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Abstract

We demonstrate experimentally collisions between vector (Manakov-like)

solitons that involve energy exchange at large collision angles, for which scalar solitons

pass through one another practically unaffected.



2

Energy-Exchange Interactions Between Colliding Vector

Solitons

C. Anastassiou,  M. Segev,  K. Steiglitz,   J. A. Giordmaine,  M. Mitchell,. M.  Shih,

S. Lan, and  J. Martin

Vector solitons consist of two (or more) components that mutually self-trap in a nonlinear

medium. They were first suggested by Manakov [1] for the Kerr nonlinearity, which is

proportional to the intensity. The Manakov system leads to two coupled cubic Nonlinear

Schrodinger Equations (NLSEs) and is integrable and soluble analytically. Temporal Manakov-

like solitons were proposed [2] and demonstrated in single mode optical fibers[3], and spatial

ones were demonstrated in planar waveguides [4]. Vector solitons were also suggested [5] and

observed [6] in a dark-bright form: when one of the components is a bright soliton and the other

dark. Following the discovery of photorefractive spatial solitons, vector [Manakov-like] solitons

were also suggested in photorefractives. In contrast to the Kerr nonlinearity, the photorefractive

nonlinearity is saturable, but coincides with the Kerr nonlinearity in the limit of very low

intensities [7]. One form of vector solitons found in photorefractives is of particular interest,

because it applies to any non-instantaneous nonlinearity and allows more than two components:

vector solitons based on mutual incoherence between the vector constituents [8]. Observations of

such 2-component vector solitons followed soon thereafter in three realizations: bright-bright,

dark-dark and dark-bright coupled pairs [9].  Finally, vector solitons can be realized as

multimode [2,10] and multi-hump solitons which were recently demonstrated experimentally

using the mutual-incoherence method [11].
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Interactions between solitons are fascinating, since in many aspects solitons interact like

particles: they pass through one another [12], undergo elastic collisions [13], and, in saturable

nonlinearities [14], undergo fusion [15], fission and annihilation [16], and can even spiral about

each other [17]. Soliton interactions depend on the number of soliton components. Thus far,

interactions between vector solitons were studied theoretically only [1,18,19], with the exception

of one experiment demonstrating a bound state between two dark-bright solitons [20].

Here, we demonstrate experimentally interactions between vector solitons, highlighting

features that are non-existent for scalar solitons in the same regime: energy exchange at large

collision angles, that is, in the regime where scalar solitons simply pass through each other [12].

Consider the coupled nonlinear wave equations for the slowly varying amplitudes of two EM

fields, A(x,z) and B(x,z), in a (1+1)D system in which x and z are the transverse and longitudinal

coordinates, respectively:
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Here ω  is the frequency of the carrier wave, n = n0 + ∆n the refractive index (n0  the unperturbed

index, and ∆n the nonlinear change in the index), k = ωn0 / c the wave-number, and

22
I BA +=  the total intensity. In its most familiar form, )(nn

22

2 BA +=∆ , n2 being a

constant, Eqs. 1 represent Manakov solitons [1]. Other physical forms of n∆  do exist, of which

we note )1/(nn
22

0 BA ++∆=∆ , a saturable nonlinearity that represents, for example,
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photorefractive screening solitons in [7], and the refractive index in a homogeneously broadened

2-level system of atoms coupled to an EM field.

To understand collisions between two scalar Kerr solitons it is useful to draw on the

induced-waveguide description of solitons [21]. A scalar Kerr soliton induces a sech2(x)

waveguide structure with waveguide parameter V=2  at the wavelength of the soliton that has

induced it, λ, and is a single mode waveguide at that wavelength. The sech2(x) index profile is

reflectionless for any plane wave (at λ) incident at any non-zero angle upon it. Thus, two

interacting Kerr solitons at non-zero collision angle simply pass through one another, each

conserving its energy and propagation angle (linear momentum) [12].

Here we discuss interactions between Manakov solitons [18,19] which do give rise to an

exchange of energy.  We consider collisions between two vector solitons, in which one soliton

(soliton 1) initially (at z = 0 ) has two field components (A1 and B1) and the other soliton (soliton

2) starts with one field component only (A2), i.e., B2=0. The solitons are well separated at z = 0,

labeled as input, so that A1 and B1  form a single vector soliton and A2 and B2 form the other

soliton, which is initially a scalar (single component) soliton. The total intensity in both solitons

is identical: 
222

)0z,x()0z,x()0z,x( ===+= 211 ABA = 2, the collision angle is 0.5o and

22
)0z,x()0z,x( === 11 BA .The result can be calculated analytically [18,19] or numerically

as shown in Fig. 1.  The total intensity, shown in Fig 1a, stays constant throughout propagation

as in the case of scalar solitons.
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However, unlike for scalar Kerr solitons, the field components that make up vector Kerr

solitons do exchange energy upon collision, as shown in Fig. 1b which shows the B-field. They

do it symmetrically, so the total intensity in each soliton is conserved, and the waveguide

induced by each soliton is reflectionless. Such an energy-exchange interaction is unique to

vector solitons and cannot exist for scalar solitons. Right after the collision B1 gives almost

half of its energy to B2 and energy is given from A2 to A1 to compensate for the energy lost by B1.

There are 2 additional important features of this energy exchange. (1) It is not dependent

on the initial phases of the input fields, as can be shown analytically [19] (the intuition for this

follows below); (2) It occurs for any collision angle, but its efficiency decreases with increasing

angles and with decreasing ratio 
22

/ 11 BA .

We can draw on a direct analogy between vector soliton collision and the four-wave-

mixing in nonlinear optics [22]: A1 and A2 (that are mutually-coherent) form an interference

grating, which is translated (via the nonlinearity) into a periodic index modulation with a grating

vector K  = k1- k2, k1 and k2 corresponding to the propagation directions of A1 and A2. If the third

input beam, B1, travels in the k1 direction (as it does, because A1 and B1 form soliton 1), then it

should Bragg-diffract in the k2 direction and form a non-zero B2. But k2 is the direction of A2, so

B2 and A2 together form soliton 2. This is the intuitive explanation for the energy-exchange

interaction between vector solitons, and it takes place when the interference between A1 and A2 is

translated into a periodic modulation of the index.   The energy-exchange interaction does not

occur if A1 and A2 are made incoherent with one another because the phase of the interference

pattern fluctuates much faster than the nonlinear medium can respond to. Thus, no index grating
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forms and no energy-exchange takes place. This is shown in Fig. 1(c): the solitons pass though

each other, as if they were scalar solitons. .

Since our experiments are in photorefractives, we set )BA1/(nn
22

0 ++∆=∆ . To

avoid the strong transverse instability (which occurs for 1+1 D Kerr solitons in a bulk medium,

and is suppressed in saturable nonlinearities if the total intensity is > 1 [9]), we work at

intensities of 2. The waveguide induced has a non-zero critical angle but at that intensity and for

a collision angle of 0.550 (which is higher than the critical angle) scalar solitons simply go

through each other [23].  For vector solitons in this medium energy exchange does take place

(Fig. 1d), but it is less than the Manakov case even though we enhance the effect by increasing

22
/ 11 BA  to 9. If A1 is made incoherent with A2 the energy exchange is absent (as in the

Manakov case shown in Fig. 1c).

Our experiments are carried out with screening solitons [7], utilizing the mutual-

incoherence method to generate 2-component vector solitons [9]. Our setup is shown in Fig. 2.

We expand and collimate an Ar+ laser beam, and then split it to ordinary, -o-, and extraordinary,

-e-, polarized beams using a polarizing beam splitter (PBS). The -o- and -e- beams are polarized

perpendicular and parallel respectively to the optical or c-axis of the crystal. The -o- beam is

used as a background illumination covering the crystal uniformly, as necessary for screening

solitons [9,11,23]. The -e- beam is then split into three, A1, A2, and B1 which is made incoherent

with A1 and A2 by having the optical length difference (1 m) exceed the coherence length of the

laser (10 cm).  Since the phase of B1 is varying much faster than the response time of the crystal

(τd ≈  1 sec), no stationary interference pattern forms and the beams are incoherent with respect
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to the crystal [9].  A1 and B1 are then combined (using a beam splitter) and are the beam that will

form soliton 1: they are focused with cylindrical lens, L3 on the input face of a 1 cm long

SrBa0.6Nb0.4O3 crystal. A2 (which forms soliton 2) is also focused on the crystal using an

identical lens, L4. The input and output faces of the crystal are imaged on a CCD camera. The

slow response of the crystal enables us to view each beam individually by blocking one beam

(with a mechanical shutter) and sampling the other within a time interval (~1 msec) shorter than

τd. In this way [11] we distinguish between the individual field components of beams 1 and 2,

even though they have the same wavelength and polarization.    In order to compare the results of

the energy-exchange interaction with the results of a collision in which all three input beams

represent three independent fields (as those in Fig. 1c), we need a means to destroy the mutual

coherence between A1 and A2.  To do that, we insert a piezoelectric (PZ) mirror on the optical

path of A1. When the PZ mirror is driven by a square wave at a frequency of ~2 kHz, the

interference pattern formed by A1 and A2 varies faster than τd, and thus does not contribute to the

refractive index change. In other words, we expect energy exchange when the PZ mirror is

"OFF", whereas when the PZ mirror is "ON" there is no index grating and we expect no energy

exchange. Finally, a dc electric field is applied against the c-axis of the crystal for the formation

of photorefractive screening solitons [9,11,17,23].

In the first experiment, shown in Fig. 3 we launch 15 µm FWHM solitons colliding at an

angle of 0.7o [inside the crystal] with a total intensity ratio of 2 (normalized to the background

intensity) for each soliton, 
2

1

2

1
B3A = , 

2

2
A  slightly higher than 

2

1A , and 
2

2B =0. The total

intensity input is shown in (a), and the intensities of the individual field constituents are shown in

(b) and (c). The normally-diffracting output is shown in (d). When 700 Volts is applied between
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the electrodes separated by 0.5 cm, the beams form solitons [(e)]. Note that, at the input (b) A2 is

on the left of A1 whereas at the output (e) A2 is on the right (the beams cross each other). (f)

shows that  ~25% of field B has transferred to soliton 2 [note the different scale for the B output].

At the same time, a small fraction of the energy of A2 transfers to A1 [(g)]. We emphasize that the

coexistence of all three input beams (A1, A2, and B1) is required for this energy-exchange

interaction: for example, if we establish the energy exchange and then block A for a long time

(>τd), this effect disappears, as shown in (h). In the spirit of Fig. 1(c), if the three input beams are

fully incoherent with one another, there is no energy exchange because there is no refractive

index grating (and the collision angle is larger than the critical angle of the waveguide induced

by the solitons). The result in (i) shows the same experiment as in (f) but with the PZ mirror ON,

confirming that, at these angles of collision, the energy-exchange interaction does not occur for

three independent beams.

We then increase the collision angle to 0.9o. As expected from simulations, at large

angles the energy switching should decrease. And indeed, the energy switching shown in Fig.

4(a) is now ~10%, as compared to 25% for 0.7o angle [Fig. 3(f)].  Finally, recalling the analogy

with four-wave mixing, we realize that the modulation depth of the grating is proportional to the

visibility of the interference, that is, to I/AA *
21

, I is the total intensity. Therefore, keeping I

fixed, the visibility (and thus the energy switching efficiency) depends on the ratio
2

1

2

1 / BA at

the input . We investigate this by comparing results with collision angle of 0.55o and two ratios:

2

1

2

1 5BA = and 
2

1

2

15 BA = , shown in Fig. 4(b) and 4(c) respectively.  Comparing 4(b) and
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4(c) we notice that indeed the energy switching is much larger when A1 is stronger than B1,

because the visibility is much larger.

In doing these experiments with photorefractive solitons, one must avoid effects from

ordinary two-wave mixing that exists in photorefractives [22], and can lead to energy exchange

in a preferential crystalline direction (towards the c-axis in our SBN crystal; the direction of the

fanning). To avoid these effects, we arranged the energy exchange from B1 to B2 to be against

the c-axis, i.e., against the direction of photorefractive two-wave-mixing. So, all the effects we

observe here truly result from soliton collisions and not from a specific photorefractive effect.

 In conclusion, we have demonstrated experimentally energy-exchange interactions of

vector solitons which are not possible for scalar solitons. This work suggests the possibility of

generating phase-conjugation of solitons, by having the field B1 propagating counter to A1. This

leads to many other ideas, but we would like to end with just one: this interaction of vector

solitons lays the experimental foundations for computation with solitons [19].

The work at Princeton was supported by the US Army Research Office and by NSF.
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Figure Captions

1) Fig. 1. Collisions of vector solitons at 0.55o  showing the total intensity (a) and the B-

field for three different cases: for the Kerr regime and A1 coherent with A2 (b), for

Kerr but all fields incoherent with each other - no grating (c), and for the saturable

nonlinearity with A1 and A2 coherent (d).

2) Fig. 2. (a) Experimental Setup.

3) Fig. 3. Collisions at an angle of 0.7 o of 15 µm FWHM solitons with a total intensity

ratio of 2. The pictures where taken with a CCD camera at the input and output faces

of the crystal. (a) Total input. (b) A-field (consisting of A1 and A2). (c) B field. (d)

Diffracting output after 1 cm of propagation. (e) Output when the soliton forms. (f) B-

field output when A is blocked with a mechanical shutter showing coupling. (g) A-

field output when B is blocked. (h) The coupling disappears after A remains blocked

and the grating is washed away. (i) with the PZ mirror ON no coupling of energy

occurs because all beams are incoherent.

4) Fig. 4.   B-field right after collision  (a) Same as in Fig. 3(f) but with a collision angle

of 0.9o showing less coupling for B. (b), (c) Same as (a) with a collision angle of

0.55o, and different ratios 
2

1

2

1
BA5 =  and 

2

1

2

1
BA5 = , respectively, while the

total intensity is kept constant. Comparing (b) to (c) we see more coupling when A1 is

stronger than B1.
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