
Modern Fortran as the Port of Entry for Scientific Parallel Computing

Bill Celmaster

Digital Equipment Corporation, 129 Parker Street, Maynard,
MA 01754, USA

Abstract
New features of Fortran are changing the way in which scientists are writ-

ing, maintaining and parallelizing large analytic codes. Among the most excit-
ing kinds of language developments are those having to do with parallelism.
This paper describes Fortran 90 and the standardized language extensions
for both shared-memory and distributed-memory parallelism. Several case-
studies are examined showing how the distributed-memory extensions (High
Performance Fortran) are used both for data parallel and MIMD (multiple
instruction multiple data) algorithms.

1 A Brief History of Fortran

Fortran (FORmula TRANdating) was the result of a project begun by John
Backus at IBM in 1954. The goal of this project was to provide a way for
programmers to express mathematical formulas through a formalism that com-
puters could translate into machine instructions. Fortran haa evolved contin-
uously over the years in response to the needs of users. Areas of evolution
have addressed mathematical expressivity, program maintainability, hardware
control (such as 1/0) and, of course, code optimizations. In the meantime,
other languages such as C and C++ have been designed to better meet the
non-mathematical aspects of software design. By the 1980’s, pronouncements
of the ‘death of Fortran’ prompted language designers to propose extensions
to Fortran which incorporated the best features of these other high-level lan-
guages and, in addition, provided new levels of mathematical expressivity
that had become popular on supercomputers such as the CYBER 205 and the
CRAY systems. This language became standardized as Fortran 90 (ISO/IEC
1539: 1991; ANSI X3.198-1992).

Although it isn’t clear at this time whether the modernization of Fortran
can, of itself, stem the C tide, I will try to demonstrate in this paper that
modern Fortran is a viable mainstream language for parallelism. Although
parallelism is not yet part of the scientific programming mainstream, it seems
likely that parallelism will become much more common now that appropriate
standards have evolved. Just as early Fortran enabled average scientists and
engineers to program computers of the 1960’s, modern Fortran may enable av-
erage scientists and engineers to program parallel computers by the beginning
of the next millenia.

2 An Introduction to Fortran 90

Fortran 901 has added some important capabilities in the area of mathematical
expressivity by introducing a wealth of natural constructs for manipulating

1

arrays. In addition, Fortran 90 has incorporated modern control constructs
and up-to-date features for data abstraction and data hiding.

The following code fragment illustrates the simplicity of dynamic memory
allocation with Fortran 90. It also illustrates some of the new syntax for
declaring data types, some examples of array manipulations, and an example
of how to use the new intrinsic matrix multiplication function.

REAL, DIMENSION(: , : , :) ,

k ALLOCATABLE : : GRID

REAL*8 A(4,4) ,B(4,4) ,C(4,4)

READ *, N

ALLOCATE (GRID (N+2, N+2, 2))

GRID(: , : ,1) = 1.0
GRID (: , : ,2) = 2.0
A = GRID(1:4,1:4,1)
B = GRID(2:5,1:4,2)
C = MATMUL(A,B)

NEW DECLARATION SYNTAX
DYNAMIC STORAGE
OLD DECLARATION SYNTAX
READ IN THE DIMENSION
ALLOCATE THE STORAGE
ASSIGN PART OF ARRAY
ASSIGN REST OF ARRAY
ASSIGNMENT
ASSIGNMENT
MATRIX MULTIPLICATION

In general, many of the new features of Fortran90 help compilers to per-
form architecture-targetted optimizations. More importantly, these feat~es
help programmers express basic numerical algorithms inways (suchas using
the intrinsic function FIATHUL above), which are inherently more amenable to
optimizations that take advantage ofmuk,iple arithmetic units.

3 Abriefhistory ofparallel Fortran: P C F a n d H P F

Over the past IO years, two significant efforts have been undertaken tostan-
dardize parallel extensions to Fortran. The first of these was under the aus-
pices of the Parallel Computing Forum (PCF) and targetted global-shared-
memory architectures. The PCF design center was control parallelism, with
little attention to language features for managing data locality. The 1991
PCF standard established an approach to shared-memory extensions ofFor-
tran, and also established an interim syntax. These extensions were later
somewhat modified and incorporated in the standard extensions now known
as ANSI X3H5. In addition, compiler technologies have evolved to the point
that compilers are often able to detect shared-memory parallelization oppor-
tunities and automatically decompose codes.

This kind of parallelism is all well and good provided that data can be ac-
cessed democratically and quickly by all processors. With modern hardware,
this amounts to saying that memory latencies are lower than 100 nanoseconds,
and memory bandwidths are greater than 100 MB/s. Those kinds of parame-
ters characterize many of today’s shared-memory servers, but have not char-
acterized any massively parallel or network parallel systems. As a result, at
about the time of adoption of the ANSI X3H5 standard, another standardiza-
tion committee began work on extending Fortran 90 for distributed-memory

architectures, with the goal of providing a language suitable for scalable com-
puting. This committee became known as the High Performance Fortran
Forum, and produced in 1993 the High Performance Fortran (HPF) language
specification. The HPF design center is data parallelism and many data place-
ment directives are provided for the programmer to optimize data locality. In
addition, HPF includes ways to specify a more general style of MIMD (mul-

2

tiple instruction multiple data) execution, in which separate processors can
independently work on different parts of the code. This MIMD specification
is formalized in such a way as to make the resulting code far more main-
tainable than previous message-library ways of specifying MIMD distributed
parallelism.

Digital’s products support both the PCF and HPF extensions. The HPF
extensions are supported as part of the DEC Fortran 90 compiler, and the PCFTM Fortr. optimizer.
extensions are supported through the Digital KAP

4 Cluster Fortran parallelism

High Performance Fortran V1.1 is the only language standard, today, for
distributed-memory parallel computing. The most significant way in which
HPF extends Fortran 90 is through a rich family of data placement directives.
There are also library routines and some extensions for control parallelism.
Without question, HPF is the simplest way of decreasing turnaround time via
parallelism, on clusters (a.k.a. farms) of workstations or servers. Fi.u-thermore,
HPF has over the past year become widely available and is supported on the
platforms of all major vendors.

HPF is often considered to be a data parallel language. That is, it facili-
tates parallelization of array-based algorithms in which the instruction stream
can be described as a sequence of array manipulations, each of which is in-
herently parallel. What is less well know is the fact that HPF also provides a
very powerful way of expressing the more general parallelism known as MuJti-
ple Instruction Multiple Data (MIMD) parallelism. This kind of parallelism is
one in which individual processors can operate simultaneously on independent
instruction streams, and generally exchange data either by explicitly sharing
memory or exchanging messages. Several case-studies follow which illustrate
both the data parallel and the MIMD style of programming.

4.1 Finite-difference algorithms

As the most mind-bogglingly simple illustration of HPF in action, consider a
simple one-dimensional grid problem in which each grid value is updated as a
linear combination of its (previous) nearest neighbors.

For each interior grid index i, the update algorithm is

y (i) = x(i-1) + x (i-1) - 2*x (i)

In Fortran 90, the resulting DO loop can be expressed as a single array as-
signment. How would this be parallelized? The simplest way to imagine
parallelization would be to partition the X and Y arrays into equally sized
chunks, with one chunk on each processor. Each iteration could proceed si-
multaneously, and at the chunk boundaries, some communication would occur
between processors. The HPF implementation of this idea is simply to take
the Fortran 90 code and add to it two data placement statements. One of
these declares that the X array should be distributed into chunks or blocks.
The other declares that the Y array should be distributed in a way which
aligns elements to the same processors as the corresponding elements of the X
array. The resultant code, for arrays with 1000 elements, is:

3

!HPF$ DISTRIBUTE X(BLOCK)
!HPF$ ALIGNY WITH X

REAL*8 X(looo), Y(looo)

< in i t i a l i z e x>

Y(2:999) = X(1:998) + X(3:1OOO) - 2 * X(2:999)

<check the answer>
END

The HPFcompiler irresponsible forgeneratingall ofthe boundary-element
communication code, and for determining the most even distribution ofarrays.
Ofcourse, in this example, the time to communicate boundary element data
between processors is generally far greater than the time to perform floating
point operations. If latency is too large, the problem isn’t worth parallelizing.

One example of a low-latency network is Digital’s Memory ChannelTM
cluster interconnect with HPF latencies on the order of 10 microseconds. With
such low latency, the above example may be worth parallelizing for, say, 4
processors.

This one-dimension example can be generalized to various two- and three-
dimensional examples that typically arise through the solutions of partial dif-
ferential equations. The distribution directives generalize to allow various
kinds of rectangular partitioning of the arrays. Just as in the 1-D case,
the compiler takes care of boundary communications. For large problems,
the communications times are governed less by the latency, and more by
the bandwidth. Digital’s Fortran 90 compiler and runtime libraries performs
several optimizations of those communications, including so-called message-
vectorization and shadow-edge replication.

4..2 Communications and MIMD programming with HPF

Since HPF can be used to place data, it stands to reason that communication
can be forced between processors. The beauty of HPF is that all of this can
be done in the context of mathematics, rather than the context of distributed
parallel programming. The following code fragment illustrates how this is
done.

! HPF$ DISTRIBUTE(* ,BLOCK) : : U
!HPF$ ALIGN V WITH U

REAL*8 U(N, 2) ,V(N,2)
<initialize arrays>

V(: ,1) = U(: ,2) ! HOVE A VECTOR BETWEEN PROCESSORS

On two processors, the two columns of the U and V arrays are each on
different processors, thus the array assignment causes one of those columns
to be moved to the other processor. Notice that the programmer needn’t be
explicit about the parallelism. In fact, scientists and engineers rarely want
to express parallelism. If you examine typical message-passing programs, the
messages often express communication of vector and array information.

Having said this, it turns out that despite the fervent hopes of program-

4

mers, there are times when a parallel algorithm can most simply be ex-
pressed as a collection of individual instruction streams operating on locaf
data. This MIMD style of programming can be expressed in HPF with the
EXTRINSIC (HPFMICAL) declaration, as illustrated by continuing the above
code segment as follows:

CALL CFD(V) ! DO LOCAL WORK ON THE LOCAL PART OF V
<finish the raain program>

EXTRINSIC (HPF-LOCAL) SUBROUTINE CFD(VLOCAL)

REAL*8, DIMENSION(: , :) : : VLOCAL
!HPF$DISTRIBUTE *(*,BLOCK) :: VLOCAL

< d o arbitrarily c o m p l e x work with vlocal>

END

Because the subroutine CFDis declaredto be EXTRINSIC(HPF-LOCAL), the
HPF compiler executes that routine independently oneach processor (or more
generally, the execution is done once per peer process), operating on routine-
Iocal data. As for the array argument, V, which is passed to the CFD routine,
each processor operates only on its local slice of that array. In the specific
example above on 2 processors, the first one operates on the first column ofv
and the second one operates on the second column ofV.

4.3 Clu.vters ofSMP systems

During these last few years of the second millenium, we are witnessing the
emergence of systems that consist of clusters of shared-memory computers.
This exciting development is a natural evolution of the exponential increase
in performance of mid-priced ($1OOK – $1OOOK) systems.

There are two natural ways of writing parallel Fortran programs for such
systems. The easiest way is to use HPF, and to target the totaf number of
processors. So, for example, if there were two SMP systems each with 4 pro-
cessors, one would compile the HPF program for 8 processors (more generally,
for 8 peers). If the program contained, for instance, block-distribution direc-
tives, the tiected arrays would be spfit up into 8 chunks of contiguous array
sections.

The second way of writing parallel Fortran programs for clustered-SMP
systems is to use HPF to target the totaf number of SMP machines, and
then to use PCF (or more generally, shared-memory extensions) to achieve
parallelism locally on each of the SMP machines. This technique wilf generally
be more complex than the method described above, and at this time it is
unclear whether it would have any advantages.

References

1. J. Adams, W. Brainerd, J. Martin, B. Smith and J. Wagener, Fortran
90 Handbook, McGraw-Hill, Inc., NY, 1992

5

