understanding, human-computer interfaces) will pose
new challenges;
• bottom-up work, linking currently detectable features (from color characteristics to

montage rhythm) to more semantically rich concepts needs further investigation and holds
promise of increasing the usefulness of currently available systems;
• working on videos asunitsis still in its infancy; the possibility of characterizing video

material (a video clip, a feature movie) as a whole and comparing it to other items will be
increasingly important as the databases grow larger and larger.
• human–computer interfaces have a crucial role in accessing multimedia data; the work

done so far in structuring document access for the Web needs to be further extended for
multimedia browsers working on large collections of items (see [109–111] for some recent
proposals).

The importance of automatic video indexing has not been diminished by recent techno-
logical innovations in professional cameras which permit the addition of meta-data at the
shooting stage. While some of the major camera manifacturers have promoted new video
formats supporting this added functionality, these efforts have not resulted in an accepted
standard. In the mean time the MPEG team started MPEG-7, a new work item to provide
a solution to the problem of tagging multimedia information. Current research in the com-
puter vision community is already aware of the importance of the algorithms developed for
automatic video segmentation and indexing in the new standards MPEG-4 and MPEG-7,
respectively, for compression and description. Integration of the results of automatic video
analysis in the definition of the new standards and in MPEG compliant systems is one of
the trends in this field of applied research.

While automatic video analysis has already proven useful in the management of multi-
media data, much work remains to be done in nearly all of the related research topics, from
segmentation to description, to provide general, reliable, tools for accessing multimedia
information with the same ease usually associated to the management of text documents.

APPENDIX: GLOSSARY

abstracting video, a video stream is transformed into a reduced set of key frames or
sequences.

annotation, the process of identifying and describing useful events and sequences in a
video stream. Structure, form, or content are added to information already acquired (e.g.,
adding a narration track to a video tape).

authoring, the process of assembling available information (e.g. raw footage) into a new
cohesive presentation.

cut, an abrupt change from one frame to the next.
dissolve, a superposition of a fade-in and a fade-out; the first shot fades out while the

following fades in to full light.
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edit, a gradual transition from a shot to another shot. The video editing process involves
two phases: ordering of shots and assembly, the physical process in which the editing phases
result is converted into frames on the final cut. It is during the latter that new frames (called
edit frames) are added to create a transition between two consecutive shots.

fade-in, the progressive transition from black to light.
fade-out, the progressive darkening of a shot until the last frame becomes completely

black.
frame, a video image that is the combination of two fields and includes the odd and

evenly scanned lines.
frame rate, the rate at which frames are output from a video decoding device or stored

in memory.
video indexing, the process of attaching labels (indices) to video. There are three basic

types of indices: bibliographic, structural, and content. Bibliographic indices resemble the
sorts of indices we normally associate with library catalogs. Structural indices are based on
identifying units of both temporal and spatial structure. The content indices describe the
objects in the video stream, including the appearance and location of persons and physical
objects.

key frame, a frame representative of a shot.
matte, a progressive obscuration of visual field, due to a mask that invades the screen.
MPEG, short for Moving Picture Experts Group, a working group of ISO. The term

also refers to the family of digital video compression standards developed by the group.
The newest members of the MPEG family are MPEG-4, for very low-bandwidth video, and
MPEG-7, specifying a standard set of descriptors to be attached to multimedia information.

pan, the action of a camera when following a person or object.
scene, a group of shots that share common attributes and provide the description of the

context.
video segmentation, decomposition of a video clip into its component units (shot,

scene, ...).
shot, an image sequence (one or more contiguous frames) coming from a single operation

of the camera and presenting a continuous action in time and space.
tilt , a camera “pan” in a vertical direction, down or up, from a stationary position.
wipe, picture transition from one scene to another, wherein the new scene is revealed by

a moving line or pattern. In simplest form, it simulates a window shade being drawn.
zoom, the camera closes up on a subject without losing focus.
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27. H. J. Zhang, A. Kankanhalli, and S. W. Smoliar, Automatic partitioning of full-motion video,Multimedia
Systems1, 1993, 10–28.

28. P. Aigrain and O. Joly, The automatic real-time analysis of film editing and transition effects and its appli-
cations,Comput. & Graphics18(1), 1994, 93–103.

29. U. Gargi, S. Oswald, D. A. Kosiba, S. Devadiga, and R. Kasturi, Evaluation of video sequence indexing and
hierarchical video indexing, inProceedings of SPIE Conference on Storage and Retrieval for Image and
Video Databases III, 1995, Vol. 2420.

30. U. Gargi, R. Kasturi, S. Strayer, and S. Antani,An Evaluation of Color Histogram Based Methods in Video
Indexing. Technical Report CSE-96-053, Penn State University, Department of Computer Science and
Engineering, 1996.

31. J. M. Corridoni and A. Del Bimbo, Film semantic analysis, inProceedings of the International Conference
on Analysis of Image Patterns, Prague, Czech Republic, September 1995.

32. W. Xiong, J. Chung-Mong, and R. H. Ma, Automatic video data structuring through shot partitioning and
key-frame computing,Mach. Vision Appl.10, 1997, 51–65.

33. D. Le Gall, MPEG: A video compression standard for multimedia applications,Commun. ACM34(4), 1991,
46–58.



AUTOMATIC INDEXING 109

34. H. J. Zhang, C. Y. Low, and S. W. Smoliar, Video parsing and browsing using compressed data,Multimedia
Tools Appl. 1, 1995, 91–113.

35. International Telecommunication Union, ITU Place des Nations CH-1211, Geneva 2,H.263: Video coding
for low bit rate communication, E 7244 edition, March 1996.

36. J. Meng, Y. Juan, and S.-F. Chang, Scene change detection in a MPEG compressed video sequence, in
Proceedings of the IS&T/SPIE Symposium on Electronic Imaging: Science & Technology, San Josè, CA,
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