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Many video programs have story structures that can be recog-
nized through the clustering of video contents based on low-level
visual primitives and the analysis of high-level structures imposed
by temporal arrangement of composing elements. In this paper we
propose techniques and formulations to match and cluster video
shots of similar visual contents, taking into account the visual char-
acteristics and temporal dynamics of video. In addition, we extend
the Scene Transition Graph representation for the analysis of tempo-
ral structures extracted from video. The analyses lead to automatic
segmentation of scenes and story units that cannot be achieved
with existing shot boundary detection schemes and the building of
a compact representation of video contents. Furthermore, the seg-
mentation can be performed on a much reduced data set extracted
from compressed video and works well on a wide variety of video
programming types. Hence, we are able to decompose video into
meaningful hierarchies and compact representations that reflect
the flow of the story. This offers a mean for the efficient browsing
and organization of video. c© 1998 Academic Press

Key Words: hierarchical decomposition of video; nonlinear ac-
cess; scene identification; scene transition graph; matching and clus-
tering of video shots; key frame selection; video browsing; video
representation; video analysis.

Cause and effect are mutually dependent, forwards and retrospectively. One
begets the other by an inexorably ordained necessity, which would be fatal
for us if we were able to discover all of the connections at once. The link
of cause and effect, in other words the transition from one state to another,
is also the form in which time exists, the means whereby it is materialized,
in day to day practice... The point is to pick out and join together the bits of
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sequential fact, knowing, seeing and hearing precisely what lies between
them and what kind of chain holds them together. That is cinema.

—Andrey Tarkovsky, Sculpting in Time—Reflections on the Cinema,
translated by K. Hunter-Blair.

1. INTRODUCTION

Methods and techniques to automatically analyze video doc-
uments based on contents and build structures that facilitate both
hierarchical organization and semantical understanding of video
are important for applications such as browsing, navigation, and
search in video databases. Often the goal of such analyses is to
provide fast and meaningful nonlinear access to relevant mate-
rials in video.

Existing content-based analyses of video focus on detecting
shot boundaries (commonly known asscene change1detection;
see, for example, [3–5]) based on objective visual primitives
such as color, image correlations, and sometimes motion pa-
rameters. By detecting the shot boundaries, individual shots are
rediscovered and they represent the fundamental units of video.

This is an important step to condense the visual information
presented. An image, usually the first frame, is chosen to repre-
sent the shot, and the collection of such images gives a summary
of the video sequence on which the users can browse. This pre-
sentation format relieves the user from the need to watch the en-
tire video during browsing. However, in many video programs,
there are hundreds of shots (the number can be thousands in
modern action movies).2 In addition, a frame taken from a shot
often fails to represent the dynamic and time varying contents
within the shot. In such cases, presenting shots in a one dimen-
sional image array does not offer the users an efficient way to

1 This is a misnomer. These techniques detect the boundary when a camera
shot transits to another. In film production, a scene is composed of many differ-
ent shots unified by a common locale or event. Throughout the paper, we call
such operations “shot boundary detection” to distinguish them from the actual
segmentation of scenes. The wordscenewill be used as in film production.

2 For example, 500 is not uncommon in typical films [6].
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browse, navigate, and search for any particular video segments.
This presents a greater challenge for the user if the user has never
watched the video and has no idea where to initiate the search
in the image array.

Another form of content analysis of video is to differentiate the
contents presented in the individual frames of video documents
with predefined context and extract the more “important” frames
for presentation and browsing purposes. This can be achieved
by extracting highlights [7] of sports events, detecting captions
[8, 9], and key-words spotting [9]. Detection of these highlights
allows skimming of long sequences of video and cut significantly
the time of browsing the entire sequence.

Model-based parsing of video sequences has been proposed
for news broadcasts [10, 11] to extract specific semantic ele-
ments of the sequences based on specific models of news broad-
casts. Generic models, on the other hand, may be difficult to build
for different sequences of various programming formats such as
sitcoms, dramas, and movies. This may limit the applications to
certain types of video programs.

In reality, video is a medium of presentation, a means to con-
vey messages and in fact, a form of document. For many video
documents, there are underlying story lines which are reflected
by the visual contents and the temporal organization of the ma-
terial presented. For example, repetition of shots are common in
motion picture production. The recurring shots very often can
be recognized from visual similarities. In addition, the temporal
arrangements and dynamics of compositing shots in motion pic-
ture presentation reflect the structures and the flow of the story.
In view of such underlying structures, it is desirable to automat-
ically identify both visual and temporal relationships in video
and extract a compact representation of the story. This can be
useful in applications such as video browsing and navigation:
a user can first identify the scenes taking place at a particular
location using the visual information, select the scene desired
using temporal information, and similarly navigate through var-
ious shots in the scene to locate the desired point in video by
both visual and temporal information. In addition, the compact
representation serves as a summary of the content and structure
in video such that a user, by recognizing the underlying story
structure, is able to get a quick overview of the story without
viewing the entire video sequence.

In this paper we propose a general framework of clustering of
video shots based on both visual similarities [12] and temporal
localities of the shots which we calltime-constrained cluster-
ing. We use theScene Transition Graph(STG), a directed graph
representation proposed by Yeunget al. [13], and extend the
formulations to accommodate our analysis of story components
extracted by the graph. We will show that time-constrained clus-
tering and scene transition graph together provide the basis on
which analysis can be performed to extract story structures that
reflect the flow of underlying story and to meaningfully segment
individual units from the story. Each such unit will closely ap-
proximate a scene, and such segmentation cannot be achieved
by any of the existing shot boundary detection schemes.

The measurement of visual similarity takes into account the
temporal variations within individual video shots. In addition,
reduced data sets are extensively used to achieve fast analysis
and processing of video. The reduction in data comes both from
the spatially reduced image sequence extracted directly from
compressed video and the temporally subsampled collection of
representative frames through a key frame selection scheme.
Furthermore, story structure and programming type of the video
are not required—the structure is discovered in the process of
the analysis. This allows long video sequences of many frames
to be telescoped into a compact representation featuring the vi-
sual contents and temporal structures and effectively provides
a visual summaryof the underlying story. Consequently, video
sequences can be automatically parsed to achieve a hierarchi-
cal decomposition based on contents, which in turn offers better
organization of video and provides some high level structures
to assist semantic understanding for browsing and navigation
applications in digital video libraries.

The techniques proposed in this paper to break a video into
large meaningful units based on the interactions between shots
can be seen to be analogous to the classical approaches to seg-
mentation of still images. In the segmentation of an image, one
seeks to identify regions in the image that are uniform and homo-
geneous with respect to some characteristics. Pixels are grouped
together into clusters in the spatial domains according to the
desired characteristics. In our approach to the segmentation of
video into large meaningful units like the scenes, we want to par-
tition the video into units, each of which represents a sequential
collections of interrelated shots that are unified by a common
locale or dramatic event. In other words, such sequences of shots
compose a meaningful unit in the story. The common charac-
teristics of shots we seek are the mutual interactions in terms
of visual similarities and temporal locality. We then achieve the
segmentation through the use of graph property in the scene
transition graph constructed.

The organization of the paper is as follows: In Section 2, we
examine the role of “time” in the composition of video pro-
grams and the characteristics of motion picture presentation;
we then provide a general framework of matching and clus-
tering of video shots based on visual similarities across im-
age frames represented in the shots and temporal variations
within individual shots in Section 3. We extend this framework
to take into account the temporal locality of shots by incorpo-
rating time constraints in the clustering process in Section 4.
In Section 5, we review thescene transition graph, propose
new formulations, define thestory unit, and explain the seg-
mentation of video into story units by the analysis of STG cou-
pled with time-constrained clustering. The block diagram for
the segmentation of story units and the building of the STG,
and the details of implementation in various steps of the anal-
ysis, are presented in Section 6. Section 7 shows how the story
units segmented can be further analyzed to approximate the ac-
tual scene boundaries. The experimental results are discussed in
Section 8.
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2. DISSECTING VIDEO

We refer to a complete moving image document as a video
sequence in the paper. The fundamental unit of the production of
video is the shot, which captures continuous action from a cam-
era. A shot reflects a fragment of the story. A scene is “usually
composed of a small number of interrelated shots that are uni-
fied by location or dramatic incident” [14]. At the higher level,
several scenes can be composed into an act. The act-scene-shot
decomposition forms an hierarchy; the story line then chains
the shots into scenes, the scenes into acts, and together they are
linked to tell the story. The story structure and organization are
commonly found in motion pictures, TV movies, sitcoms, etc.,
and are not confined to such. In many structured programs like
news, documentaries, TV magazines, and talk shows, each pro-
gram is a composition of distinctive segments, each of which
represents a distinct unit with underlying messages. The seg-
ments are then linked together by some establishing shots like
the shot of the anchor room or the host.

It is advantageous to be able to segment meaningful units
from a video sequence without specific knowledge of the partic-
ular program nature of the sequence. Instead, the segmentation
will be based on the presentation of the featured video sequence
along the time line and the visual contents. Consequently, long
sequences of video can be effectively broken down into mean-
ingful segments, and the story can be further condensed and
presented in a hierarchical fashion for efficient browsing appli-
cations. To do this, we first must examine two characteristics of
video presentation that are common in a variety of programs.

The most essential characteristic of motion picture presenta-
tion is the sequential montage. Montage “refers to the editing of
the film, the cutting and piecing together of exposed film in a
manner that best conveys the intent of the work” [15]. Montage
was studied by Eisenstein [16] and other great Soviet directors.
As described in [6], “One of the binding and immutable con-
ditions of cinema is that actions on the screen have to develop
sequentially, regardless of the fact of being conceived as simul-
taneous or retrospective... In order to present two or more pro-
cesses as simultaneous or parallel you have necessarily to show
them one after the other, they have to be in sequential montage.”
For example, in Hollywood the use of alternating close-up shots
of two characters is common to convey conversations, innuen-
dos, and reactions [15]. Repeating shots of the same person or
same settings, alternating or interleaving with other shots, are
often seen in TV programs, news broadcasts, interviews, talk
shows, etc. to convey parallel events in a scene.

In addition, contents in a motion picture and many video ma-
terials are localized in time. For example, given two shots of
the same person, if the two shots are juxtaposed together, they
are more likely to be of the same scene than if they are placed
far apart in time from each other. Often, a scene is made up of
temporally adjacent shots indicating their interrelationships. On
the other hand, two visually similar shots, if occurring far apart
in the time line, may potentially represent different contents or
locale in different scenes.

The sequential montage has produced a distinctive conse-
quence at the shot level: repetitive shots of similar contents in-
terleaved by other shots with different contents. These shots may
be the shots of the same person, taken from the same camera,
at the same location, or about the same event. Most often, the
similarities of contents are shown through similar visual charac-
teristics of the compositing frames in the shots. In addition, the
similarity of individual video shots must reflect the time-varying
nature of the contents. This form of similarity measurement is
independent of the featured video program and does not require
any specific knowledge of the underlying story. Hence, we are
able to classify the shots by grouping shots of similar visual con-
tents into special classes of distinct labels to further condense
the information presented.

The clustering of video shots according to visual similarities
offers another level of organization beyond the detection of indi-
vidual shots. The resulting clusters of video shots, however, may
suffer from the lack of “context” because the temporal informa-
tion is lost. Visual similarity of shots alone may not be sufficient
to differentiate the context and contents of individual shots as
each shot is itself a distinct unit oftime in the featured video
presentation. For long programs, there is little justification for
grouping shots into the same class based only visual contents
without regard to the timing of the context. On the contrary,
such grouping may lead to shots from different scenes clustered
together, which may not only complicate the understanding, but
also make the segmentation of distinct scenes very difficult, if
not impossible.

In the following sections, we shall discuss how video shots
can be clustered together based on visual similarities of image
contents and the temporal dynamics shown in the visual contents
within individual shots. We shall show that using a selected set
of representative frames for each shot, the visual content varia-
tions are captured and the similarities of video shots are better
reflected. We will then show how to incorporate time constraints
that reflect temporal locality of contents in the clustering pro-
cess. We call this time-constrained clustering of video shots.
This clustering framework, when incorporated into the scene
transition graph, is capable of capturing the flow of the story
and allows the segmentation of video intostory units, each of
which closely approximates a scene.

3. MATCHING AND CLUSTERING OF VIDEO SHOTS

Throughout this paper, we shall treat ashot, defined as a con-
tinuous sequence of actions, as a fundamental unit in a video
sequence.3

To organize and retrieve video shots, we need to analyze,
compare, and process the shots based on their contents. Because
of the huge amount of data presented by the many frames of a

3 Further subdivisions of shots into smaller units are possible and can be easily
accommodated by the framework defined below.
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video shot, processing is normally done on reduced data. One
common practice reported in existing literature is to use one
image (a key frame), typically the first frame of the shot, to
represent the shot. Processing operations are performed on these
key frames, e.g., in [17] the similarity of two shots are measured
by the similarity of the two key frames.

Generally speaking, in a video shot where object and camera
motions are prominent, a representative image is not sufficient
for the faithful analysis of the image set it represents. Yet it is
computationally burdensome to include every frame in the shot
for processing purposes. We need a good representation of video
shots for faithful analyses. The representation must be able to
optimize the trade-off between preserving the visual contents
and temporal dynamics and minimizing the size of data needed
for efficient computing purposes.

In Sections 3.1 and 3.2, we shall look at the visual similarity
measurements of video shots proposed in [12]. We also show
how a reduced representation can be extracted which effectively
captures the dynamics in the video shots on which the matching
and clustering processes are performed. We proceed to formulate
the problem of clustering of video shots in Section 3.3.

3.1. Similarity of Video Shots

Here we assume that the individual video shots have been
segmented out from a video sequence by temporally detecting
the shot boundaries. Since each video shot is represented by its
collection of frames it is reasonable to assume that there are no
abrupt changes or incorporation of unrelated images present.

Similarity between two video shots must give sufficient in-
dication of the same events, persons, or locations. When the
camera follows the flow of the event to different locations or to
include new elements, the temporal variations are all captured
within a video shot. To match the contents in a way that agrees
with human perception of similar contents, similarity of video
shots are more suitably measured in terms of the intersection of
the flow of imagery paths or camera trajectories.

We define similarity of two video shots as follows.

DEFINITION 1. Given two video shotsSi = { fk}ei
k=bi

andSj =
{ fk}ej

k=bj
, Si and Sj are similar if there exists a pair of similar

frames fm, fn with bi ≤ m≤ ei ; bj ≤ n ≤ ej .

DEFINITION 2. The dissimilarity index ofSi andSj is defined
as

d(Si , Sj ) = min
bi≤l≤ei ,bj≤k≤ej

D( fl , fk). (1)

Here D(., .) measures the dissimilarity between two image
frames. More general definitions can be set to require the number
of similar images in the two sets to be greater than a threshold
z; d(Si , Sj ) will then take the value of thezth smallest value of
dissimilarity indices measured from the two sets of frames.

Various criteria can be used to measure the dissimilarity
D( fi , f j ) between two imagesfi and fk. We use two measures
of dissimilarity indices of video shots based on color and lumi-

nance information as proposed in [12].D( ) is normalized to
take on values between 0 and 1. The readers are referred to [12]
for the details of shot matching schemes and the effectiveness. It
should be noted that other measures of image similarity such as
the quadratic distance between color histogram [18] or distance
based on low-order moments of histogram [19] can also be used.

3.2. Reduced Data Sets for Video Shots

The processing of video shots usually involves computation
on large data sets. It is desirable to perform the processing on
reduced data sets instead of the original full-frame video se-
quence. We reduce the size of original video by temporal and
spatial subsampling.

The dissimilarity measure of two shots is defined in (1). The
definition requires the computation of the dissimilarity indices
for all image pairs in the two shots, and thus is computationally
expensive. On the other hand, due to the inherent size of the
shot, it is tempting to use one frame to represent each shot. As
we have shown previously, however, such representative image
often does not capture the dynamics of contents. In reality, we
observe that for a given shot, consecutive frames often present
related information which is redundant. To reduce the compu-
tation required in various processing steps and to represent the
contents of a video shot concisely with minimal size, we propose
that each shot be represented by its representative image set—
a good but nevertheless greatly subsampled collection of{ fk}
which can effectively capture temporal variations due to cam-
era operations or object movements. For a video sequence which
has little or no variation, one such representative image (e.g., the
first image) is sufficient. In a long video shot or a shot with many
variations, we choose more images. The selection of the repre-
sentative set is achieved by nonlinear temporal sampling, which
measures the dissimilarity index between the last selected frame
and the remaining frames in a given shot and selects frames with
considerable variations to be the representative frames.

That is, given a video shotSA = { fb, fb+1, . . .}, let RA denote
the set of representative frames selected forSA. Initially RA =
{ fb}, that is, the first frame is always selected. Letf ∗ be the
last selected frame andm be its frame index, thus we initialize
f ∗ = fb andm= b. We then proceed as follows:

1. Select smallestl > m suchD( f ∗, fl ) > ε.

Set f ∗ ← fl . Setm← l .

2. UpdateRA : RA← RA ∪ fl .

Repeat 1 and 2 until the end of the shot.

The thresholdε is a predefined error threshold taking values in
[0, 1]. The frame selection process is equivalent to a nonuniform
sampling in time. Compared with uniform subsampling, it has
the advantage of taking in relatively few frames in a still shot
even when the shot is long and captures the frames which exhibit
mores variations.
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By using only the representative set of framesRA ⊂ SA for
shotSA, we are essentially approximating the value of (1)

d(Si , Sj ) ≈ min
fl∈Ri , fm∈Rj

D( fl , fm). (2)

The error thresholdε, together with the variations in visual
contents within each shot, will determine the number of frames
selected to represent the shot. Given the fact that no prior knowl-
edge of the video contents is available in most test sequences,
ε is the parameter in selecting the set of frames to represent a
video shot and can be predetermined in practice. Whenε = 0,
the representative setRconsists of every frame in the shot. When
ε = 1, R consists of only the first frame.

We have found that the proposed representation leads to good
matching results when compared to those using original se-
quences, but uses on the average only 2 to 5% of the number
of frames. In our segmentation experiments, we use about 5%
of the frames for shot matching for satisfactory performances.
Using a higher percentage has little impact on the clustering re-
sults but increases the computational complexity. To select less
than 5% of the frames, we useε in the range [0.02, 0.04] as
recommended in [12].

In addition to temporal subsampling of data via the selection
of representative frames, spatial subsampling is used to achieve
another level of reduction of data and associated computations.
In our processing steps like matching and clustering of video
shots, and the building of graph representation later, we use the
DC or DC+ 2AC images extracted from compressed MPEG or
Motion-JPEG video proposed by Yeo [20]. The reduced images
are extracted with significantly fewer computations and with-
out full decompression of the compressed data. Although some
details are lost, the global visual characteristics such as color
and shape are well preserved. In addition, the reduced image
sequence is also sufficient to capture temporal variations within
a shot.

3.3. Clustering of Video Shots

We assume a dissimilarity measured(Si , Sj ) defined previ-
ously between two shotsSi andSj . We want to group shots that
are similar together into a cluster. In addition, different clusters
should have sufficiently different characteristics. Denoting by
Ci thei th cluster, we define the following criterion of clustering

[Criterion I ] Define

εi = max
y,z∈Ci

d(y, z). (3)

Givenx ∈ Ci , then

d(x, w) > εi , for all w ∈ Cj , j 6= i .

Criterion I implies a strong condition on the similarity of shots in
a cluster. It requires each shot to be similar to every other shot in
a cluster. In this case, with each clusterCi is an associated max-
imum dissimilarityεi defined by (3). It measures the maximum

dissimilarity between any two shots in the cluster. In addition,
any other shot outside of the cluster must have a dissimilarity
greater thanεi relative to any shot in the cluster.

Hierarchical clustering methods based oncomplete-link, de-
scribed in [21] and the references therein, generate clusters that
satisfy the condition listed in Criterion I. Before describing the
algorithms, we define the dissimilarity between two clustersCi

andCj as

dmax(Ci ,Cj ) = max
x∈Ci ,y∈Cj

d(x, y). (4)

The algorithm proceeds as follows:

[ALGORITHM Complete-link method]

1. Initially, there areN clusters{S1}, {S2}, . . . , {SN}. Each
cluster contains a shot.
SetNumCluster← N.

2. Stop when

dmax(A, B) > δ, for all clustersA 6= B.

or NumCluster= 1.
3. Find the least dissimilar pair of clusters,RandS, according

to (4), i.e., findR andSsuch that

dmax(R, S) ≤ dmax(A, B), for all clustersA, B.

4. MergeR andS into a new cluster.
SetNumCluster← NumCluster− 1.

5. Go to step (2).

The parameterδ controls when the iteration stops. It is normal-
ized to take on values from 0 and 1 and defines the minimum
separation between any two resulting clusters.NumClusterin
the algorithm maintains the number of disjoint clusters formed.
At each step, the algorithm merges two most similar clusters
into a new cluster based on cluster dissimilarity (4). It is easy to
see that at each step of the process, the clustering criterion I is
always satisfied.

In the implementation, the dissimilarities of the newly merged
clusters to other clusters must be updated accordingly at each it-
eration. One algorithm that implements such a clustering method
is based on the proximity matrixD described in [21] and the ref-
erences therein. AnN×N proximity matrixD = [d(Si , Sj )] has
as entries the dissimilarity between two shots. At each step, the
matrix is updated by deleting rows and columns corresponding
to clusterR and S and adding a new row and column corre-
sponding to the newly formed clusterR∪ S.

Initial generation of the matrixD requires

(N − 1)+ (N − 2)+ · · · + 1= N(N − 1)

2

computation ofd(., .).
The clustering parameterδ reflects the maximal visual dis-

similarities allowed across different shots within each cluster. It
acts as a threshold to give a corresponding partition of video shot
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clusters. In practice,δ can be predefined, or selected interactively
by an user looking into the dendrogram built in the clustering
process. It can also be automatically selected by detecting sud-
den big jumps in the proximity value when two clusters merge.
We will include the results on segmentation of video using var-
iousδ’s later in Section 8.2.

4. TIME-CONSTRAINED CLUSTERING
OF VIDEO SHOTS

In order to segregate one scene from another, we take into
accounttemporal locality of contentsin video. It means that for
any two shots that are far apart in time, even if they share simi-
lar visual contents, they potentially represent different contents
or occur at different scenes. Time-constrained clustering further
imposes a time-window parameterT that prevents two shots
that are far apart in time but similar to be clustered together.
In this section, we will show that the addition of temporal con-
straints incurs minimal changes to the clustering algorithms but
significantly reduces the computational complexity.

To proceed, we define the temporal distance betweenSi and
Sj to be

dt (Si , Sj ) =
{

min(|bj − ei |, |bi − ej |), i 6= j ;

0, i = j .
(5)

It is the distance in number of frames from the end of the earlier
shot to the beginning of the latter one. We propose to use a
time-window parameterT (T is the elapsed number of frames)
as a constraint on the clustering process: shots can be clustered
together if they fall within the time window. Formally, we modify
Criterion I as follows:

[Criterion I ′] For all x ∈ Ci ,

1.

max
y∈Ci

dt (x, y) ≤ T

2.

Defineεi = max
y,z∈Ci

d(y, z), then

d(x, w) > εi , or

dt (x, w) > T, for all w ∈ Cj , j 6= i .

In the modified criterion, the temporal distance thresholdT is
used on top of the visual dissimilarity to separate shots in a
cluster from the next. The additional criterion is that in each
cluster, we require that no two shots can be separated by more
thanT frames apart. In this modified Criterion I′, we can use
the same clustering algorithm previously described with only
one slight modification. Instead ofd(., .) (and hencedmax), we
define

d̂(Si , Sj ) =
{

d(Si , Sj ), if dt (Si , Sj ) ≤ T ;

∞, otherwise.
(6)

and similarly

d̂max(Ci ,Cj ) = max
x∈Ci ,y∈Cj

d̂(x, y). (7)

It is straightforward to see that usinĝd andd̂max, the same clus-
tering algorithm generates a hierarchy of clusters, and clusters
at each stage satisfy Criterion I′.

In addition to the capability of segregating shots that are not
in the same scene, time-constrained clustering has an important
implication in complexity. Denote byL the maximum number
of shots that any shot is temporally close to, i.e.,

L = max
i
|{Sj : dt (Si , Sj ) ≤ T}|,

then instead of (N(N − 1))/2 shot comparisons, we need most
N(L − 1) shot comparisons since the remaining ones violate
the temporal constraints imposed. ForL much smaller thanN,
this is a significant reduction in computational complexity. In
the modified proximity matrixD̂, only the entries near the main
diagonal can be finite.

5. SCENE TRANSITION GRAPH AND THE ANALYSIS

The formulation of scene transition graph was first proposed
in [13] as compact representation of the underlying story for
browsing purposes. The graph structure can be extracted auto-
matically using visual contents and temporal information with-
out specific knowledge of the video content and structure. The
nodes are clusters of visually similar shots and the edges indi-
cate the temporal flow of the story. We first review the definition
of STG in Section 5.1 and discuss how it can be used for the
analysis of video in the context of time-constrained clustering
of video shots in Section 5.2.

5.1. Definition of Scene Transition Graph

The definitions of STG presented below are part of a more
general model of Hierarchical Scene Transition Graph (HSTG)
proposed in [13].

A scene transition graph is a directed graph with the property
G = (V, E,F ), whereV = {Vi } is the node set andE is the
edge set.F is a mapping that partitions the set of shots{Si } into
V1,V2, . . . , the members ofV. For givenU,W in V, (U,W) is
a member ofE if there exists someSl in U andSm in W such
that m = l + 1. In the discussion of shotsSi , we assume the
following ordering of shots: ifi < j , then shotSi occurs before
shotSj in time.

Thus, the collection of shots is partitioned to form nodes of
G; each node represents a cluster of shots.F partitions {Si }
into V1,V2, . . . such that nodes in eachVi aresufficiently simi-
lar, according to some dissimilarity metrics. In the framework of
time-constrained clustering,d(., .), parametersδ andT uniquely
define the mappingF . A directed edge is drawn from nodeU to



            

100 YEUNG, YEO, AND LIU

W if there is a shot represented by nodeU that immediately pre-
cedes any shots represented by nodeW. Relations between clus-
ters are governed by temporal ordering of shots within the two
clusters. A simple example would be a scene of conversation be-
tween two persons; the camera alternates between shots of each
person. The graphG consists of two nodesV1 andV2; (V1,V2)
and (V2,V1) are both members ofE .

STG is able to represent compactly the structures of shots
and the temporal flow of the story for many video programs.
Unfortunately, clustering of visually similar shots without the
differentiation of context (as in [13]) can render the STG very
complicated, and consequently adversely affect the analysis of
the resulting graph and the segmentation of video into meaning-
ful units beyond the shots. Figure 1 illustrates such an example.

In Fig. 1a, a sample video with nine shots is shown. It consists
of three scenes: two taken place at a meeting and one at the
office. The meeting scenes are interleaved by the office scene.
The STG, shown in Fig. 1c, consists of 5 nodes, formed by
condensing visually similar shots into distinct clusters. Note

FIG. 1. Sample video sequence with repeating scenes: (a) 3 scenes of 9 shots, (b) sample clustering results, (c) the Scene Transition Graph.

that while we have condensed the video into a more compact
structure of STG, it does not explicitly depict the flow of story
from meeting to office and back to meeting. This is due to the
grouping of visually similar shots in scenes 1 and 3 without the
realization of the different context of these shots.

5.2. New Attributes of the STG for Analysis Purposes

To enable the analysis of video through the analysis of STG,
new attributes and formulations are defined. We first define the
attributes of a STGG

FS(G) = index of the first shot represented byG; (8)

LS(G) = index of the last shot represented byG. (9)

Thus, if a STGG is constructed from shotsSl , Sl+1, . . . , Sm,
thenFS(G) = l and LS(G) = m.

We also want to associate with each STGG an undirected
graphĜ = (V, Ê). G andĜ have the same node set; in addition,
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FIG. 2. A directed graph. Its cut edges are drawn in dashed line.

for each edgeEe of G, there is a corresponding edgee in Ĝ with
the same ends. One important feature in the undirected graphĜ
is acut edgedefined as follows: an edge is a cut edge in an undi-
rected graph, if when is removed, results in twodisconnected
graphs[22]. The set of cut edges in̂G partitionsĜ into disjoint
connected subgraphŝG1, Ĝ2, . . . , Ĝn, where eacĥGn = (Vn, Ên).
Correspondingly, the cut edges induce the same partition onG
such that there are nown disjoint STG’s,G1,G2, . . . ,Gn, where
Gn = (Vn, En,F ). For the mappingF we work with in this pa-
per,F from G is preserved in eachGi after the partitioning of
the graphG.

Without loss of ambiguity, we shall refer to the directed edge
Eeas a cut edge inG when the corresponding edgee in Ĝ is a cut
edge ofĜ. Figure 2 shows an example directed graph; the cut
edges are drawn using dashed line.

Each partitioned STGGi represents the interactions of shots
in a story unit. Formally, astory unitrepresented byGi is the se-
quence of shotsSli , Sli+1, . . . , Smi , where l i =FS(Gi ) and
mi = LS(Gi ). Thus, it represents a contiguous segment of video
frames; the shots from this segment interact in an intense and
meaningful fashion. The collection of all cut edges of the STGG
then represents all the transitions from one story unit to the next.
Such transitions reflect the natural flow of story in the video. As
we will see in later sections, astory unitclosely approximates a
scene.

5.3. STG Analysis and Time-Constrained Clustering

Themontagepresentation in video gives rise to a distinct form
of temporal interactionsin a given scene. A scene is composed
of related shots in a particular setting. In a particular setting,
there is often coexistence of multiple elements (e.g., multiple
casts). Thus, in a scene we see the shots of these elements
juxtaposed and linked together. We say two shotsinteract if
they are juxtaposed side by side, that is, temporally adjacent to
each other. In the STG, every interaction is shown by the pres-
ence of an edge connecting the nodes containing the respective
shots.

In most scenes, there are recurring shots of the same ele-
ment. Such recurrence can be recognized by similarities of vi-
sual contents. The clustering process then groups these similar
shots into corresponding clusters based on the visual indices. The

STG built subsequently contains cycles and nodes with a high
degree of incoming and outgoing edges, indicating the interac-
tions of the shots presented in these clusters. In time-constrained
clustering, given a sufficiently good time windowT , any shots
from different scenes cannot be grouped into the same category
(cluster). This means that the groupings of shots based on visual
similarity are localized to a scene, therefore, the interactions are
confined to clusters of the same scene, except at the transition of
two scenes. More precisely, shots from different scenes cannot
be juxtaposed, except at the transition of one scene to the next.

In a STG, acut edgeconnects two disjoint connected sub-
graphs, each of which is astory unit. We thus use a story unit
to approximate a scene for the segmentation purposes. In a STG
representation of video, the transition of onestory unit to the
next will always occur on acut edge. This is because a cut edge
represents a unique point of transition from a shot from an ear-
lier story unit to the ensuing shot of the next story unit. The
collection of cut edges then partitions the STG into disjoint con-
nected subgraphs and represents all the transitions from one unit
to the next. By detecting the cut edges, individual story units can
be segmented out. The segmented story units are semantically
meaningful because they reflect to a certain degree the actual
scenes depicted and the composition and interactions of events
in different scenes.

The time-windowT optimally should be chosen to reflect the
minimum temporal distance between two recurring instances of
the same scene, such that shots in these two instances are not
grouped together (we shall call such instance a scene by itself,
or more precisely, a story unit). In the examples illustrated in
Fig. 1a,T should be set to reflect the temporal duration of the
interleaved scene, such that the shots in scene 3 (e.g., S7), will
not be in the same clusters that contains shots in scene 1, even
if the visual characteristics may be quite similar.

However, such knowledge is not readily available. In practice,
T can be chosen to be a sufficiently large fixed number. Here
we assume that there are sufficient differences in the charac-
teristics of one scene and those of the next scene, and the dif-
ferences exhibited are good enough to segregate the shots from
these adjacent but distinct scenes. (This is often the case because
scene changes, unlike shot changes, often involve a change of
locale and setting, different casts, etc. which are well reflected
by changes in visual characteristics.) A scene usually consists
of several shots, thus lasts longer.

These assumptions of video characteristics and the subsequent
segmentation procedures are not dependent on any model of the
specific nature of individual programs, and are applicable to a
fairly wide variety of programming types. We will show later that
story units can be successfully extracted from sitcoms, movies,
cartoons, and documentaries.

The Scene Transition Graph generated with temporal con-
straint of the sample sequence in Fig. 1a is shown in Fig. 3. In
contrast to the STG shown in Fig. 1c, this STG explicitly depicts
the flow of story. Cut edges that separate story units are marked
e1 ande2.
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FIG. 3. Scene transition graph with temporal constraint.

6. SEGMENTATION OF VIDEO

In this section we will show a realization of the concepts of
time-constrained clustering and scene transition graph presented
in the previous sections to automatically parse a video program,
extract story structures, and identify story units. The resulting
graph representation presents not only the story structures, but
also the flow of the story, as well as a clear view of meaningful
units of the story segmented.

Given a video sequence, it has many shots and a few scenes.
To access segments of interest of the video effectively and non-
linearly, there is the need to rediscover the composing shots and
scenes, to find the structures of the document, to summarize
the contents, and to present the structures and the contents to
the users. More importantly, it is desirable to do most of the
operations automatically.

The block diagram of the implementation is shown in Fig. 4.
Here are the key steps listed in the diagram for analyzing the
video programs and extracting meaningful story units. For il-
lustration purposes, we provide a sample video sequence (R1)
that consists of three scenes and nine shots and explain the re-
sults alongside the analysis steps. Individual components are
discussed in the following sections. Note that in the diagram
each shot is represented by an image. In the analysis process,
however, the dynamics of the content variations in the shot are
represented by a collection ofkey framesinstead.

1. Shot segmentation.Shot transitions (shot boundaries) are
detected to segment individual video shots. The algorithm de-
tects the boundaries of shots based on the changes of visual
characteristics and gives a list of the video shots (R2) of the
sequence. For the sample sequence, nine shots (S1 to S9) are
segmented out.

2. Time-constrained clustering of video shots.Video shots
are partitioned into distinct clusters based on visual similarities
and temporal constraints. Given the list of video shots (R2),
shots are matched and clustered based on their visual contents
and temporal localities to further condense repetitive shots of
similar contents. For example, the nine shots are matched and
grouped to give 6 clusters in R3 (C1 to C6).

3. Building of scene transition graph.A scene transition
graph is built from the clustering results and the temporal rela-

tionships of the shots in the clusters. A node represents a cluster
and an edge shows the flow of story from one node to the next.
The STG of the sample video is shown as R4.

4. Scene segmentation.Story units (or scenes) are extracted
by finding thecut edgesof the STG. Each unit is a connected
subgraph by itself. In R4, two cut edges (e1 ande2) are found,
thus segmenting the video sequence into three story units. Each
story unit indeed corresponds to the events taking place at a
specific locale, that is, ascenein the film terms.

The analysis steps do not require knowledge of video pro-
gramming type and have been tested on a variety of programs
with promising results. The steps are generic to both compressed
and uncompressed videos; however, for compressed video, re-
duced image sequences are extracted directly from the com-
pressed data stream upon which the subsequent analyses are
based. The ability to carry out the analyses on compressed
video is important because many long programs are captured
and stored directly in compressed formats like MPEG due to
their inherent size of data. In addition, using reduced data for
processing reduces computation time.

We use the algorithms in [20] for the extraction of reduced
images from MPEG compressed video. The reduced images cap-
ture well the important global image features. They then form the
basis for the different steps described above. In particular, the
detection of different shot boundaries can be efficiently and ef-
fectively carried out on reduced images [5]. The individual shots,
once detected, are then used for shot matching and clusterings.

7. REFINED ANALYSIS OF SEGMENTED
STORY UNITS

The segmentation of story units is a step toward achieving
accurate segmentation of different scenes for story organization
beyond the shots. Given human recognition capability, and in the
absence of understanding of the video, two scenes can be differ-
entiated clearly from each other if they exhibit somewhat distinct
visual characteristics, for example, an indoor scene followed by
an outdoor scene. The human recognition capability is the upper
limit of what algorithmic and systematic analysis can achieve.
So it is reasonable to assume that two consecutive scenes in a
video presentation do not share significant similarities in visual
(perceptual) qualities.

The ability of the segmented story units to reflect closely the
actual scenes relies on the ability of the time-constrained clus-
tering to differenciate video shots, such that shots from different
scenes are not grouped in the same cluster. In other words, the
cluster labels given to the shots in a particular scene must reflect
well both the visual similarity and temporal locality within the
scene. In practice, the labeling is a difficult problem. There are
two parameters in the time-constrained clustering:δ, which de-
termines the clusters (the shots in each cluster and the number
of clusters) based on visual dissimilarity, andT , which is the
time-window parameter. In the clustering process, the values of
these two parameters are predetermined. A fixedδmay reflect the
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FIG. 4. Block diagram of proposed framework.

similarity of visual characteristics uniformly across various shots
from different sequences to a large degree; any two shots with
dissimilarity value above the threshold cannot be in the same
cluster. This somewhat resembles the human perceptual system.
When someone is asked to determine if two images are similar
or not, he or she must set some subjective thresholds, though
the thresholds may not be strictly based on visual characteristics
like color and shape, but rather the semantic understanding of
the images. On the other hand, without the knowledge of how
long each individual scene lasts,T cannot be approximated well.
A T too large can render shots from different scenes to cluster
together, while aT too small can cause similar shots in the same
scene to have different labels. In the segmentation of the story

units, the former leads to the classification of two distinct scenes
into one story unit, while the latter potentially means that a scene
is broken down into several story units.

We want the story units segmented to closely approximate
actual scenes. On the other hand, we believe that there may
never be any automatic techniques that can achieve 100% accu-
racy in scene segmentation for a variety of video sequences.
This is why given inaccurate segmentation, we prefer over-
segmentation rather than under-segmentation. In other words,
for many applications like browsing, it is less detrimental to
have several story units represent a scene, and present all these
units, than to have one story unit represent several scenes—these
scenes cannot be recovered in subsequent analysis. This is why
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FIG. 5. A sequence of video shots and time-window parameterT .

given no knowledge on the length of individual scenes, we set
T to a fixed value that reflects a reasonably short duration of
time prior to the analysis. In our experiments, we set the time-
window T to be approximately 100 s. A shot on average lasts
4–5 s, thus this means that the clustering is local to about 20 to
25 shots on average. This in general is shorter than the duration
of a scene, and thus we may potentially have a few contiguous
story units extracted from the initial segmentation representing
the dramatic incidents in the same scene.

An illustration of a sequence of shots of a dialogue scene
between Alice (A) and Bob (B) is shown in Fig. 5. We use the
notation Ai to indicate thei th occurrence of a shot featuring
Alice andBi to indicate thei th occurrence of a shot of Bob.C’s
andD’s are shots in another scene. The following example are
based on this diagram.

Assume that all shots of the same person are clustered together
by the hierarchical clustering algorithm in Section 3.3 with a
predetermined visual dissimilarity thresholdδ = δ∗ when there
are no time-constraints, i.e.,

d(Ai , Aj ) ≤ δ∗ and d(Bi , Bj ) ≤ δ∗ for possible pairs (i, j ).
In the example the time-windowT = T∗ = 20 s. The shot dura-
tion is proportional to length in time scale; e.g.,dt (B1, B3) > T∗.

EXAMPLE 1. SupposeB1 andB2 have the least dissimilarity,
i.e.,d(B1, B2) = mind(Bi , Bj ). This means thatB1 andB2 are
merged into one cluster in the first clustering step.

The clustering results are{B1, B2}, {A1, A2, A3}, {B3, B4},
{C1}, {D1}. {Bi } are not clustered into one cluster because there
are at least a pair of shots, one from each cluster, that has a tempo-
ral distancedt > T∗. There are three story units,{B1, A1, B2, A2,

B3, A3, B4}, {C1}, {D1}. In this case, even when the clustering
does not group the shots of Bob into one cluster, the dialogue
scene is still segmented out as one story unit.

EXAMPLE 2. SupposeB2 andB3 have the least dissimilarity,
i.e.,d(B2, B3) = mind(Bi , Bj ). This means thatB2 andB3 are
merged into one cluster in the first clustering step. Thus,B1

andB4 cannot be grouped into the same cluster because each of
them has a temporal distancedt > T∗ from a shot (B3 andB2,
respectively) in the cluster.

The clustering results are{B1}, {B2, B3}, {A1, A2, A3}, {B4},
{C1}, {D1}. There are five story units,{B1}, {A1, B2, A2, B3, A3},

{B4}, {C1}, {D1}. In this case, the dialogue scene is segmented
out as three contiguous story units.

To achieve a better approximation of scene boundaries, we
proceed to analyze the contiguous story units after the initial
segmentation and check whether they reflect the dramatic el-
ements in the same scene. We compute the duration of each
story unit and use this information to improve the time-window
parameter. In other words,T can be adjusted to reflect the dura-
tions of the story units—it can be madeelasticto adapt to scene
characteristics after the initial segmentation of the story units.
This is a multilevel refinement of the segmentation process. In
addition to merging contiguous story units that reflect the same
dramatic incident, we can also achieve a better clustering of the
shots in each story unit by integrating clusters of similar shots
into one and relaxing the temporal constraints within the story
unit. The goal is to push the limits of detecting story units that
truly resemble the actual scenes and to obtain a compact rep-
resentation that describes succinctly yet meaningfully the story
contents.

This refined step of analysis is described as follows: Given
the initial segmentation of a video intoK story units{Ui }Ki=1.
LetUi be thei th story unit represented by the subgraphGi . It is
a collection of contiguous shots, i.e.,

Ui =
LS(Gi )⋃

j=FS(Gi )

{Sj }, i ∈ {1, 2, . . . , K }.

Denote the duration ofUi byτ (Ui ). Assume at the initial analysis
stage that the clustering thresholdδ = δ∗ and the time-window
parameterT is preset to some fixed vaue. Leti be the index of
initial story units,m be the new index, andU ′ denote the refined
story unit; i.e.,U ′m is themth refined story unit.

[Refined Analysis of Story Units]

1. Seti ← 1. Setm← 1.
RelaxT : T ← τ (U1).
Do a clustering on all the shotsSj ∈ U1 with (T, δ∗).
U ′1← U1.

2. i ← i + 1.
If i ≤ K
(a) Compute the durationτ (U ′m) andτ (Ui ).
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RelaxT : T ← τ (U ′m)+ τ (Ui ).
Do a clustering on all the shotsSj ∈ U ′m ∪ Ui

with (T, δ∗).
(b) If there is one cluster containing a shot from
U ′m and a shot fromUi .

U ′m← U ′m ∪ Ui . Goto (2).
(c) Otherwise, relaxT : T ← τ (Ui ).

Do a clustering on all the shotsSj ∈Ui with (T,δ∗).
m← m+ 1.
U ′m← Ui . Goto (2).

3. Return the new story units{U ′1,U ′2, . . . ,U ′m}.
Given a story unit, the refinement involves the examination of

the next story unit by relaxing the temporal window and reclus-
tering the shots in these two units with the original visual dis-
similarity threshold. If there exists at least one new cluster that
contains shots from the two units, this means that the new sub-
graph constructed does not have any cut edges and the two story
units are merged into one. The merging of story units continu-
ous until the consecutive unit does not exhibit this property. Step
2(a) effectively reclusters the shots in the new story unit which
is now a conglomerate of several old units, and Step 2(c) reclus-
ters the shots in a single old unit withT set to be the duration
of the story unit. The reclustering Steps 1 and 2(c) guarantee
that even in cases where the boundaries of a story unit do not
change, similar shots are clustered together rather than in several
clusters because of fixed time constraints, and hence achieve a
more compact structure.

In Example 1, the refined clustering results are

{B1, B2, B3, B4}, {A1, A2, A3}, {C1}, {D1}.

The three story units{B1, A1, B2, A2, B3, A3, B4}, {C1}, {D1}
remain the same after the refinement.

In Example 2, the refined clusters are

{B1, B2, B3, B4}, {A1, A2, A3}, {B4}, {C1}, {D1}.

The five story units{B1}, {A1, B2, A2, B3, A3}, {C1}, {D1} now
become three units with the first three merged into one,

{B1, A1, B2, A2, B3, A3, B4}, {C1}, {D1}.

After the analysis, the dialogue scene is segmented out as the
first story unit.

Compared to time-constrained clustering, refinement analysis
involves reclustering of shots across adjacent story units and
thus is a form of time-constrained clustering with larger time-
windowT . In practice, the duration of a story unit is much larger
than the parameterT used in time-constrained clustering. The
complexity will be between that of time-constrained clustering
and of the clustering of all shots without any time constraints at
all. For a sequence withN shots, the complexity will be on the
order of N2/K shot comparisons on the average. The fraction

1/K is the reduction factor from the full all-pair shot comparison
without any time constraints.

8. RESULTS AND DISCUSSION

This section describes experimental results of the analyses
applied to several test programs. The results of the segmenta-
tion of video sequences into story units using time-constrained
clustering and STG analysis are presented in Section 8.1. In Sec-
tion 8.2, we investigate the two parameters,T andδ, used in the
time-constrained clustering process. We present results on the
refinement of segmentation results in Section 8.3.

In the experiments, we use test sequences drawn from a va-
riety of TV programs and movies, such as talk shows, sitcoms,
documentaries, news, as well as segments of different movies.
It should be noted that the commercials (in TV programs) have
been edited out prior to the analysis.

8.1. Segmentation of Video

Figure 6 shows the STG4 constructed from an episode of the
sitcom “Friends.” It is constructed usingT = 2000 andδ = 0.3.
There are 35575 frames, each at a spatial resolution of 320×240.
In this episode, there are 313 shots. From Fig. 6, we can see
clearly the individual story units. Other graphs constructed for
several test sequences are illustrated in Figs. 7 and 8.

The examples illustrate that time-constrained clustering of
video shots is able to identify individual story units. Clustering
procedures separate shots that are visually dissimilar into differ-
ent clusters. The time constraints prevent the grouping of visu-
ally similar shots across different scenes into the same cluster.
This way, recurring scenes can be segregated. Each highlighted
edge joins the subgraphs together and presents the flow of units
in sequential order. In doing so, it chains the story units, linking
one unit to the next as the story flows. The story structure is
presented concisely and meaningfully this way. The segmenta-
tion of contents achieved corresponds well to the perceived story
segments of the program.

In addition, the resulting STG permits rapid nonlinear brows-
ing of long video programs. The half-hour episodes represented
in Figs. 6 and 7 are each succinctly condensed to a graph which
can be displayed in a screen. A user can quickly identify and
zoom into segments of interests without having tolinearly view
through the entire program.

A summary of the results is shown in Table 1. The tested
sequences were digitized at 30 frames/s, with the exception
of the “Democratic Convention 1992” which was digitized at
15 frames/s. The sitcoms are half-hour episodes (the commer-
cials have been edited out). For the results presented in Table 1,
the time window duration is the same for all test sequences:
we use 100-s duration as the parameter. This translates to using

4 Unfortunately, because of copyright considerations, we cannot show the
images associated with each node. The correspondences between story units
identified by the graph and the scenes for this sequence are shown in Table 3.
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FIG. 6. STG with time-constrained clustering for “Friends” (sitcom). A se-
lected story unit and the cut edges are highlighted. The image associated with
each node cannot be shown because of copyright considerations.

T = 3000 for sequences digitized at 30 frames/s, andT = 1500
for sequences digitized at 15 frames/s. The clustering parameter
δ = 0.3. The results are used to illustrate the hierarchical decom-
position of the video programs. Such an hierarchy, from frames,
shots to story units, allows multilevel organization of video.

8.2. Variation of Clustering Parameters

We study the effect of varying the two parameters,T andδ, in
the time-constrained clustering algorithm on the test sequence
“Friends.” The accuracy of segmentation and the number of story
units are evaluated.

FIG. 7. STG with time-constrained clustering for “Frasier” (sitcom). A se-
lected story unit and the cut edge are highlighted. The image associated with
each node cannot be shown because of copyright considerations.

FIG. 8. STG with time-constrained clustering for “Dances with Wolves”
(movie segment). The image associated with each node cannot be shown because
of copyright considerations.

Table 2 tabulates the number of story units of “Friends” us-
ing the time-constrained clustering and cut-edge detection, with
T = 1000, 2000, and 3000 andδ = 0.3 and 0.5. The first col-
umn lists the major scenes as perceived by the authors. The sec-
ond column lists the corresponding locations where each of the
scene takes place. There are occasions when a scene takes place
in more than one location (e.g., Scene 6). Locations “Street” are
transition shots of the streets that lead into the ensuing location.

Columns 3 through 8 record the segmented story units. The
notation is as follows: U1 means story unit 1. Thus, whenT =
1000 andδ = 0.5, the first scene is made up of two story units
(U1 and U2), the second scene is made up of one story unit (U3)
and so on. The entries marked (∗) indicate those scenes which the
algorithm fails to segment. For example, whenT = 3000, δ =
0.3, the story unit (U3) found spans Scenes 3 and 4.

TABLE 1
Results of Sample Test Sequences

Number Number Number Number
Sequence of of of of story

Type name frames shots clusters units

Sitcom “Friends” 35575 313 97 18
Sitcom “Frasier” 37427 318 99 19
Cartoon “Aladdin” 23251 188 78 22

segment
Movie “Dances with 21400 140 70 19

segment Wolves”
Documentary Democratic 14398 68 38 19

convention ’92
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TABLE 2
Table Illustrating the Relationships of Segmented Story Units to Actual Story for “Friends—The One with the List,”

Using Different Values of T and δ

T = 1000 T = 2000 T = 3000

Scene Location δ = 0.3 δ = 0.5 δ = 0.3 δ = 0.5 δ = 0.3 δ = 0.5

1 Central Perk Cafe U1–U2 U1–U2 U1–U2 U1–U2 U1 U1
2 Office U3 U3 U3–U4 U3 U2 U2
3 Monica’s apt. U4–U6 U4 U5–U7 U4 U3 U3
4 Chandler’s apt. U7–U10 U5–U7 U8 U5 U3∗ U3∗
5 Monica’s apt. U11 U8 U9 U6 U4 U4
6 Chandler’s apt. U12–U19 U9–U13 U10–U12 U7–U8 U5 U5

At the door U20 U14 U13
7 Central Perk Cafe U21–U23 U15 U14–U16 U9 U6–U8 U5∗
8 Street U24 U16 U17 U9

Monica’s apt. U25–U31 U17–U20 U18–U23 U10 U10–U14 U5∗
9 Street U32 U24 U15

Office U33–U35 U21–U22 U25 U10∗ U16 U6
10 Street

Monica’s and Ross’s U36–U40 U23–U25 U26–27 U11–U12 U17–U18 U6∗–U7
apts. (alternating)

∗ Scenes which the algorithm failed to segment.

Smallerδ values result in more clusters and thus more story
units in general, while large values may cause shots to be clus-
tered together even when the visual contents are significantly
different. Similarly, as the time parameterT decreases, the algo-
rithm is effective at segmenting story units even whenδ varies
to some degree. The trade-off is that we tend to obtain more
story units. For example, whenδ = 0.3, there are 40 story units
whenT = 1000, 27 units whenT = 2000, and 18 units when
T = 3000. In browsing applications, it is often more devastating
to fail to segment distinct scenes than to over-segment a scene
into smaller units. If we consider the failure of the algorithm as
the failure to segment distinct scenes, then choosing a smallerT
will ensure the performance of satisfactory segmentation over
a wide range ofδ’s. If the performance also takes into account
over-segmentation, then a combination of right ranges of the
two parameters are necessary to achieve satisfactory results. We
found thatT = 2000 withδ ≤ 0.5, and,T = 3000 withδ ≤ 0.3
work well for a variety of video programs to segment out the
major story units. In addition, the choice of parameters does not
depend on the specific programs tested.

In Table 2, forδ = 0.3, there is single story unit found when
T = 1000 andT = 3000, but two story units found whenT =
2000. Such anomaly does not occur frequently in practice, but
is rather of a consequence of the hierarchical clustering proce-
dure based on Complete-link Method. This anomaly can be ex-
plained by the interactions of three visually similar shotsSi , Sj ,
and Sk, in increasing order of time. Furthermore, the relation
dt (Si , Sj )< 1000, 1000< dt (Sj , Sk)< 2000, and d(Sj , Sk)<
d(Si , Sj )< d(Sl , Sm) for all other pairs of shots (Sl , Sm). When
T = 2000, Sj is clustered together withSk, and Si is not
clustered with any other shots. Thus, two story units result.
WhenT = 1000,Si and Sj are clustered together instead, and

the interactions among other shots result in a single story unit.
Our observation is that this anomaly is rare in practice, and
generally, increasingT will result in fewer story units. On the
other hand, it is easy to show that whenT is fixed, increasing
δ will always result in fewer or same number of story
units.

Many of the story units obtained from the segmentation pro-
cess reflect story contents of the actual scenes. We can compute
the duration of each story unit and this offers further insight into
the segmentation results. Table 3 lists the durations of the actual
scenes and extracted story units for the test sequence “Friends”
usingT = 2000 andδ = 0.3. The segmentation gives story units
of a wide range of durations, from a segment of less than 2 s
(e.g., U5 lasts 49 frames, 1.6 s ) to segments of more than 2 min
(e.g., U12 lasts 4180 frames, 2 min 20 s). Story units of short
durations very often consist of a single shot which is commonly
found to be an establishing shot of a particular locale or is used as
a lead-in to the next scene. On the other hand, longer scenes may
be cut to several story units because of the limitations posted by
preset time-window parameter.

8.3. Refining the Segmentation Results

The preset time-windowT , may lead to the over-segmentation
of the story because similar shots may not be grouped into same
clusters. Multilevel refinements on the analysis steps described
in Section 7 are performed on contiguous story units by comput-
ing the duration of each story unit after the initial segmentation,
relaxing the time-window parameterT to adopt to the durations
of the units, and reclustering the shots. Table 4 shows the results
of story unit segmentation for the test sequence “Friends” after
the initial analysis with the results listed in Table 3.
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TABLE 3
Duration of Scenes and Associated Story Units in Number

of Frames for “Friends,” with T = 2000, δ = 0.3

Scene Duration Locale Story unit Duration

1 5562 Central Perk Cafe U1 3390
U2 2172

2 3097 Office U3 143
U4 2954

3 1176 Monica’s apt. U5 49
U6 1047
U7 80

4 3387 Chandler’s apt. U8 3387
5 754 Monica’s apt. U9 754
6 9530 (a) Chandler’s apt. U10 2219

U11 2227
U12 4180

(b) At the door U13 904
7 1409 Central Perk Cafe U14 180

U15 573
U16 656

8 4865 (a) Street U17 75
(b) Monica’s apt. U18 1026

U19 89
U20 85
U21 613
U22 156
U23 2821

9 1612 (a) Street U24 65
(b) Office U25 1547

10 4183 (a) Street U26 3275
(b) Monica’s and Ross’s apts. U27 908

Figure 9 shows the STG constructed after the refinement. The
threshold used isδ = 0.3. The number of clusters reduce from
105 before refinement to 92 after refinement. After refinement,
the first two story units in Scene 1 are merged into one, reflect-

TABLE 4
Table Showing the New Segmentation Results with Refined

Analysis for “Friends”

δ= 0.3

Scene Locale T = 2000 T Elastic

1 U1–U2 U1
2 U3–U4 U2–U3
3 U5–U7 U4–U6
4 U8 U7
5 U9 U8
6 (a) U10–U12 U9–U10

(b) U13
7 U14–U16 U11–U13
8 (a) U17 U14

(b) U18–U23 U15–U20
9 (a) U24 U21

(b) U25 U22
10 (a)

(b) U26–U27 U23–U24

FIG. 9. The STG constructed showing the merging of story units and reclus-
tering results using elasticT for “Friends.” The image associated with each node
cannot be shown because of copyright considerations.

ing the scene at the Central Perk Cafe. The number of story
units in Scene 6 is reduced from 4 to 2, showing the scene inside
Chandler’s apartment. As expected, the reclustering process leads
to better clustering in some story units whose boundaries remain
the same and offers a more compact structure. This wayT is
made to adapt to scene characteristics and we can improve the
segmentation results.

In general, refinement will merge two neighboring story units
with similar visual characteristics. In the “Friends” example,
unlike story units in Scenes 1 and 6, story units in other scenes
do not exhibit sufficiently similar visual characteristics and thus
are not merged. On the other hand, if there exist cases when
adjacent scenes have very similar visual characteristics, refine-
ment could lead to merging of story units in two distinct scenes.
In the “Friends” example, this does not occur, and in real video,
it is typical that adjacent scenes will be set in different locales
or about different events, thus inducing contrasting visual char-
acteristics across adjacent scenes.

9. DISCUSSIONS AND CONCLUSIONS

The analysis of video contents based on time-constrained
clustering and scene transition graph analysis has contributed to
the extraction of story units that cannot be achieved by detection
of shot boundaries alone. With a common set of parameters, we
are able to segment out satisfactory and meaningful story units
which represent distinct events or locales from several types of
video programs. A video program is subsequently decomposed
into an hierarchy of story units, each of which consists of clusters
of similar shots, and within a cluster, there are visually similar
shots. This offers better organization of video. In addition, the
building of story structure provides a mean for nonlinear access
to a featured program and facilitates browsing of video contents.
In fact, the compact structure built form the analysis can serve
as a form ofvisual summaries[23] of the video contents.
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The clustering and segmentation techniques presented in this
paper are in part based on low-level visual characteristics of
video shots which representdomain-independentandsyntactic
features, and in part based on temporal story characteristics. We
are able to successfully segment video into semantically mean-
ingful units for a variety of programming types. In other words,
we are able to derive temporal semantics from our analysis of
syntactic features. A unit of the segmentation, the story unit, con-
veys by itself a meaning in the story. Other temporal features can
include dialogues and actions [24] which can be extracted by an-
alyzing temporal patterns in video. For example, a dialogue can
be modeled by a set of dialogue-like patterns involving the inter-
leaving of two or more dominant shots. The temporal structure
of video, in other words, the montage presentation, is as impor-
tant, and many times more important, in cultivating meanings
and conveying the storyline, than the salient features in images
like a face or a mountain, which are the semantic features known
to the image analysis community. We do argue that such a class
of temporal features are another form of semantic features that
are unique to digital video and are beyond the semantic fea-
tures that can be conveyed by analyzing image content. We do
not, however, preclude the use of image semantics to further
the analysis of video. On the contrary, we believe that the use
of image semantics will significantly enhance the understand-
ing of content and complement our temporal story analysis. For
example, the use ofdomain-dependentfeatures such as those
used in parsing news broadcasts [10, 11] andsemanticfeatures
can provide models for the segmentation tasks and to further
improve segmentation accuracy. The identification, integration,
and application of domain-dependent and semantic features in
video analysis and the extraction of high-level structures warrant
further research.
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