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A fractal-multifractal approach to
groundwater contamination. 1. Modeling
conservative tracers at the Borden site
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Abstract. The possibility of modeling the dynamics of groundwater
contamination plumes using a deterministic fractal-multifractal (FM) approach,
via projections off fractal interpolating functions, is investigated. To this effect,
the movement of chloride and bromide tracers gathered at the Borden site in
Ontario, Canada, during the period August 1982 to June 1985, is studied. Results
indicate that the FM methodology provides very faithful and compact geometric
descriptions of the contamination process, as the approach captures the
(vertically-averaged) two-dimensional patterns of the tracers, both in their low
order moments and in their (non-elliptical) geometric shapes. It is shown that the
FM approach leads to noticeable trends in “surrogate” (fractal) parameter space
that allow viewing the plume’s evolution in a simple and wholistic fashion.

1

Introduction

Understanding the dynamics of pollutants in groundwater constitutes one of the
most important problems in hydrology. During the past few decades, a large
number of studies have attempted to address this problem, resulting in a wide
variety of approaches and models.

The classical descriptions of flow and transport in porous media rely on the use
of coupled sets of partial differential equations describing the processes. Even
though such representations are based on sound physical principles, e.g. con-
servation laws, their use in practice is often restricted by our inability to measure
data at appropriate spatial scales and at desired sampling frequencies. In practical
situations, the partial knowledge of relevant “details,” for example, (1) initial and
boundary conditions; and (2) parameters that reflect non-trivial medium heter-
ogeneities, often results in approximate solutions, which smooth nature’s
geometries and, hence, distort the observed shape of a plume. The typically in-
tricate soil heterogeneity also prevents us from adequately transferring infor-
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mation from local to global scales and, therefore, hampers our ability to obtain
general workable analytical solutions.

Due to the presence of these uncertainties, it has become natural to study the
pollution transport problem using stochastic approaches, which supplement the
underlying physics via ideas based on probability theory (e.g. Gelhar and Axness,
1983; Dagan, 1984; Mantoglou and Gelhar, 1987; Neuman et al., 1987; Rubin and
Gomez-Hernandez, 1990; Kabala and Sposito, 1991). This involves propagating
the uncertainties in, for example, soil hydraulic properties, into uncertainties in
flows and contaminant concentrations, and finding analytical solutions for rele-
vant statistical characteristics of the variables at hand, such as mean, variance,
and spatial correlation, under a host of plausible physical and stochastic condi-
tions. Even though the statistical characteristics resulting from the stochastic
approaches often provide reasonable pollution transport representations (e.g.
Sudicky, 1986), the approaches are also found to possess certain theoretical and
practical limitations (e.g. Sposito et al., 1986; Gelhar, 1986), and in some instances
give unsatisfactory results (e.g. Black and Freyberg, 1987; Hills et al., 1991). Also,
the stochastic approaches typically result in smoothed (even elliptical as in
Gaussian plumes) representations of natural patterns, whereas such patterns are
often rough and irregular.

In view of these limitations, it seems that progress may be made defining an
approach that may capture not only the overall smoothed appearance of natural
plumes but also their intricate details. In this regard, the notion of fractal ge-
ometry appears to provide a plausible framework for further understanding of the
pollution transport process, especially if the dynamics of patterns can be defined
in terms of “surrogate” geometric characteristics of the evolving plume.

These ideas may provide a new vision to the problem, as they are consistent
with the recently discovered paradigms of chaos and fractals, namely:

(1) details that were thought to be unimportant may play crucial roles in our
ability to predict (e.g. Lorenz, 1963; Moon, 1987; Rasband, 1990);

(2) what appears unpredictable and “random” at a local scale could perhaps be
explained as part of a global deterministic process (e.g. Lorenz, 1963; Man-
delbrot, 1983; Meneveau and Sreenivasan, 1987); and

(3) very complicated processes that were thought to require partial differential
equations for modeling may be accurately described by means of very simple
deterministic models (e.g. Rasband, 1990; Meneveau and Sreenivasan, 1987;
Libchaber, 1982; May, 1976; Feigenbaum, 1980).

The purpose of this study is to propose and test a new approach, based on fractal
geometry, to model the dynamics of the pollution transport process. Such an
approach is based on the belief that, as concentration profiles (and also soil
hydraulic properties) are unique and non-repeating, a proper geometric repre-
sentation of such patterns would allow capturing their dynamics.

Consistent with the aforementioned paradigms, instead of modeling the
statistical characteristics of observed concentrations, this study attempts to
represent (or encode) the data sets, gathered at a given time, in their entirety,
as projections of stationary measures supported by suitable interpolating
functions (e.g. Puente, 1992). Once available patterns are properly encoded, the
idea is to look for trends in surrogate parameters (those that define the sta-
tionary measures above) so that compact descriptions of the evolving plume
and subsequent predictions may be made (e.g. Puente, 1996). That this pro-
cedure may indeed provide improved understanding is further explained by the
fact that the observed patterns in nature summarize, in a deep sense, all



physico-chemical-biological interactions taking place within a heterogeneous
porous medium.

The organization of this paper is as follows. First, the fractal geometric pro-
cedure is reviewed, identifying the surrogate parameters that need to be specified
for a given spatial snapshot of a plume, followed by a description of the study area
(the Borden site) and the data sets used. Then, the specific information required
regarding the usage of the projection ideas is advanced together with the results
obtained using the fractal geometric representation. Finally, the paper ends with
conclusions and scope for further study.

2

The fractal-multifractal approach

The basis for this new fractal geometric approach to groundwater contamination
dynamics is the representation of concentration patterns (defined in two or more
dimensions) as normalized derived distributions obtained by transforming a
uniform or a multifractal measure via a fractal interpolating function (Puente,
1992, 1994, 1996a).

Figure 1 illustrates such a representation (bottom), when a fractal interpolating
function passing by three points (top) and a uniform measure in the vertical are
used. As can be seen, the fractal function maps the vertical into the horizontal plane
giving a graph (shaped as a “wire”), which partially fills up three-dimensional
space. Such a graph is obtained via arbitrary iterations of two simple mappings
guided by a fair coin (with images colored black and gray) and yields, projecting
dots into the horizontal plane, the complex histogram (derived measure) below.

In general, a wire passing by N + 1 points (x,, ¥s,2,), n =0,..., N, may be
built by arbitrarily iterating N affine mappings (Barnsley, 1988), as follows:

X a, 0 0 X e,
waly | =\ ¢ dn hn yl+|f], n=1,...,N (1)
z k., 1, m, z &n

Fig. 1. Construction of a derived measure via the FM
approach. The shown wire contains only 10,000 dots
but the histogram is made using 1 million values. This
wire corresponds to chloride records for day 63 at the
Borden site
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such that
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having a norm less than one (i.e. with the maximum eigenvalue of ATA,, being less
than one).

Under these conditions, unique stationary measures dx and dyz are obtained in
x (the vertical) and over (y,z) (the horizontal), irrespective of the actual path of
iterations taken (Puente, 1994a, b). dyz is the derived measure found trans-

forming dx via the unique fractal interpolating function f given by the iterations,

whose graph G = {(x,y,2) = (x,f(x))} satisfies G = | J)_, ,(G) (Puente, 1994a)

and has a fractal dimension ranging from 1 to 3 (Barnsley, 1988; Puente and
Klebanoff, 1994).

At the end, the construction leaves the four coefficients in matrix A, free, with

. . . ) (2 .

Ay, Cn, kn, €4, fn, and g, determined in terms of the scalings r, ', r, ', rotations
9511), 0'”), and the N + 1 interpolating points. By varying such parameters and the
coin (dice) bias used to compute mapping iterations, a wide range of deterministic
derived measures dyz may be obtained, ranging from unsmooth patterns to el-
liptical Gaussian distributions. Such sets turn out to be functionally linked (via the
fractal functions) to either uniform or multifractal measures dx induced by the
iterations over x (Puente, 1992, 1994a). As multifractals have been found related to
turbulence (Meneveau and Sreenivasan, 1987), this functional link provides a
“physical” interpretation of the derived histograms as “reflections” of turbulence.

In what follows we shall show how to find fractal-multifractal representations
for normalized concentration profiles gathered in practice.

3

Study area and data used

The present study investigates the suitability of the fractal-multifractal approach
to represent vertically averaged two-dimensional concentration patterns mea-
sured at the Borden site in Ontario, Canada. Comprehensive descriptions of the
climate, geology, and hydrology of such a site are presented in a number of
studies (e.g. MacFarlane et al., 1983; Mackay et al., 1986) and, therefore, are not
reported herein. Some of the important characteristics of the site are:

(a) it is a relatively homogeneous medium-to fine-grained sandy unconfined
aquifer, containing thin lenses extending from 2 to 5 m;

(b) its water table depth fluctuates over the year within the range 0.5-1.0 m below
surface;

(c) its aquifer is approximately 10 m thick in the vicinity of the experimental site,
underlain by a thick silty clay aquitard; and

(d) it contains a plume of contaminants, predominantly inorganic, originating at
a landfill located approximately 400 m south of the experimental site, within
the bottom 2-3 m of the aquifer.



This work relies on the tracking of chloride and bromide tracers, injected at the
site on August 23, 1982, in order to study contamination dynamics (e.g. Mackay
et al., 1986). Specifically, this study employs the concentration profiles observed
at the site on ten dates spanning 647 days after injection: days 1, 9, 29, 43, 63, 259,
332, 381, 462 and 647, defining contours for such conservative tracers via a two-
step procedure, similar to the one adopted by Freyberg (1986), as follows. Given
raw data defined over the vertical at several locations, a trapezoidal quadrature
integration is used first to define vertically averaged estimates at such a location.
Then, a horizontal interpolation scheme, based on a grid-based contouring and a
three-dimensional surface plotting graphics program (SURFER version 4.15,
1994), is used together with ordinary Kriging, in order to define “observed”
concentrations over an arbitrarily selected 25 x 25 rectangular grid containing
the extent of the plume. Given that the FM methodology requires “probability”
patterns, these data sets are finally normalized such that their masses add up
to one.

As other investigators have considered the Borden site records in a variety of
studies, the following remarks are of relevance:

(a) since the method used to interpolate horizontally is not exactly the same as
the ones employed in earlier studies (e.g. Freyberg, 1986; Barry and Sposito, 1990;
Rajaram and Gelhar, 1991), the “observed” patterns described using the FM
procedure do not exactly match the concentration patterns used by those studies.
The overall shapes and trends, however, are indeed quite similar; and

(b) issues pertaining to the possible errors that might have resulted in the
sampling of the plumes are not considered here (e.g. Rajaram and Gelhar, 1991).
As variations of the recovered masses, obtained from the present study, are
comparable to the results reported by Freyberg (1986), it is assumed that the
normalized data sets are indeed representative of the successive behaviors of the
conservative plumes.

Since it is observed that the plumes of chloride and bromide basically exhibit very
similar evolutions, only the results for chloride are presented herein.

4

Data processing via the FM approach

For each of the ten frames of chloride used in this study, a three-dimensional wire
is sought such that its projection (based on a uniform measure over the vertical,
i.e. having iterations guided by a fair coin) would closely reproduce the desired
patterns, with the x axis lying perpendicular to the plane where concentrations

are defined, i.e. y-z.

Although alternative derived measures can be found by varying the surrogate
parameters of a fractal interpolating function f, there are, unfortunately, no
simple analytical formulas that give either the joint derived measure dyz, or its
most common statistics, in terms of these parameters. This implies that an
inverse problem needs to be solved numerically for a given spatial set.

It has been our experience that developing a catalog of patterns similar to the
ones being sought represents an important starting step for solving such an
inverse problem. By looking at pages on such an interactive catalog, one arrives at
suitable initial conditions that may be used together with sophisticated searching
procedures. In all cases to be reported, “optimal” (local) wires are obtained by
minimizing squared differences between real and FM outcomes in terms of a
combination of classical statistical attributes, commonly used in stochastic
transport theories. These statistical qualifiers include the first four order moments
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for concentration data sets when seen from both the space axes (y and z) and the
concentration axis, and the sum of squared point by point differences between
observed and fitted plumes (over the 25 x 25 grid). In all cases, the actual ob-
jective function has a weighted sum of such attributes so that all terms have
relatively the same importance.

Given the nature of the complicated numerical search, a two-step optimization
procedure is considered. During the first stage, preliminary parameters are found,
by employing the multidimensional simplex method (Press et al., 1989) starting
the procedure using parameters from the aforementioned catalog. Then, these
parameters are used as seeds for more sophisticated searching procedures, which
include simulated annealing (Otten et al., 1989) and/or shuffled complex evolu-
tion (Duan et al., 1992).

5

Results and discussion

The results obtained using the FM methodology for the chloride sets at the
Borden site are presented next.

5.1

Plume geometry and low order statistics

As may be seen in Figs. 2 and 3, including “real” (left) and FM fitted (right)
profiles for eight of the ten days considered, the fractal geometric approach
provides a reasonable model for the vertically-averaged chloride plume at the
Borden site [with the axes (Y, Z) corresponding to (Y, X), as used by Freyberg
(1986)]. This may be noted by an approximate visual agreement that translates
into close preservation of the plume’s center of mass, its spread, and some of its
geometric details.

That the FM approach gives suitable representations for all dates may be
further illustrated by Table 1, that presents low order moment information for
real and fitted profiles. The table includes: (i) the center of mass on both spatial
axes (y and z), (ii) the standard deviations on both spatial axes (g, and 7,) and
the correlation coefficient (p), (iii) the coefficients of skewness and kurtosis on
both spatial axes (yy, 72> Ky and k), and (iv) the standard deviation (o), the
coefficient of skewness (y,), and the coefficient of kurtosis () for the data
obtained from the concentration axis.

As the table indicates, although on some days the characteristics of the plume are
not as well preserved as in others, the first and second order moments in all of the
three axes are generally in very good agreement. For instance, the center of mass has
been fitted with errors that are less than 10% on all the days and the standard
deviations contain errors that exceed 15% only for g, on days 259 and 332.

5.2
Plume parameterization
All the FM representations shown in Figs. 2 and 3 are obtained by employing a
minimal scheme, consisting of a fractal interpolating function passing by only
three points in three-dimensional space. As all dates share equally the set 0, 0.5
and 1 in x, chloride profiles for all dates may be interpreted as a “projection” of a
uniform measure supported by a three-dimensional wire, a set that is parame-
terized by the interpolating points in y and z and the scalings and rotations of two
affine mappings (Eq. (2)).

Figure 4 presents the “best” FM surrogate parameters found for the ten
chloride patterns from the measurements at the Borden site. As can be seen, the
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Fig. 2. Measured (left) and FM fitted (right) chloride at the Borden site for days 1, 29, 43,
and 63 after injection. The gray-scale bar varies between zero (bottom) and 248.95 mg/L
(top)

quantities that change the most are the coordinates of the interpolating points
both in y and in z, which do so in a “linear” fashion. Moreover, these parameters
are closely related to the movement and growth (dispersion) of the plume, for as
the plume moves and grows, so it happens with the y-z coordinates, which
preserve the higher dispersion in z than in y, as seen in Figs. 2 and 3. As shown in
Fig. 5, the interpolating points are indeed nicely linked to the evolution of the
plumes’ center of mass and dispersion.
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Fig. 3. Measured (left) and FM fitted (right) chloride at the Borden site for days 332, 381,
462, and 647 after injection. The gray-scale bar varies between zero and 248.95 mg/L (top)

As can be appreciated in Fig. 4, the scalings are the least stable of all the
surrogate parameters. Even though the values of all of them are relatively close to
their maximal value of 1, they exhibit clear oscillations during the first few days
after injection and they do not show a definite trend during the latter days. On the
other hand, the rotations, despite variations during the first few days, show clear
signs of stabilization, indicating that the affine mappings may be properly defined
with a single rotation per mapping.

As revealed by Puente and Klebanoff (1994), when the magnitude of all
scaling parameters tends to 1 and when only one rotation is required per
mapping, the derived bivariate measures become Gaussian. The high values of
the magnitude of the scaling parameters, shown in Fig. 4, hence suggest that the



Table 1. Lower order moments for chloride at the Borden site (Observed and FM Fitted)

Day y z oy o, P Y Yz Ky Kz O Ye K¢

Measured

1 042 0.47 1.65 134 0.13 0.08 0.03 2.28 2.52 0.0021 1.27 3.37

9 073 0.63 1.86 1.12 0.10 0.20 0.26 2.23 2.72 0.0022 1.34 3.55
29 145 3.07 2.10 1.59 047 0.36 0.76 2.51 3.54 0.0025 1.94 6.07
43 1.54 4.10 1.73 1.62 0.34 -0.03 0.47 2.19 2.60 0.0024 1.72 5.26
63 1.39 5.19 1.79 1.68 0.15 0.25 0.51 242 2.62 0.0057 4.31 22.72
259 11.68 23.36 3.62 2.70 047 2.06 -0.10 8.75 2.46 0.005 3.82 18.06
332 15.16 29.09 3.38 3.78 0.50 1.01 0.28 5.81 2.84 0.0041 3.13 13.02
381 15.72 3242 3.17 3.38 0.66 0.62 -0.03 3.08 2.32 0.0052 3.84 18.34
462 16.84 38.51 3.19 4.16 0.63 0.33 0.10 2.69 2.49 0.0046 3.33 14.41
647 23.68 52.86 3.18 5.65 0.83 0.11 -0.31 254 1.90 0.0051 3.02 10.70

Fitted

1 045 0.46 1.63 1.33 0.12 0.07 0.08 2.28 2.47 0.0023 1.50 4.21
9 0.73 0.66 1.80 1.16 0.09 0.11 0.22 227 2.64 0.0028 2.01 6.01
29 1.41 3.03 2.05 1.50 0.38 0.32 0.40 2.62 3.00 0.0029 2.27 7.51
43 1.56 4.07 1.73 1.57 0.33 -0.06 0.34 257 2.54 0.0032 2.52 895
63 1.35 5.21 1.75 1.68 0.17 0.24 043 245 2.66 0.0032 2.64 9.80

259 10.93 23.10 2.37 2.58 047 037 -0.21 2.61 2.63 0.0054 4.22 21.6
332 15.08 29.06 2.84 3.52 0.32 0.09 0.14 2.84 2.52 0.0055 4.61 25.76
381 15.87 32.52 3.13 3.10 0.57 045 0.11 3.04 2.60 0.0046 3.66 19.72
462 16.75 38.43 3.06 4.03 0.54 0.16 -0.11 2.82 2.71 0.0042 3.42 15.11
647 23.89 53.10 3.06 5.50 0.82 -0.02 -0.24 2.74 2.02 0.0040 2.78 9.99

Note: y, z, ), 0, in meters; o, in dimensionless concentrations

chloride patterns for the Borden site are “fairly” elliptical. Notice that the con-
stancy of the rotations, especially after the plume samples larger regions in space,
is consistent with the fact that the center of mass of the plume travels along a line
in space corresponding to the longitudinal axis of the plume (Freyberg, 1986).

The clear trends in coordinates and rotations, and also the high fitted scalings,
seem to indicate the possibility of building a model on surrogate parameter space
for representing the evolving plume and also for subsequent predictions. Such
predictions, based on the belief that the observed trends in surrogate parameters
persist even as the plume samples regions of larger extent, may give appropriate
reflections of what is happening inside the porous medium. Whether or not this
idea can provide reasonable predictions is illustrated in a companion article
(Puente et al., 2001). It is relevant to note, however, that the shape of a plume
varies as it samples larger heterogeneities within the soil and, therefore, predic-
tions using the FM approach (or any other procedure for that matter) could be
quite wrong if the medium properties change.

53

Common plume characteristics

Plots of the center of mass of the FM fitted vertically averaged chloride snapshots in
the horizontal y-z plane (not included here) reveal that they follow a nearly linear
trajectory over the duration of the Borden site experiment, as found with the
records. The best fit for the FM chloride plume, obtained with an angle of 25°
clockwise from the z axis, is in good agreement with the 25.5° reported by Freyberg
(1986). Also, the estimated mean velocity of the center of mass of the FM fitted
plume is 0.092 m/day, which is very close to 0.091 m/day found by Freyberg (1986).
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Table 2. Rotated second order moments for chloride at the Borden site (Observed, FM
Fitted, and as reported by Freyberg, 1986)

Day  Measured Fitted Freyberg
ot o Cov o o Cov o o Cov
(L,T) (L,T) (L,T)

1 2.18 233 0.54 213 230 0.51 2.10 2.40 0.50

9 1.81 291 0.98 1.83  2.76 0.85 1.70 2.40 0.70
29 4.07  2.87 1.73 3.63 3.18 1.69 2.50 2.60 0.90
43 3.42 220 0.75 330 221 0.78 4.40 2.70 1.20
63 3.24 279 0.44 325  2.64 0.41 4.40 2.40 1.10

259 11.85  8.55 5.18 8.67  3.60 1.45 17.80 4.40 3.70
332 18.67  7.04 3.01 14.07  6.39 0.40 - - -

381 16.60  4.88 4.02 13.88  5.53 3.62 20.60 4.40 3.90
462 22.43  5.04 2.64 20.11 5.49 1.65 27.80 5.50 2.10
647 39.45  2.58 1.23 37.09  2.52 0.87 51.50 5.50 3.00

Note: 2, 62, in squared meters

Table 2 compares the second order moments for the chloride plume as found
in the present study and in others, when the set of coordinates is aligned with the
straight line that describes the time evolution of the center of mass of the plume
(i.e. a rotation of —25.0°). As can be seen, the values obtained from the FM
approach are in good agreement not only with the observed values but also with
the corresponding moments reported by Freyberg (1986). This may be seen
graphically in Fig. 6 that presents the plume’s spatial moments of order two. This
includes moments for observed sets (asterisks), and FM fitted patterns (dia-
monds), as well as values reported by Freyberg (1986) (squares) and best
regression lines through FM fitted moments (solid line).

From these figures, the apparent dispersivities for the three components of the
covariance tensor give (in meters): (a) longitudinal Ay = 0.321, (b) transverse
At = 0.026, and (c) longitudinal-transverse Ayt = 0.017, which favorably com-
pare with the observed values of, in order, 0.311, 0.018, and 0.017. As may be
verified, these FM values are also very close to those reported by Freyberg
(1986). These observations reiterate that the FM approach is indeed capable of
capturing the most important characteristics of the plume, as used in stochastic
theories.

To illustrate further the closeness achieved with the FM methodology in spatial
moments, Fig. 6 also includes covariance tensor values as implied by the two-
dimensional stochastic transport model of Dagan (1984) (broken line), i.e.

t 3 t t
G2(f) = 1.8 + 0.74aanlan{2? +5+3 [Ei(- T) “In (?) —1]

e /T[1+1¢/T] -1
+3 [t/T]2 } (4)
GA(t) = 2.6 + 0.74aanlan{— g - [Ei(— %) ~In (%) - y]
e /T[1+1t/T] -1
| °
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a Longitudinal component, b Transverse component, ¢ Covariance

o1(t) =0, (6)

where o, and I,k are, respectively, the variance and correlation scale of the
logarithm of the hydraulic conductivities for the medium; y = 0.5772.. .. is Euler’s
constant; Ei(.) is the exponential integral; and T = I,k /|U| is a characteristic
time.

As may be seen in Fig. 6, and as previously reported by Freyberg (1986) (but
including the bromide observation at day 1038 after injection), Dagan’s model
nicely captures both longitudinal and transverse directions, and closely fits the
FM generated plume.

As first and second order moments only provide a partial description of the
spatial patterns, Fig. 7 includes the entropy and dilution index (an entropy related
measure), (Thierrin and Kitanidis, 1994), that depend on the overall shape of the
records, either real or FM fitted. As may be seen, these quantities defined by:

Entropyl = Z Z CijlnC;; (7)
i
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Entropy2 = AA exp

i

-2 Ci-Jlan,;} (8)
J

where C;;(t) are the normalized concentrations over the 25 x 25 grid at every
time; and AA is the size of the elementary area being used (i.e. the product of
horizontal lengths each divided by 24), also yield close agreement between real
and fitted plumes (except for day 259), which further corroborate the ability of the
fractal geometric approach in preserving the natural patterns at hand.

6
Conclusions and scope for further study
The possibility of modeling the dynamics of groundwater contamination via a
fractal geometric framework has been investigated. Based on the concept of
projections off fractal interpolation functions, this study has shown that it is
indeed possible to capture the plume geometry of conservative tracers, chloride
and bromide gathered at the Borden site, leading to a vantage point (in surrogate
fractal geometric space) that enables us to view the evolution of such plumes in a
wholistic fashion.

It was found that surrogate parameters for the cases considered exhibited clear
trends, as follows:

(a) the interpolating points in y-z grew linearly, following the evolution of the
plume’s center of mass;

(b) the scalings showed no definite trends and gave high values (above 0.8) that
reflect the “elliptical” nature of the patterns; and

(c) the rotations evolved by couples in a fairly constant fashion, leading to one
such parameter per affine mapping.
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These observations suggest that it may be possible to arrive at a dynamic de-
scription of the Borden site plume without the need of partial differential equa-
tions. Details of the application of such ideas in order to predict the evolving
plumes are reported in a companion paper (Puente et al., 2001).

Whether or not the fractal-multifractal methodology may be fully applicable to
model contamination dynamics at other sites is uncertain at this stage. As il-
lustrated in this work, solution of a non-trivial inverse problem is required and
the approach turns out to be useful only in the presence of well established trends
in surrogate parameter space. However, our results illustrate the flexibility of the
geometric approach in capturing natural geometries, and hence encourage testing
it under a variety of circumstances that should also include numerically generated
plumes. Also, it should be noted that extension of the ideas to even higher di-
mensions is straightforward, and therefore the potential for geometrically rep-
resenting full three-dimensional plumes exists.

Even though a plume representation based on twelve surrogate parameters (six
coordinates, four scalings and two rotations) may appear to be not parsimonious,
it should be noted that the fractal geometric approach used herein attempts to
capture “whole” data sets rather than only a few statistical descriptions of the
records. It should also be noted that the present deterministic approach is dif-
ferent from other fractal-based methodologies that attempt to model some sta-
tistical characteristics of the porous medium, e.g. power law variograms
(Neuman, 1990) or autocorrelations for fractal or multifractal soil matrices
(Wheatcraft and Tyler, 1988; Rieu and Sposito, 1991).
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