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Many video programs have story structures that can be recog-
nized through the clustering of video contents based on low-level
visual primitives and the analysis of high-level structures imposed
by temporal arrangement of composing elements. In this paper we
propose techniques and formulations to match and cluster video
shots of similar visual contents, taking into account the visual char-
acteristics and temporal dynamics of video. In addition, we extend
the Scene Transition Graph representation for the analysis of tempo-
ral structures extracted from video. The analyses lead to automatic
segmentation of scenes and story units that cannot be achieved
with existing shot boundary detection schemes and the building of
a compact representation of video contents. Furthermore, the seg-
mentation can be performed on a much reduced data set extracted
from compressed video and works well on a wide variety of video
programming types. Hence, we are able to decompose video into
meaningful hierarchies and compact representations that reflect
the flow of the story. This offers a mean for the efficient browsing
and organization of video.  © 1998 Academic Press
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sequential fact, knowing, seeing and hearing precisely what lies between
them and what kind of chain holds them together. That is cinema.

—Andrey Tarkovsky, Sculpting in Time—Reflections on the Cinema,
translated by K. Hunter-Blair.

1. INTRODUCTION

Methods and techniques to automatically analyze video do
uments based on contents and build structures that facilitate b
hierarchical organization and semantical understanding of vid
are important for applications such as browsing, navigation, at
search in video databases. Often the goal of such analyses i
provide fast and meaningful nonlinear access to relevant mal
rials in video.

Existing content-based analyses of video focus on detectil
shot boundaries (commonly known scene chandeletection;
see, for example, [3-5]) based on objective visual primitive
such as color, image correlations, and sometimes motion [
rameters. By detecting the shot boundaries, individual shots &
rediscovered and they represent the fundamental units of vide

This is an important step to condense the visual informatic
presented. An image, usually the first frame, is chosen to repi
sent the shot, and the collection of such images gives a summ:
of the video sequence on which the users can browse. This p

Cause and effect are mutually dependent, forwards and retrospectively. On%enta,ltlon format rehevgs the user from the ”eeo_' towatch the €
begets the other by an inexorably ordained necessity, which would be fatafil® Video during browsing. However, in many video programs
for us if we were able to discover all of the connections at once. The link there are hundreds of shots (the number can be thousand:s
of cause and effect, in other words the transition from one state to anothermodern action movieg)m addition, a frame taken from a shot
is also the form in which time exists, the means whereby it is materlallzed,often fails to represent the dynamic and time varying conten

in day to day practice... The point is to pick out and join together the bits of

within the shot. In such cases, presenting shots in a one dime

sional image array does not offer the users an efficient way

* Part of this paper was presented at International Conference on Multi-
media Computing and Systems 1996 [1] and International Conference on Pat: This is a misnomer. These techniques detect the boundary when a cam
tern Recognition 1996 [2]. This work was conducted when the first two authasbot transits to another. In film production, a scene is composed of many diffe
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ent shots unified by a common locale or event. Throughout the paper, we ¢
such operations “shot boundary detection” to distinguish them from the actu
segmentation of scenes. The waxaknewill be used as in film production.

2 For example, 500 is not uncommon in typical films [6].
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browse, navigate, and search for any particular video segmentsThe measurement of visual similarity takes into account the
This presents a greater challenge for the user if the user has nésarporal variations within individual video shots. In addition,
watched the video and has no idea where to initiate the seareluced data sets are extensively used to achieve fast analy
in the image array. and processing of video. The reduction in data comes both frot
Another form of content analysis of video is to differentiate thihe spatially reduced image sequence extracted directly froi
contents presented in the individual frames of video documeistsmpressed video and the temporally subsampled collection «
with predefined context and extract the more “important” framespresentative frames through a key frame selection schen
for presentation and browsing purposes. This can be achieVadthermore, story structure and programming type of the vide
by extracting highlights [7] of sports events, detecting captioase not required—the structure is discovered in the process
[8, 9], and key-words spotting [9]. Detection of these highlighthe analysis. This allows long video sequences of many frame
allows skimming of long sequences of video and cut significantly be telescoped into a compact representation featuring the \
the time of browsing the entire sequence. sual contents and temporal structures and effectively provide
Model-based parsing of video sequences has been proposgsual summaryf the underlying story. Consequently, video
for news broadcasts [10, 11] to extract specific semantic eBequences can be automatically parsed to achieve a hierarc
ments of the sequences based on specific models of news braatldecomposition based on contents, which in turn offers bette
casts. Generic models, on the other hand, may be difficult to buddyanization of video and provides some high level structure
for different sequences of various programming formats suchtasassist semantic understanding for browsing and navigatic
sitcoms, dramas, and movies. This may limit the applicationsapplications in digital video libraries.
certain types of video programs. The techniques proposed in this paper to break a video int
In reality, video is a medium of presentation, a means to colarge meaningful units based on the interactions between shc
vey messages and in fact, a form of document. For many videan be seen to be analogous to the classical approaches to s
documents, there are underlying story lines which are reflectentation of still images. In the segmentation of an image, on
by the visual contents and the temporal organization of the mgeeks to identify regions in the image that are uniform and homc
terial presented. For example, repetition of shots are commorgeneous with respect to some characteristics. Pixels are group
motion picture production. The recurring shots very often cdagether into clusters in the spatial domains according to th
be recognized from visual similarities. In addition, the tempordesired characteristics. In our approach to the segmentation
arrangements and dynamics of compositing shots in motion pidgdeo into large meaningful units like the scenes, we want to pai
ture presentation reflect the structures and the flow of the stdition the video into units, each of which represents a sequenti
In view of such underlying structures, it is desirable to automatellections of interrelated shots that are unified by a commo
ically identify both visual and temporal relationships in videdocale or dramatic event. In other words, such sequences of shc
and extract a compact representation of the story. This candmmpose a meaningful unit in the story. The common charac
useful in applications such as video browsing and navigatiaeristics of shots we seek are the mutual interactions in termr
a user can first identify the scenes taking place at a particutdivisual similarities and temporal locality. We then achieve the
location using the visual information, select the scene desiregigmentation through the use of graph property in the scer
using temporal information, and similarly navigate through vatransition graph constructed.
ious shots in the scene to locate the desired point in video byThe organization of the paper is as follows: In Section 2, we
both visual and temporal information. In addition, the compaekamine the role of “time” in the composition of video pro-
representation serves as a summary of the content and strucieens and the characteristics of motion picture presentatiol
in video such that a user, by recognizing the underlying stowe then provide a general framework of matching and clus
structure, is able to get a quick overview of the story withouering of video shots based on visual similarities across im
viewing the entire video sequence. age frames represented in the shots and temporal variatio
In this paper we propose a general framework of clustering within individual shots in Section 3. We extend this framework
video shots based on both visual similarities [12] and tempotal take into account the temporal locality of shots by incorpo-
localities of the shots which we calime-constrained cluster- rating time constraints in the clustering process in Section £
ing. We use thé&cene Transition GraptSTG), a directed graph In Section 5, we review thecene transition graphpropose
representation proposed by Yeuagal [13], and extend the new formulations, define thstory unit and explain the seg-
formulations to accommodate our analysis of story componem&ntation of video into story units by the analysis of STG cou-
extracted by the graph. We will show that time-constrained clugled with time-constrained clustering. The block diagram for
tering and scene transition graph together provide the basistba segmentation of story units and the building of the STG
which analysis can be performed to extract story structures tlaaid the details of implementation in various steps of the ana
reflect the flow of underlying story and to meaningfully segmensis, are presented in Section 6. Section 7 shows how the sto
individual units from the story. Each such unit will closely apunits segmented can be further analyzed to approximate the &
proximate a scene, and such segmentation cannot be achiguatiscene boundaries. The experimental results are discussec
by any of the existing shot boundary detection schemes. Section 8.
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2. DISSECTING VIDEO The sequential montage has produced a distinctive con:

o . quence at the shot level: repetitive shots of similar contents i

We refer to a complete moving image dF’Cume”t as a Y'd?@rleaved by other shots with different contents. These shots m
sequence in the paper. The fundamental unit of the productiongf ihe shots of the same person, taken from the same cami
video is the shot, which captures continuous action from a cal}ihe same location, or about the same event. Most often, t
era. A shot reflects a fragment of the story. A scene is “usuallyyjarities of contents are shown through similar visual chara
composed of a small number of interrelated shots that are Usistics of the compositing frames in the shots. In addition, th
fied by location or dramatic incident” [14]. At the higher levelg;m;jarity of individual video shots must reflect the time-varying
several scenes can be composed into an act. The act-sceneyihigte of the contents. This form of similarity measurement |
decomposition forms an hierarchy; the story line then Cha'ﬂﬁiependent of the featured video program and does not requ
the shots into scenes, the scenes into acts, and together theﬁﬁ{ﬁspecific knowledge of the underlying story. Hence, we a
linked to tell the story. The story structure and organization afgje o classify the shots by grouping shots of similar visual col

commonly found in motion pictures, TV movies, Sitcoms, etCients into special classes of distinct labels to further conden
and are not confined to such. In many structured programs g information presented.

news, documentaries, TV magazines, and talk shows, each proppe ¢jystering of video shots according to visual similaritie:

gram is a composition of distinctive segments, each of Whigfers another level of organization beyond the detection of ind
represents a distinct unit with underlying messages. The sggy 5 shots. The resulting clusters of video shots, however, m:
ments are then linked together by some establishing shots Ik@¢er from the lack of “context” because the temporal informa
the shot of the anchor room or the host. , tion is lost. Visual similarity of shots alone may not be sufficien
It is advantageous to be able to segment meaningful Uit jiferentiate the context and contents of individual shots ¢
from a video sequence without specific knowledge of the partiga o, shot s itself a distinct unit dime in the featured video
ular program nature of the sequence. Instead, the segmentafiplientation. For long programs, there is little justification fo
will be baS(_ad on the presentgnon of the featured video sequeapguping shots into the same class based only visual conte!
along the time line and the visual contents. Consequently, Iofigih oyt regard to the timing of the context. On the contrary
sequences of video can be effectively broken down into meafcp, grouping may lead to shots from different scenes cluster
ingful segments, and the story can be further condensed a8ether, which may not only complicate the understanding, b

presented in a hierarchical fashion for efficient browsing appli;sg make the segmentation of distinct scenes very difficult,
cations. To do this, we first must examine two characteristics 9 impossible.

video presentation that are common in a variety of programs. | the following sections, we shall discuss how video shot

The most essential characteristic of motion picture presenfay, pe clustered together based on visual similarities of ima
tion is the sequential montage. Montage “refers to the editing Qi tents and the temporal dynamics shown in the visual contel
the film, the cutting and piecing together of exposed film in @iiin individual shots. We shall show that using a selected s
manner that best conveys the intent of the work” [15]. Montagg yepresentative frames for each shot, the visual content var
was studied by Eisenstein [16] and other great Soviet direCtofigng are captured and the similarities of video shots are bet
As described in [6], “One of the binding and immutable coNgfiected. We will then show how to incorporate time constrain

ditions of cinema is that actions on the screen have to develpp refiect temporal locality of contents in the clustering pro

sequentially, regardless of the fact of being conceived as similliss \we call this time-constrained clustering of video shot

taneous or retrospective... In order to present two or more Pigsis clystering framework, when incorporated into the scer
cesses as simultaneous or parallel you have necessarily to sy

! ’ fsition graph, is capable of capturing the flow of the stor
them one after the other, they have to be in se.quenual montagg,y allows the segmentation of video irgiory units each of
For example, in qulywood the use of alternating clpse—up shQfsich closely approximates a scene.
of two characters is common to convey conversations, innuen-
dos, and reactions [15]. Repeating shots of the same person or
same settings, alternating or interleaving with other shots, &8¢ MATCHING AND CLUSTERING OF VIDEO SHOTS
often seen in TV programs, news broadcasts, interviews, talk
shows, etc. to convey parallel events in a scene. Throughout this paper, we shall treatfeot defined as a con-

In addition, contents in a motion picture and many video méhuous sequence of actions, as a fundamental unit in a vid
terials are localized in time. For example, given two shots 6equencé.
the same person, if the two shots are juxtaposed together, theyo organize and retrieve video shots, we need to analyz
are more likely to be of the same scene than if they are place@mpare, and process the shots based on their contents. Bec:
far apart in time from each other. Often, a scene is made upafthe huge amount of data presented by the many frames o
temporally adjacent shots indicating their interrelationships. On
the other hand, two visually similar shots, if occurring far apart
in the time line, may potentially represent different contents ors pyrther subdivisions of shots into smaller units are possible and can be ea
locale in different scenes. accommodated by the framework defined below.
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video shot, processing is normally done on reduced data. Qrance information as proposed in [12)( ) is normalized to
common practice reported in existing literature is to use om&ke on values between 0 and 1. The readers are referred to [1
image @ key framg typically the first frame of the shot, to for the details of shot matching schemes and the effectiveness.
represent the shot. Processing operations are performed on tiséselld be noted that other measures of image similarity such :
key frames, e.g., in [17] the similarity of two shots are measurée quadratic distance between color histogram [18] or distanc
by the similarity of the two key frames. based on low-order moments of histogram [19] can also be use
Generally speaking, in a video shot where object and camera
motions are prominent, a representative image is not sufficie?. Reduced Data Sets for Video Shots

for the faithful analysis of the image set it represents. Yet it is H . ¢ vid h ilv invol .
computationally burdensome to include every frame in the shot € processing of video s ots usually involves compu'gat|0|
arge data sets. It is desirable to perform the processing ¢

for processing purposes. We need a good representation of vid8 dd . 4 of th iinal full-f '
shots for faithful analyses. The representation must be able't§Y¢€ Wata sdets matea_ N ]E e_o_r|g||n a d y -brame v e(l) S€
optimize the trade-off between preserving the visual conterffdence. We reduce the size of original video by temporal an

and temporal dynamics and minimizing the size of data nee Eal;_ub_sarpp_lmg. ¢ hots is defined i h
for efficient computing purposes. The dissimilarity measure of two shots is defined in (1). The

In Sections 3.1 and 3.2. we shall look at the visual similari efinition requires the computation of the dissimilarity indices
measurements of video shots proposed in [12]. We also sh all i”ﬁage pairs in the two shots, and thus_is comput_ationall)
how a reduced representation can be extracted which effectivEfPENSIVe. On the other hand, due to the inherent size of o

captures the dynamics in the video shots on which the matchff{g®: it iS tempting to use one frame to represent each shot. /

and clustering processes are performed. We proceed to formuY% eh"’“/e shown previously, howeV(_ar, such representatlvg Ima
the problem of clustering of video shots in Section 3.3. often does not capture the dynamics of contents. In reality, w
observe that for a given shot, consecutive frames often prese

3.1. Similarity of Video Shots rel_ated info_rmafcion WhiCh is redur_1dant. To reduce the compu
tation required in various processing steps and to represent tl
Here we assume that the individual video shots have begsntents of a video shot concisely with minimal size, we propos
segmented out from a video sequence by temporally detectihgt each shot be represented by its representative image se
the shot boundaries. Since each video shot is represented byitfood but nevertheless greatly subsampled collectidrfgf
collection of frames it is reasonable to assume that there arevilgich can effectively capture temporal variations due to cam
abrupt changes or incorporation of unrelated images presentra operations or object movements. For a video sequence whi
Similarity between two video shots must give sufficient inhas little or no variation, one such representative image (e.g., tt
dication of the same events, persons, or locations. When fitetimage) is sufficient. In along video shot or a shot with many
camera follows the flow of the event to different locations or tgariations, we choose more images. The selection of the repr
include new elements, the temporal variations are all captureghtative set is achieved by nonlinear temporal sampling, whic
within a video shot. To match the contents in a way that agreegasures the dissimilarity index between the last selected fran
with human perception of similar contents, similarity of videand the remaining frames in a given shot and selects frames wi
shots are more suitably measured in terms of the intersectiorcehsiderable variations to be the representative frames.
the flow of imagery paths or camera trajectories. Thatis, given avideo sh@x = { fp, o1, ...}, let Radenote
We define similarity of two video shots as follows. the set of representative frames selectedSarinitially Ry =
{fy}, that is, the first frame is always selected. lfétbe the

i i — 8 o

DeEjF'N'T'ON 1. Given t\_NO_V'd?O shot§ - {fichen .andS,_ ~ last selected frame and be its frame index, thus we initialize
{fk}k:bj, S and_SJ- are similar if there exists a pair of similar ¢« _ f, andm = b. We then proceed as follows:
framesfy, fawithly <m<e;bj <n<g.

Derinimion 2. The dissimilarity index o§ andS; is defined 1. Select smalledt> msuchD(f*, f) > e.

as Setf* « f|. Setm «|.

S, s) =, _min, . D ). (D 2 UpdateRa: Ra < Ra U f.

Here D(., .) measures the dissimilarity between two image Repeat 1 and 2 until the end of the shot
frames. More general definitions can be setto require the number
of similar images in the two sets to be greater than a threshdlde threshold is a predefined error threshold taking values in
z; d(S, §;) will then take the value of theth smallest value of [0, 1]. The frame selection process is equivalent to a nonuniforr
dissimilarity indices measured from the two sets of frames. sampling in time. Compared with uniform subsampling, it has

Various criteria can be used to measure the dissimilaritiye advantage of taking in relatively few frames in a still shot
D(fi, f;) between two image§ and f,. We use two measureseven when the shot is long and captures the frames which exhit
of dissimilarity indices of video shots based on color and luminores variations.



98 YEUNG, YEO, AND LIU

By using only the representative set of frantes C Sa for  dissimilarity between any two shots in the cluster. In additior
shotS,, we are essentially approximating the value of (1)  any other shot outside of the cluster must have a dissimilari
greater thar; relative to any shot in the cluster.
d(S,.S§)~ min _ D(f, fm). (2) Hierarchical clustering methods basedaamplete-linkde-
fieR. IneRy scribed in [21] and the references therein, generate clusters t

The error threshold, together with the variations in visualsatisfy the condition listed in Criterion |. Before describing the
contents within each shot, will determine the number of frameéégorithms, we define the dissimilarity between two clus@rs
selected to represent the shot. Given the fact that no prior knoahdC; as
edge of the video contents is available in most test sequences,
€ is the parameter in selecting the set of frames to represent a dmax(Ci, Cj) = XE{:“";‘;(C d(x,y). (4)
video shot and can be predetermined in practice. When0, Y
the representative sBiconsists of every frame in the shot. WherThe algorithm proceeds as follows:
€ = 1, Rconsists of only the first frame.

We have found that the proposed representation leads to g
matching results when compared to those using original se-1. Initially, there areN clusters{S}, {S}, ..., {Sy}. Each
guences, but uses on the average only 2 to 5% of the number cluster contains a shot.
of frames. In our segmentation experiments, we use about 5% SetNumCluster< N.
of the frames for shot matching for satisfactory performances.2. Stop when
Using a higher percentage has little impact on the clustering re-
sults but increases the computational complexity. To select less dmax(A, B) > 8, for all clustersA # B.
than 5% of the frames, we ugein the range [0.02, 0.04] as or NumCluster= 1.
recommended in [12]. 3. Findthe leastdissimilar pair of clusteRandS, according

In addition to temporal subsampling of data via the selection  tg (4), i.e., findR and S such that
of representative frames, spatial subsampling is used to achieve
another level of reduction of data and associated computations. dma(R, S) < dmax(A, B), for all clustersA, B.

In our processing s_teps like matching and plustering of video4_ MergeR andSinto a new cluster.

shots, and the bu.lldmg of graph representation later, we use the SetNumCluster— NumCluster— 1.

DC or DC+ 2AC images extracted from compressed MPEG or 5. Goto step (2).

Motion-JPEG video proposed by Yeo [20]. The reduced images

are extracted with significantly fewer computations and with- The paramete¥controls when the iteration stops. Itis normal-
out full decompression of the compressed data. Although soi@ed to take on values from 0 and 1 and defines the minimu
details are lost, the global visual characteristics such as cof@paration between any two resulting clustétsmClusterin
and shape are well preserved. In addition, the reduced image algorithm maintains the number of disjoint clusters formec
sequence is also sufficient to capture temporal variations witH each step, the algorithm merges two most similar cluste

é%bGOR'THM Complete-link method]

a shot. into a new cluster based on cluster dissimilarity (4). It is easy
see that at each step of the process, the clustering criterion |
3.3. Clustering of Video Shots always satisfied.

S : . Inthe implementation, the dissimilarities of the newly merge
We assume a dissimilarity measut€s, S;) defined previ- .

clusters to other clusters must be updated accordingly at each
ously between two sho§ andS;. We want to group shots that . . . ;

eration. One algorithm that implements such a clustering meth

T et basedontneprovity mats desrbed 1] and oo
y ' 9 B¥rences therein. AN x N proximity matrixD = [d(S, Sj)] has

C; theith cluster, we define the following criterion of clusteringds entries the dissimilarity between two shots. At each step, t

[Criterion | ] Define matrix is updated by deleting rows and columns correspondir
to clusterR and S and adding a new row and column corre-
€ = erQEaC)i(d(y, 2). (3)  sponding to the newly formed clust®U S.

Initial generation of the matri® requires
Givenx € Cj, then
N(N —1)
d(x,w) > ¢, forallweCj,j#i. (N-D+(N=2)+--+1=—7—

Criterion I implies a strong condition on the similarity of shots itomputation ofi(., .).

a cluster. It requires each shot to be similar to every other shotinThe clustering parametérreflects the maximal visual dis-
a cluster. In this case, with each clusizris an associated max- similarities allowed across different shots within each cluster.
imum dissimilaritye; defined by (3). It measures the maximunacts as a threshold to give a corresponding partition of video st
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clusters. In practicé,can be predefined, or selected interactivelgnd similarly

by an user looking into the dendrogram built in the clustering

process. It can also be automatically selected by detecting sud- amax(cia Cj)= max 6(x, y). @)
den big jumps in the proximity value when two clusters merge. xeCi.yeC;

We will include the results on segmentation of video using var-

iouss’s later in Section 8.2. It is straightforward to see that usidganddnax, the same clus-
tering algorithm generates a hierarchy of clusters, and cluste
4. TIME-CONSTRAINED CLUSTERING at each stage satisfy Criterion |
OF VIDEO SHOTS In addition to the capability of segregating shots that are nc

in the same scene, time-constrained clustering has an importe
In order to segregate one scene from another, we take iffigplication in complexity. Denote by the maximum number
accountemporal locality of contentim video. It means that for of shots that any shot is temporally close to, i.e.,
any two shots that are far apart in time, even if they share simi-
lar visual contents, they potentially represent different contents L =max(S (S, S) < T}I,
or occur at different scenes. Time-constrained clustering further i
imposes a time-window parametérthat prevents two shots ) .
that are far apart in time but similar to be clustered togeth&fen instead of (N — 1))/2 shot comparisons, we need most
In this section, we will show that the addition of temporal con¥ (L — 1) shot comparisons since the remaining ones violat

straints incurs minimal changes to the clustering algorithms B{} {€mporal constraints imposed. Fomuch smaller tham,
significantly reduces the computational complexity. this is a significant reduction in computational complexity. In

To proceed, we define the temporal distance betvé&amd the modified proximity matrisD, only the entries near the main
S to be ' diagonal can be finite.

min(b; — &/, b — &), i #j; 5. SCENE TRANSITION GRAPH AND THE ANALYSIS
&S §)=1, : e

The formulation of scene transition graph was first propose

Itis the distance in number of frames from the end of the earli% [13] as compact representation of the underlying story fol
shot to the beginning of the latter one. We propose to use?@Wsing purposes. The graph structure can be extracted au
time-window parameteF (T is the elapsed number of framesf“at'ca”y_ using visual contents _and temporal information with-
as a constraint on the clustering process: shots can be clust&dgSPecific knowledge of the video content and structure. Th

together ifthey fall within the time window. Formally, we modify”OdeS are clusters of visually similar shots and the edges inc
Criterion | as follows: cate the temporal flow of the story. We first review the definition

of STG in Section 5.1 and discuss how it can be used for th

[Criterion | '] For allx € Cj, analysis of video in the context of time-constrained clustering
1. of video shots in Section 5.2.
%%th xy=<T 5.1. Definition of Scene Transition Graph
2. The definitions of STG presented below are part of a more
Definee; = maxd(y, z), then general model of Hierarchical Scene Transition Graph (HSTG
y.2€C proposed in [13].
d(x, w) > ¢, or A scene transition graph is a directed graph with the propert

o g =W, €&, F), whereV = {V;} is the node set andl is the
d(x,w) > T, forallweCj,j#i. edge setF is a mapping that partitions the set of shfg into
In the modified criterion, the temporal distance threshblis Vi, Vo, ..., the members op. For givenU, Win V, (U, W) is
used on top of the visual dissimilarity to separate shots inaamember of if there exists som& in U and S, in W such
cluster from the next. The additional criterion is that in eacthatm = | + 1. In the discussion of sho§, we assume the
cluster, we require that no two shots can be separated by mfwldowing ordering of shots: if < j, then shot§ occurs before
thanT frames apart. In this modified Criteriof) ive can use shotS; in time.
the same clustering algorithm previously described with only Thus, the collection of shots is partitioned to form nodes of
one slight modification. Instead of., .) (and henceal.y), we G; each node represents a cluster of sh@tgartitions{S}
define into V1, Vo, ... such that nodes in eadh aresulfficiently simi-
i lar, according to some dissimilarity metrics. In the framework of
d(S.5). iTd(S8.§) =T (6) time-constrained clusterind(., .), parameterg andT uniquely

ds, s) = :
( 1) 00, otherwise define the mapping. A directed edge is drawn from nodeto
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W if there is a shot represented by naddi¢hat immediately pre- that while we have condensed the video into a more compe
cedes any shots represented by ndi&kelations between clus- structure of STG, it does not explicitly depict the flow of story
ters are governed by temporal ordering of shots within the tviimm meeting to office and back to meeting. This is due to th
clusters. A simple example would be a scene of conversation lgesuping of visually similar shots in scenes 1 and 3 without th
tween two persons; the camera alternates between shots of @aalization of the different context of these shots.

person. The grap§ consists of two nodes; andV,; (Vi, V2)

and (>, V) are both members df. 5.2. New Attributes of the STG for Analysis Purposes

STG is able to represent compactly the stryctures of Shmsl’o enable the analysis of video through the analysis of ST(
and the temporal flow of the story for many video programs.

. . o ; new attributes and formulations are defined. We first define tf
Unfortunately, clustering of visually similar shots without th%ttributes ofa STG
differentiation of context (as in [13]) can render the STG very
complicated, and consequently adversely affect the analysis of
the resulting graph and the segmentation of video into meaning-
ful units beyond the shots. Figure 1 illustrates such an example.  LYG) = index of the last shot represented®y  (9)
In Fig. 1a, a sample video with nine shots is shown. It consists

of three scenes: two taken place at a meeting and one at Theis, if a STGG is constructed from shotS, S41,..., Sy,
office. The meeting scenes are interleaved by the office scetmenFSG) = | and LYG) = m.

The STG, shown in Fig. 1c, consists of 5 nodes, formed by We also want to associate with each STGn undirected

condensing visually similar shots into distinct clusters. NographG = (V, £). G andG have the same node set; in addition.

FSG) = index of the first shot represented §y  (8)

‘ (scene 2)

meeting

. (scene 1)
meeting

« C5

(©)

FIG. 1. Sample video sequence with repeating scenes: (a) 3 scenes of 9 shots, (b) sample clustering results, (c) the Scene Transition Graph.
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_'O STG built subsequently contains cycles and nodes with a hig
O degree of incoming and outgoing edges, indicating the interac
tions of the shots presented in these clusters. In time-constrain
\ clustering, given a sufficiently good time winddw any shots
from different scenes cannot be grouped into the same catego
(cluster). This means that the groupings of shots based on visu
similarity are localized to a scene, therefore, the interactions al
' confined to clusters of the same scene, except at the transition
O two scenes. More precisely, shots from different scenes cann
be juxtaposed, except at the transition of one scene to the ne»
FIG. 2. Adirected graph. Its cut edges are drawn in dashed line. In a STG, acut edgeconnects two disjoint connected sub-
graphs, each of which isstory unit We thus use a story unit

. . _ oA to approximate a scene for the segmentation purposes. Ina ST
for each edge of g, there is a corresponding edgén G With o resentation of video, the transition of astery unitto the

the same ends. One important feature in the undirected grapRey will always occur on aut edge This is because a cut edge
is acut edgedefined as follows: an edge is a cut edge in an undisresents a unique point of transition from a shot from an ea
rected graph, if when is removed, results in tdisconnected jie story unit to the ensuing shot of the next story unit. The
graphs[22]. The set of cut edges i partitionsg into disjoint ¢ 1ection of cut edges then partitions the STG into disjoint con
connected s.ubgrap@g, Goyoons gq, where eaclg, = (mec/_'n)- nected subgraphs and represents all the transitions from one u
Correspondingly, the cut edges induce the same partitiof 0f, e next. By detecting the cut edges, individual story units ca
such that there are nowdisjoint STG's,G1, 0o, ..., Gn, Where o segmented out. The segmented story units are semantica
Gn = (Vn, &n, F). For the mapping” we work with in this pa- e aningful because they reflect to a certain degree the actt
per, 7 from G is preserved in eacti after the partitioning of grenes depicted and the composition and interactions of ever
the graphg. o . in different scenes.

_ Without loss of ambiguity, we shall refer to the directed edge 1pg time-windowT optimally should be chosen to reflect the
eas a cut edge ig when the corresponding edgén G is a Cut  inimum temporal distance between two recurring instances

edge ofg. Figure 2 shows an example directed graph; the cife same scene, such that shots in these two instances are

edges are dT?‘W“ using dashed line. _ _ grouped together (we shall call such instance a scene by itse

Each partitioned ST@; represents the interactions of shot ; ; ; ;
_ ch partiti i Feprese y dr more precisely, a story unit). In the examples illustrated ir
in a story unit. Formally, atory unitrepresented b is the se- Fig. 1a,T should be set to reflect the temporal duration of the
quence of shotsS,, § .1, ..., Sn, where li =FS(Gi) and inerieaved scene, such that the shots in scene 3 (e.g., S7), v

m; = L(Gi). Thus, it represents a contiguous segment of videpy e in the same clusters that contains shots in scene 1, ev
frames; the shots from this segment interact in an intense aagq visual characteristics may be quite similar.

meaningful fashion. The collection of all cutedges of the $TG 5 ever, such knowledge is not readily available. In practice

then represents all the transitions from one story unit to the Ne¥tean be chosen to be a sufficiently large fixed number. Her

Such transitions reflect the natural flow of story in the video. ASa 4ssume that there are sufficient differences in the chara
we will see in later sections,story unitclosely approximates a yayistics of one scene and those of the next scene, and the d

scene. ferences exhibited are good enough to segregate the shots frc
these adjacent but distinct scenes. (This is often the case becal
scene changes, unlike shot changes, often involve a change
Themontagepresentation in video gives rise to a distinct forniocale and setting, different casts, etc. which are well reflecte
of temporal interactionén a given scene. A scene is composelly changes in visual characteristics.) A scene usually consis
of related shots in a particular setting. In a particular settingf several shots, thus lasts longer.
there is often coexistence of multiple elements (e.g., multiple These assumptions of video characteristics and the subsequ
casts). Thus, in a scene we see the shots of these elemsatgnentation procedures are not dependent on any model of t
juxtaposed and linked together. We say two shiotsractif  specific nature of individual programs, and are applicable to .
they are juxtaposed side by side, that is, temporally adjacentairly wide variety of programming types. We will show later that
each other. In the STG, every interaction is shown by the prestery units can be successfully extracted from sitcoms, movie:
ence of an edge connecting the nodes containing the respeatizgoons, and documentaries.
shots. The Scene Transition Graph generated with temporal cor
In most scenes, there are recurring shots of the same againt of the sample sequence in Fig. 1a is shown in Fig. 3. |
ment. Such recurrence can be recognized by similarities of ebntrast to the STG shown in Fig. 1c, this STG explicitly depicts
sual contents. The clustering process then groups these sintta flow of story. Cut edges that separate story units are marke
shotsinto corresponding clusters based on the visual indices. Ehande,.

>

5.3. STG Analysis and Time-Constrained Clustering
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tionships of the shots in the clusters. A node represents a clus
and an edge shows the flow of story from one node to the ne;
The STG of the sample video is shown as R4.

4. Scene segmentationStory units (or scenes) are extractec
by finding thecut edgef the STG. Each unit is a connected
subgraph by itself. In R4, two cut edges @nde,) are found,
thus segmenting the video sequence into three story units. Ec
story unit indeed corresponds to the events taking place af
— scene 2 scene 3 specific locale, that is, scendn the film terms.

The analysis steps do not require knowledge of video pr
gramming type and have been tested on a variety of prograt
6. SEGMENTATION OF VIDEO with promising results. The steps are generic to both compress
and uncompressed videos; however, for compressed video,

In this section we will show a realization of the concepts dfuced image sequences are extracted directly from the co
time-constrained clustering and scene transition graph preserfégpsed data stream upon which the subsequent analyses
in the previous sections to automatically parse a video progra@sed. The ability to carry out the analyses on compress
extract story structures, and identify story units. The resultif{deo is important because many long programs are captur
graph representation presents not only the story structures, gl stored directly in compressed formats like MPEG due |
also the flow of the Story, as well as a clear view of meaningfmeir inherent size of data. In addition, USing reduced data f
units of the story segmented. processing reduces computation time.

Given a video sequence, it has many shots and a few scene¥Ve use the algorithms in [20] for the extraction of reduce:
To access segments of interest of the video effectively and ndfages from MPEG compressed video. The reduced images ¢
linearly, there is the need to rediscover the composing shots a1 well the important globalimage features. They then form tr
scenes, to find the structures of the document, to summarkasis for the different steps described above. In particular, tl
the contents, and to present the structures and the contentdeggction of different shot boundaries can be efficiently and e
the users. More importantly, it is desirable to do most of tHgctively carried outon reduced images [5]. The individual shot:
operations automatically. once detected, are then used for shot matching and clusterin

The block diagram of the implementation is shown in Fig. 4.

Here are the key steps listed in the diagram for analyzing the 7. REFINED ANALYSIS OF SEGMENTED

video programs and extracting meaningful story units. For il- STORY UNITS

lustration purposes, we provide a sample video sequence (R1}he segmentation of story units is a step toward achievir
that consists of three scenes and nine shots and explain theytgyrate segmentation of different scenes for story organizati
sults alongside the analysis steps. Individual components gg§ond the shots. Given human recognition capability, and in t
discussed in the following sectlo_ns. Note that in the.d|agragbsence of understanding of the video, two scenes can be diff
each shot is represented by an image. In the analysis proc@gsiated clearly from each other ifthey exhibit somewnhat distin
however, the dynamics of the content variations in the shot &f8a| characteristics, for example, an indoor scene followed |
represented by a collection kéy framesnstead. an outdoor scene. The human recognition capability is the upg

1. Shot segmentation.Shot transitions (shot boundaries) aréimit of what algorithmic and systematic analysis can achieve
detected to segment individual video shots. The algorithm d@0 it is reasonable to assume that two consecutive scenes i
tects the boundaries of shots based on the changes of vis(id@o presentation do not share significant similarities in visu:
characteristics and gives a list of the video shots (R2) of tileerceptual) qualities.

sequence. For the sample sequence, nine shots (S1 to S9) afée ability of the segmented story units to reflect closely th
segmented oult. actual scenes relies on the ability of the time-constrained clu

tering to differenciate video shots, such that shots from differe
scenes are not grouped in the same cluster. In other words, |
fuster labels given to the shots in a particular scene must refls
ell both the visual similarity and temporal locality within the

FIG. 3. Scene transition graph with temporal constraint.

2. Time-constrained clustering of video shot¥ideo shots
are partitioned into distinct clusters based on visual similariti
and temporal constraints. Given the list of video shots (R
shots are matched and clustered based on their visual contents - |n practice, the labeling is a difficult problem. There ai
and temporal localities to further condense repetitive shots parameters in,the time-constrained clusterigvhich de-
similar conte_nts. For example, the nine shots are matched fhines the clusters (the shots in each cluster and the numl
grouped to give 6 clusters in R3 (C1 to C6). of clusters) based on visual dissimilarity, aiigd which is the

3. Building of scene transition graph.A scene transition time-window parameter. In the clustering process, the values
graph is built from the clustering results and the temporal reltrese two parameters are predetermined. A fixady reflectthe
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FIG. 4. Block diagram of proposed framework.

similarity of visual characteristics uniformly across various shotmits, the former leads to the classification of two distinct scene
from different sequences to a large degree; any two shots wiitho one story unit, while the latter potentially means that a scen
dissimilarity value above the threshold cannot be in the sansebroken down into several story units.

cluster. This somewhat resembles the human perceptual systeriiVe want the story units segmented to closely approximat
When someone is asked to determine if two images are simigtual scenes. On the other hand, we believe that there m
or not, he or she must set some subjective thresholds, thougver be any automatic techniques that can achieve 100% acc
the thresholds may not be strictly based on visual characteristiasy in scene segmentation for a variety of video sequence
like color and shape, but rather the semantic understandingTtiis is why given inaccurate segmentation, we prefer over
the images. On the other hand, without the knowledge of h@ggmentation rather than under-segmentation. In other word
long each individual scene lastsgannot be approximated well. for many applications like browsing, it is less detrimental to
A T too large can render shots from different scenes to clusteve several story units represent a scene, and present all th
together, while & too small can cause similar shots in the samanits, than to have one story unit represent several scenes—the
scene to have different labels. In the segmentation of the stegenes cannot be recovered in subsequent analysis. This is w
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FIG.5. A sequence of video shots and time-window parame€ter

given no knowledge on the length of individual scenes, we sd,}, {C1}, {D1}. In this case, the dialogue scene is segmente
T to a fixed value that reflects a reasonably short duration @dit as three contiguous story units.
time prior to the analysis. In our experiments, we set the time-To achieve a better approximation of scene boundaries, \
window T to be approximately 100 s. A shot on average laspsoceed to analyze the contiguous story units after the initi
4-5 s, thus this means that the clustering is local to about 20segmentation and check whether they reflect the dramatic
25 shots on average. This in general is shorter than the duratmnents in the same scene. We compute the duration of ec
of a scene, and thus we may potentially have a few contiguatsry unit and use this information to improve the time-window
story units extracted from the initial segmentation representipgrameter. In other word$, can be adjusted to reflect the dura-
the dramatic incidents in the same scene. tions of the story units—it can be madksticto adapt to scene

An illustration of a sequence of shots of a dialogue scembaracteristics after the initial segmentation of the story unit
between Alice A) and Bob B) is shown in Fig. 5. We use the This is a multilevel refinement of the segmentation process.
notation A; to indicate theith occurrence of a shot featuringaddition to merging contiguous story units that reflect the san
Alice andB; to indicate theth occurrence of a shot of BoB’s dramatic incident, we can also achieve a better clustering of tl
andD'’s are shots in another scene. The following example asbots in each story unit by integrating clusters of similar sho
based on this diagram. into one and relaxing the temporal constraints within the stor

Assume thatall shots of the same person are clustered togethet. The goal is to push the limits of detecting story units the
by the hierarchical clustering algorithm in Section 3.3 with &uly resemble the actual scenes and to obtain a compact ri
predetermined visual dissimilarity threshéld= §* when there resentation that describes succinctly yet meaningfully the sto
are no time-constraints, i.e., contents.

d(A, Aj) < 6*and d(B;, Bj) < §* for possible pairsi( j). This refined step of analysis is described as follows: Give
In the example the time-windoWw = T* = 20 s. The shot dura- the initial segmentation of a video int§ story units{l4; iK=1'
tionis proportional to length intime scale; eq(B;, Bs) > T*. Letl{ be theith story unit represented by the subgraphlt is

L llecti f i h ie.
ExampLE 1. SupposeB; andB; have the least dissimilarity, a collection of contiguous shots, 1.e.,

i.e.,d(B1, By) = mind(B;, B;). This means thaB; andB; are

merged into one cluster in the first clustering step. U — Lﬁ(j') (S1, (L2 K)
i = j fy s Ly iy .
The clustering results arfB,, By}, {A1, Az, Az}, {Bs, B4}, j=FS(G)

{C41}, {D4}. {B;} are not clustered into one cluster because there

are atleasta pair of shots, one from each cluster, that has a tenipenote the duration df; by = ((4;). Assume at the initial analysis
raldistancel;, > T*. Therearethree story uni{®,;, A;, By, A;, stage that the clustering threshéle= §* and the time-window
Bs, Az, B4}, {C1}, {D1}. In this case, even when the clusteringparameteil is preset to some fixed vaue. Liebe the index of
does not group the shots of Bob into one cluster, the dialoginiial story units,m be the new index, ant¥’ denote the refined
scene is still segmented out as one story unit. story unit; i.e. Ay, is themth refined story unit.

ExavpLE 2.  SupposeB, and Bz have the least dissimilarity, [Refined Analysis of Story Unitg
i.e.,d(By, B3s) = mind(B;, B;). This means thaB, and B3 are
merged into one cluster in the first clustering step. THais,
and B, cannot be grouped into the same cluster because each of
them has a temporal distande> T* from a shot B3 and By,

1. Seti < 1. Setm « 1.
RelaxT : T <« t(Uy).
Do a clustering on all the sho € U/, with (T, §).

respectively) in the cluster. Uy < U,
2.0 <—i+1
The clustering results afd;}, { By, Bz}, {A1, Ao, Az}, {B4}, Ifi <K

{C4}, {D1}. There are five story unitB, }, { Az, Ba, Az, Bs, Az}, (a) Compute the duration(/,,) andz(4).
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RelaxT : T « =) + t(Uh). 1/K isthe reduction factor from the full all-pair shot comparison
Do a clustering on all the sho& e U/, U U/ without any time constraints.
with (T, §*).

(b) If there is one cluster containing a shot from 8. RESULTS AND DISCUSSION
U;, and a shot frondf . ) ) ] ]
U, < U, UU. Goto (2) Thls section describes experimental results of the analyse

(c) Otherwise relaxT : T < (). e_lpplled to several test programs. Th_e resylts Qf the segment
Do a clustering on all the sho& €4 with (T, 5%). tion of video sequences into story units using time-constraine
m< m+ 1. clustering and STG analysis are presented in Section 8.1. In Se
U, < U. Goto (2) t@on 8.2, we investigate the two parametdrsgnds, used in the

3. Return the new story unifé(;, 145, u.). time-constrained clustering process. We present results on tl

refinement of segmentation results in Section 8.3.

Given a story unit, the refinement involves the examination of In the experiments, we use test sequences drawn from a v
the next story unit by relaxing the temporal window and reclusiety of TV programs and movies, such as talk shows, sitcom:s
tering the shots in these two units with the original visual digtocumentaries, news, as well as segments of different movie
similarity threshold. If there exists at least one new cluster thiatshould be noted that the commercials (in TV programs) havi
contains shots from the two units, this means that the new sileen edited out prior to the analysis.
graph constructed does not have any cut edges and the two story
units are merged into one. The merging of story units contin8-1. Segmentation of Video

ous until the consecutive unit does not exhibit this property. StepFigure 6 shows the STGonstructed from an episode of the
2(a) effectively reclusters the shots in the new story unit which .o+, “Friends.” It is constructed usifg= 2000 and = 0.3.

is now a conglomerate of several old units, and Step 2(c) rec“‘ﬁiere are 35575 frames, each at a spatial resolution of 220.
ters the shots in a single old unit with set to be the duration |, s episode, there are 313 shots. From Fig. 6, we can s

of the story unit. The reclustering Steps 1 and 2(c) guarant§g,y the individual story units. Other graphs constructed fo
that even in cases where the boundaries of a story unit do Qat 5 test sequences are illustrated in Figs. 7 and 8
change, similar shots are clustered together rather thanin severarlhe examples illustrate that time-constrained clustering o

clusters because of fixed time constraints, and hence achie\g., shots is able to identify individual story units. Clustering
more compact structure. , procedures separate shots that are visually dissimilar into diffe
In Example 1, the refined clustering results are ent clusters. The time constraints prevent the grouping of vist
ally similar shots across different scenes into the same cluste

{Bi1, Bz, B, Ba}, {A1, Az, As}, {Ca}, {Da}. This way, recurring scenes can be segregated. Each highlight

edge joins the subgraphs together and presents the flow of un

The three story unit$Bi, A, B2, A, Bz, As, B4}, {C1}, {D1}  in sequential order. In doing so, it chains the story units, linking

remain the same after the refinement. one unit to the next as the story flows. The story structure i
In Example 2, the refined clusters are presented concisely and meaningfully this way. The segment:
tion of contents achieved corresponds well to the perceived sto

{Bi1, Bz, B3, Bs}, {A1, Az, Az}, {B4}, {Cy}, {D1}. segments of the program.

In addition, the resulting STG permits rapid nonlinear brows-
The five story unit§B1}, {Aq, Bz, Az, Bs, As}, {C1}, {D1} now ing of long video programs. The half-hour episodes represente

become three units with the first three merged into one, in Figs. 6 and 7 are each succinctly condensed to a graph whit
can be displayed in a screen. A user can quickly identify an
(B, Ay, By, Ay, Bs, Ag, Byl, {Cy}, (D1). zoom into segments of interests without havingnearly view

through the entire program.
After the analysis, the dialogue scene is segmented out as thé‘ summary of th_e_r_esults IS shown in Tab!e 1. The test«_ec
first story unit. sequences were digitized at 30 frames/s, with the exceptic

Compared to time-constrained clustering, refinement analygfsthe Democratic Convention 1992” which was digitized at

involves reclustering of shots across adjacent story units aJn% frames/s. The gltcoms are half-hour episodes (the. comme
thus is a form of time-constrained clustering with larger time‘:—""lls.h"’we peen edited .OUt).' For the results presented in Table
windowT. In practice, the duration of a story unitis much Iarge'ihe time window dgraﬂon is the same for ‘T"” test Sequences
than the parameteF used in time-constrained clustering. The'e US€ 100-s duration as the parameter. This translates to usi
complexity will be between that of time-constrained clustering

and of the clustering of all shots without any time constraints at Unfortunately, because of copyright considerations, we cannot show th

all. For a sequence witN shpts, the complexity will be on th? images associated with each node. The correspondences between story u
order of N2/K shot comparisons on the average. The fractiogentified by the graph and the scenes for this sequence are shown in Table 2
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FIG. 6. STG with time-constrained clustering for “Friends” (sitcom). A se- |:|
lected story unit and the cut edges are highlighted. The image associated wi
each node cannot be shown because of copyright considerations.

FIG. 8. STG with time-constrained clustering for “Dances with Wolves”
(movie segment). The image associated with each node cannot be shown bec:
T = 3000 for sequences digitized at 30 frames/s, Brd 1500 °f copyright considerations.
for sequences digitized at 15 frames/s. The clustering parameter
8 = 0.3. Theresults are used to illustrate the hierarchical decom- ) )
position of the video programs. Such an hierarchy, from frames, Table 2 tabulates the number of story units of “Friends” us

shots to story units, allows multilevel organization of video. Nd the time-constrained clustering and cut-edge detection, wi
T = 1000, 2000, and 3000 ard= 0.3 and 0.5. The first col-

8.2. Variation of Clustering Parameters umn lists the major scenes as perceived by the authors. The s

. . ond column lists the corresponding locations where each of tl
We study the effect of varying the two parametdrainds, in - gcene takes place. There are occasions when a scene takes |

the_ time-constrained clustering algorithm on the test seqUeRG®ore than one location (e.g., Scene 6). Locations “Street” a
“Friends.” The accuracy of segmentation and the number of sty hsition shots of the streets that lead into the ensuing locatic
units are evaluated. Columns 3 through 8 record the segmented story units. Tl
notation is as follows: U1 means story unit 1. Thus, whes

1000 ands = 0.5, the first scene is made up of two story units
(U1 and U2), the second scene is made up of one story unit (U

w o mm g B " and soon. The entries markéglihdicate those scenes which the
m = IZ._t = algorithm fails to segment. For example, when= 300Q § =
= o m . m . 0.3, the story unit (U3) found spans Scenes 3 and 4.
L ey~ r i !
(=N ey I S o
=y e i W TABLE 1
[ ] = - [ ] D.[: ﬁ\ ’ [%u] Results of Sample Test Sequences
I:..-[:l—m L E‘L——'D =
*D.D |:lr [n] i Number Number Number Number
L - [ Sequence of of of of story
S l__.j%l-:l-‘c _ ‘|://‘ = - Type name frames  shots  clusters  units
L] [z ] . :
r Ny W S AR -' Sitcom “Friends” 35575 313 97 18
; e II:I-—-E D%&:F@DQ Sitcom “Frasier” 37427 318 99 19
e "I_”I . L] Cartoon “Aladdin” 23251 188 78 22
s segment
. Movie “Dances with 21400 140 70 19
segment Wolves”
FIG. 7. STG with time-constrained clustering for “Frasier” (sitcom). A seDocugmentary Democratic 14398 68 38 19
lected story unit and the cut edge are highlighted. The image associated with convention '92

each node cannot be shown because of copyright considerations.
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Table Illustrating the Relationships of Segmented Story Units to Actual Story for “Friends—The One with the List,”
Using Different Values of T and 6

T = 1000 T = 2000 T = 3000
Scene Location §=0.3 § =05 §=0.3 § =05 §=0.3 § =05
1 Central Perk Cafe Ul-uz2 ul-uz2 ul-uz2 uUl-u2 Ul Ul
2 Office u3 u3 u3-u4 u3 u2 u2
3 Monica’s apt. U4-U6 u4 us5-uU7 u4 u3 u3
4 Chandler’s apt. uU7-U10 us5-u7 us us 3 u3*
5 Monica’s apt. U1l us U9 U6 U4 U4
6 Chandler’s apt. U12-U19 U9-uU13 u10-uU12 u7-uUs us us
At the door u20 ui4 ui13
7 Central Perk Cafe u21-U23 uis U14-U16 U9 u6-U8 *U5s
8 Street u24 ui16 u17 U9
Monica’s apt. U25-U31 U17-U20 U18-U23 u10 u10-U14 *U5s
9 Street u32 u24 uis
Office U33-U35 u21-U22 u25 u10 uil6 u6
10 Street
Monica’s and Ross'’s U36-U40 u23-U25 u26-27 U11-uUi12 u17-u18 *Ue

apts. (alternating)

* Scenes which the algorithm failed to segment.

Smallers values result in more clusters and thus more stotkie interactions among other shots result in a single story uni
units in general, while large values may cause shots to be cl@ir observation is that this anomaly is rare in practice, an
tered together even when the visual contents are significargignerally, increasing will result in fewer story units. On the
different. Similarly, as the time paramefedecreases, the algo-other hand, it is easy to show that whéns fixed, increasing
rithm is effective at segmenting story units even wlhieraries & will always result in fewer or same number of story
to some degree. The trade-off is that we tend to obtain mareits.
story units. For example, wheén= 0.3, there are 40 story units Many of the story units obtained from the segmentation pro
whenT = 1000, 27 units wheif = 2000, and 18 units when cess reflect story contents of the actual scenes. We can comp
T = 3000. In browsing applications, it is often more devastatirthe duration of each story unit and this offers further insight intc
to fail to segment distinct scenes than to over-segment a scémesegmentation results. Table 3 lists the durations of the actu
into smaller units. If we consider the failure of the algorithm ascenes and extracted story units for the test sequence “Frienc
the failure to segment distinct scenes, then choosing a sialleusingT = 2000 and = 0.3. The segmentation gives story units
will ensure the performance of satisfactory segmentation owafra wide range of durations, from a segment of less than 2
a wide range of's. If the performance also takes into accounfe.g., U5 lasts 49 frames,6ls ) to sgments of more than 2 min
over-segmentation, then a combination of right ranges of tfeg., U12 lasts 4180 frames, 2 min 20 s). Story units of shot
two parameters are necessary to achieve satisfactory resultsddations very often consist of a single shot which is commonly
found thafT = 2000 withs < 0.5, and,T = 3000 with§ < 0.3 foundto be an establishing shot of a particular locale oris used:
work well for a variety of video programs to segment out tha lead-in to the next scene. On the other hand, longer scenes r
major story units. In addition, the choice of parameters does i cut to several story units because of the limitations posted t
depend on the specific programs tested. preset time-window parameter.

In Table 2, for§ = 0.3, there is single story unit found when
T = 1000 andT = 3000, but two story units found whélh = . .

2000. Such anomaly does not occur frequently in practice, b8l.i§' Refining the Segmentation Results

is rather of a consequence of the hierarchical clustering proceThe presettime-windoW, may lead to the over-segmentation
dure based on Complete-link Method. This anomaly can be @{-the story because similar shots may not be grouped into san
plained by the interactions of three visually similar sh®tsS;, clusters. Multilevel refinements on the analysis steps describe
and S, in increasing order of time. Furthermore, the relatiom Section 7 are performed on contiguous story units by compu
(S, S;) <1000 1000< di(Sj, S) <2000, andd(S;, S) < ing the duration of each story unit after the initial segmentation
d(S, §)) <d(S, Sy) for all other pairs of shotsy, S;). When relaxing the time-window paramet&rto adopt to the durations
T =2000, S; is clustered together witt§, and § is not of the units, and reclustering the shots. Table 4 shows the resu
clustered with any other shots. Thus, two story units resudtf story unit segmentation for the test sequence “Friends” afte
WhenT =1000,S andS; are clustered together instead, anthe initial analysis with the results listed in Table 3.
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TABLE 3
Duration of Scenes and Associated Story Units in Number
of Frames for “Friends,” with T = 2000, 6 =0.3
Scene Duration Locale Story unit Duration
1 5562 Central Perk Cafe U1 3390
u2 2172
2 3097 Office U3 143
u4 2954
3 1176 Monica’s apt. us 49
U6 1047
u7 80
4 3387 Chandler’s apt. us 3387
5 754 Monica’s apt. U9 754
6 9530 (a) Chandler’s apt. u10 2219 — » |
Ull 2227
Ui2 4180 FIG.9. The STG constructed showing the merging of story units and reclus
(b) At the door ui3 904 tering results using elastic for “Friends.” The image associated with each node
7 1409 Central Perk Cafe U14 180 cannot be shown because of copyright considerations.
uls 573
ul6 656
8 4865 (a) Street (Okivs 75
(b) Monica’s apt. u1s 1026 ing the scene at the Central Perk Cafe. The number of sto
u19 89 Unitsin Scene 6 is reduced from 4 to 2, showing the scene insi
u20 85 , .
U2l 613  Chandler'sapartment. As expected, thereclustering processle
u22 156 tobetter clustering in some story units whose boundaries reme
u23 2821  the same and offers a more compact structure. This Tvésy
9 1612 () Street u24 65 made to adapt to scene characteristics and we can improve
(b) Office u25 1547 segmentation results.
10 4183 (a) Street u26 8215 In general, refinement will merge two neighboring story unit:
(b) Monica’s and Ross’s apts. u27 908 9 ! g Y g y '

with similar visual characteristics. In the “Friends” example
unlike story units in Scenes 1 and 6, story units in other scen
. . 0 not exhibit sufficiently similar visual characteristics and thu
Figure 9 shows the STG constructed after the refinement. & not merged. On the other hand, if there exist cases wh

threshold used i8 = 0.3. The number of clusters reduce from djacent scenes have very similar visual characteristics, refir

105 before refinement to 92 after refinement. After refinemerailn_ﬁ,ent could lead to merging of story units in two distinct scene:
the first two story units in Scene 1 are merged into one, reﬂe'ﬁ%_the “Friends” example, this does not occur, and in real vide

it is typical that adjacent scenes will be set in different locale

TABLE 4 or about different events, thus inducing contrasting visual cha
Table Showing the New Segmentation Results with Refined acteristics across adjacent scenes.

Analysis for “Friends”

5=03 9. DISCUSSIONS AND CONCLUSIONS
Scene Locale T =2000 T Elastic The analysis of video contents based on time-constrain
1 U1_U2 Ul clustering and scene transition graph analysis has contributec
> U3-U4 us—uz the extraction of story units that cannot be achieved by detecti
3 Us-U7 us-Us  of shot boundaries alone. With a common set of parameters, |
4 us u7 are able to segment out satisfactory and meaningful story un
5 U9 us which represent distinct events or locales from several types
6 @ U10-U12 ug-u1o . : ;
b) Ui3 yldeo programs. Avideo program is subs_equently decompos
7 U14-U16 u11-u13 intoan hierarchy of story units, each of which consists of cluste
8 (@ u17 u14 of similar shots, and within a cluster, there are visually simila
(b) u18-uU23 U15-U20 shots. This offers better organization of video. In addition, th
9 @ Uz4 u21 building of story structure provides a mean for nonlinear acce:
10 ((2)) u25 v22 to afeatured program and facilita@es browsing of vid_eo content
(b) U26-U27 u23-u24 N fact, the compact structure built form the analysis can sen

as a form ofvisual summarief23] of the video contents.
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The clustering and segmentation techniques presented in thisF. Arman, A. Hsu, and M. Y. Chiu, Image processing on compressed dat
paper are in part based on low-level visual characteristics of for large video databases, foceedings of First ACM International Con-
video shots which represedomain-independerindsyntactic ~ férence on Multimedia, Aug. 1996p. 267-212. o
features, and in part based on temporal story characteristics. WeH' J. Zhang, A. Kankanhalli, and S. W. Smoliar, Automatic partitioning of

. . . full-motion video,Multimedia Systems, July 1993, 10-28.
are able to successfully segment video into semantically mean- ) ) ! )
5. B. L. Yeo and B. Liu, Rapid scene analysis on compressed VitlEBE

ingful units for a variety of programmingl types. In other words, Trans. Circuits Systems Video Techrig6), 1995, 533-544.
we are _able to derive tgmporal semantlc§ from our anal_ySIS %f Andrey Tarkovsky, translated by Kitty Humer-Blai&gulpting in Time—
syntactic features. A unit of the segmentation, the story unit, con- Refiections on the Cineméniversity of Texas Press, Austin, 1986.

veys by itself a meaning in the story. Other temporal features can k. p. yow, B. L. Yeo, M. M. Yeung, and B. Liu, Analysis and presentation
include dialogues and actions [24] which can be extracted by an- of soccer highlights from digital video, iBecond Asian Conference on
alyzing temporal patterns in video. For example, a dialogue can Computer Vision, Dec. 19950l. Il, pp. 499-503.

be modeled by a set of dialogue-like patterns involving the inte. B. L. Yeo and B. Liu, Visual content highlighting via automatic extraction

leaving of two or more dominant shots. The temporal structure ©f émbedded captions on MPEG compressed videbjgital Video Com-
of video, in other words, the montage presentation, is as impor- pression: Algorithms and Technologies 1996, Feb. 1986 SPIE 2668,

. ) ) N . pp. 38—47.
tant, and m_any times m(_)re important, m_ CUItlvatmg mefamngg. M. A. Smith and T. Kanade, Video skimming for quick browsing based
and conveying the storyline, than the salient features in images on, audio and image characterization, Technical Report, CMU-CS-95-18¢
like a face or a mountain, which are the semantic features known Carnegie Mellon University, July 1995.
to the image analysis community. We do argue that such a clags D. Swanberg, C. F. Shu, and R. Jain, Knowledge guided parsing in vide
of temporal features are another form of semantic features that databases, iStorage and Retrieval for Inage and Video Databases, 1993
are unique to digital video and are beyond the semantic fea- V0!- SPIE 1908, pp. 13-25.

tures that can be conveyed by analyzing image content. We'do H- J- Zhang, Y. H. Gong, S. W. Smoliar, and S. Y. Yan, Automatic parsing
not. however. preclude the use of image semantics to further of news video, irinternational Conference on Multimedia Computing and
’ ' P g Systems, 1994€p. 45-54.

the analysis of video. On the contrary, we believe that the UBE M. M. Yeung and B. Liu, Efficient matching and clustering of video

of image semantics will significantly enhance the understand- spots, ininternational Conference on Image Processing, 19961, I,
ing of content and complement our temporal story analysis. For pp. 338-341.

example, the use afomain-dependerfeatures such as those13. M. M. Yeung, B. L. Yeo, W. Wolf, and B. Liu, Video browsing us-
used in parsing news broadcasts [10, 11] sechantideatures ing clustering and scene transitions on compressed sequendgsyl-in
can provide models for the segmentation tasks and to further imedia Computing and Networking 1995, Feb. 1996l. SPIE 2417,

. . . e . . pp. 399-413.
improve segmentation accuracy. The identification, integration, o _ -

. . . 14. F. BeavemDictionary of Film TermsTwayne Publishing, New York, 1994.
and application of domain-dependent and semantic featuresih _

. . . . 15  Britannica Online, http://www.eb.com:180/eb.html, Nov. 1995.
video analysis and the extraction of high-level structures warrant _ _ ,
16. S.Eisensteiff,he Film Sensédarcourt Brace & Company, New York, 1970.

further research.

17. F.Arman, R. Depommier, A. Hsu, and M. Y. Chiu, Content-based browsinc
of video sequences, RCM Multimedia 94, Aug. 1994p. 97-103.
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