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0. Abstract 

We introduce a new random structure generali- 
zing matroids. These random matroid8 allow us to 
develop general techniques for solving hard combi- 
natorial optimization problems with random inputs. 

i. Introduction 

In a classic paper "On the Abstract Properties 
of Linear Dependence" of 1935, Whitney provided a 
set of axioms for a structure called here a whitney 
~atroid . Matroid theory (see [Tutte, 1971], 
[Lawler, 1976]) has applications to a wide class 
of combinatorial optimization problems: where we 
wish to construct a maximal object (a maximum in- 
dependent set) satisfying a monotone property. 

We introduce in this paper (Section 2) random 
matroid8 which are applicable to a more general 
class of combinatorial optimization problems with 
random inputs, we define some natural notions, 
such as "maximal with a given measure." Section 
2 also presents some easy results (which neverthe- 
less we believe are worth mentioning) on the rela- 
tionship between random and ~itney matroids, and 
on intersections of random matroids. In the last 
part of Section 2 we define weighted random ma- 
troids. 

Section 3 sketches a general nonconstructive 
proof technique for determining the existence (with 
probability i) of an independent set of given car- 
dinality in instances of a random matroid; this 
encompasses various nonconstructive proofs of graph 
properties in [Erdos and Spencer, 1974] (and comple- 
ments the next section which is concerned with ef- 
ficient algorithms for constructing independent 
sets of given size.) We also provide a nonconstruc- 
tive proof technique for determining the existence 
of an independent set of given weight in a weight- 
ed random matroid. 
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Section 4 considers a random algorithm for ef- 

ficiently constructing an independent set of size 
h 0 in an instance of a random matroid. Given an 
independent set I of size less than h0, we at- 
tempt to extend I (by adding a new random ele- 
ment e to I) or else attempt to rotate I (by 
deleting an element e' of I and adding the new 
element e). The use of a rotation operation 
first appeared in Post's [1976] existence proof 
for a Hamiltonian path in an undirected random 

graph of density O(log (n)/n). 

[Karp, 1976] and [Angluin and Valiant, 1979] 
consider random algorithms with extensions and ro- 
tations. 

We show that the probability density of the 
number of rotation steps between successive exten- 
sions is upper and lower bounded by geometric den- 
sity functions. From these bounds we derive suffi- 
cient conditions (a lower bound on the element den- 
sity) for the algorithm to succeed, with arbitrari- 
ly high probability. Also, we can derive bounds 
on the probability density function of the total 
number of steps, and from these density functions 
derive bounds on the mean, variance and all the 
moments of the time complexity of the algorithm. 
Thus we have a general method for analysis of the 
performance of the random extension-rotation algor- 
ithm. We view this as the most significant contri- 
bution of the paper. 

Section 5 gives some applications to ran- 
dom graphs of type Gn, p (see [Erdos and Spencer, 
1974]). 

P_~ Construct a perfect matching in Gn,p~ 

P2 Construct a Hamiltonian path in Gn, p- 

P2' For a graph H homeomorphic to a graph of 
fixed size, construct a subgraph of Gn, p isomor- 
phic to H. 

Note that P2' is a generalization of P2. 

The random algorithm of Section 4 is applica- 
ble to both P1 and P2 (and we have an efficient 

transformation from instances of P2' to instances 
of P2). 
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The results of Section 4 yield lower bounds 
for the edge den${ty p to give probability of 
success 1 - n -~ for c~ > i. Previously [Erdos and 
R4nyi, 1959] have considered Pl and [Posa, 1976] 
considers P2 for undirected graphs. [Angluin and 

Valiant, 1979] consider both P1 and P2 for direct- 

ed graphs. They derive similar results for a dif- 
ferent random graph model Gn, N and their results 
hold for Gn, p only under certain conditions as 
n -~ o~. 

)m Ma 

Section 4 also yields significant new results and P 
for these applications, such as tight bounds (with -lard U 
in a constant multiple) on the mean and variance of 
the random algorithm's time complexity 

2.3. Examples of Random Matroids 

AS an example of a random matroid, let P be 
a property on graphs and let G be a random un- • . n , p  . 

dlrected graph. G~ ~ has Instances whlch are 
w h " ='~ graphs it vertlces V = {1,2 ..... n} and each 

edge chosen independently with probability p from 
unordered pairs of distinct vertices in V. 

Let M = (E,#,p) be the uniform random ma- 
troid with E = {{u,v}Idistinet u,v6V} and ~= 
{E' ~E P(V,E')holds}. Then any instance M 0 = 
(En,~0) of M corresponds to an instance (V,En) 
of~the random graph G~ ~ and ~ contains pre z 

cisely those edge sets ~ ~E 0 such that the 
property P holds for subgraph (V,E'). 

2. Definitions of Random Matroids and their Struc- 
ture 

2.1. Definitions of Random Matroids 

Let E be a set and let # be a family of 
subsets of E. For each element e 6 E, let Pe be 
a real number (the element's densi~) on the inter- 
val [0,i]. The triple M = (E,~,{pe}) is a random 
matroid. If for some fixed P' Pe = p for all el- 
ements e 6 E then M is l~ziform and denoted 
(E,#,p). We will frequently write (E,J,i) as 

(E,~). M = (E,#,~e}) is a proper random matroid 
if 

A_k ~C# 
A_/ A6#^A' 9 A ~ A '  6# 

Intuitively, ~ may he considered a property on sub- 
sets of E which is trivially satisfied (by axiom 
A) and monotone decreasing (by axiom A2). 

Let (E,~) be a Whitney matroid (a matroid as 
defined by [Whitney, 1932]) if it satisfies Ai, A2 
and the additional axiom A3. For any sets A,A' 6 

of cardinality h, h+l respectively, Be6A' -A 
such that A• {e} 6~. 

2.2. Instances of Random Matroids 

An instance of random matroid M = (E,#, {pe }) 
is a pair M 0 = (E0,~) where 

(i) E0cE is derived by independently choosing 
each e 6 E with probability Pe 

( i i )  J0 = { I % ~ l I S _ E o }  
Note t h a t  the  m e a s ~ , . r e  o f  M 0 i s  (C~EoPe) 

(eEEU E0(1 - pe )) . 

Clearly, any instance M 0 = (E0,~0) ~ of a prop- 
er random matroid satisfies axioms A1 and A2, but 
M 0 may not satisfy A3 even if (~,E) is a Whitney 
matroid. A set ACE 0 is independent in M~ if A6~O 
and dependent otherwise. An independent set u I £#n 
i s  m~i~u~ in M o i f  "1(~i'  c#~ s . t .  I~'1 ~ I I I )  
Let the rank of M 0 be the cardinality of a maximum 

I6 independent set . ~0 is maximal in M 0 if ~( 3I' 6#0 
s.t. I' > I). A mznimal dependent set of M 0 (a 
circuit) has no proper subset which is dependent in 

M 0. For any ACE D let the rank of A in M 0 be 
.the maximum qard~na~lity of any independent subset of A. 

Also, let the rank of M 0 be the size of a maximum 
independent set of E 0. 

If the graph property P is trivially satis- 
fied (P holds for the graph with no edges) and 
decreasing monotone (P(G) ~P(G') for all sub- 
graphs G' of G) then M is a proper random ma- 
troid. 

An (edge) matching of a graph is a set of ver- 
tex disjoint edges, and is perfect if every vertex 
appears in an edge of the matching. A simple path 
is a path of edges containing no cycles, and is a 

HoT~iltonian path if it contains every vertex. 

The property of a "matching" in a random graph 
yields a proper random matroid, but the property 
of a "simple path" in a random graph does not yield 
a proper random matroid, since a simple path must 
be connected (violating axiom A2). 

2.4. Maximality in Random Matroids 

The definitions of maximum, maximal, and mini- 

mal are all standard for monotone properties of ~e- 
ter~inistic combinatorial structures. We extend 
these notions to independence in random matroids, 
which is a rcrn~0m property. 

Let M = (E,~,{pe}) be a random matroid and 
let A£J. Let A be maximum with measure m in 
M if m = Pr{A is maximum in the same instance I 
A appears in an instance} (All probabilities are 
defined over the possible instances of M). 

Let A be maximal with measure m in M if 
m = Pr{A maximal in the same instancelA appears 
in an instance}. 

Similarly, let a set A 6 2 E -J be minimal (a 
circuit) with measure m in M if m = Pr{A is 

a minimal dependent set of the same instanceIA ap- 
pears in an instance}. Let rank (M) be the ran- 
dom variable giving the rank of instances of M. 

For all m6 [0,i], let ~M(m) be the minimal 
m' 6 [0,i] such that VA6#: A maximal with meas- 
ure m in M implies A is maximum with measure 

m' in M. (It is obvious that m ~ m' and that 
~M(m) is increasing with p). 

The function ~. (m) gives us a measure with 
which simple greedy-~ike algorithms succeed in con- 
structing maximum sets. A similar function may 
be defined for the measure of success of rotation- 
greedy algorithms such as in Section 4. 

Note that for whitney matroids 6M(m) = m. 
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2.5. The Probabilit Y an Instance is a Whitney 
Matroid 

Let us define for random matroid M and 

h k 0, 

@M(h) = Pr{M 0 is a Whitney matroid of rank 
hiM 0 is an instance of M} 

It is easy to establish a rough lower bound for 
6~,(h), given M = (E,~,p) is uniform. Let ~h = 
{~II 6~ and IIl= h~. 

Proposition 4.1 

6~Ch) ~ I ~ I'Ph'[ 1 -P)IEI-h 

For proof, note that for each E 0 ~M ~ meas- 
(E~,{I 6~iIc~n}) is an instance 
ur~ ph(l_~|~|-h and M 0 is a Whitney matroid. 

2.6. Limiting-Whitney Matroids 

Let M (I) , M (2) be a sequence of proper r..- 
random matroids such that Pr{Be6 I' - I s.t. I+e 
independent[I,I' are independent sets of an in- 
stance of M (1) with II'l>IIl} +i as £+~. 
Such a sequence is called l~rnitinLj-~rhitn~y. 

Proposition 2.2 

As £ -w ~, 

~i~ is maximumlI is maximal in an instance of 

} +I and 

Pr{I + e has a Unla~ne circuitlI is maximal in an 
instance of M (Z) d e £ E - I} + i. 

These are easy extensions of known results (see 
Lawler [1977]) for Whitney matroids. 

2.7. Intersections of Random Matroids 

Let M (I) , M (2) be random matroids with 

M[i)= (~,~l),{p~l)}) and 

M(2) = (E,~2),{p~2)}). We wish to consider 
independent sets in both ~I (I) and ~(2). 

Let M (I) AM (2) be the structure 

M = [~,~I)^jC2) ~¢1).~¢2)}) 
'~e ~e 

It is not difficult to show (by definition of proper 
matroids) 

Proposition 2.3 

M - M (I) M (2) is a proper random matroid if 
M (I) and M (~ are proper random matroids. 

There is no known result relating the complex- 
ity of constructing maximum independent sets in 
random instances of M ~ J, M (2) to the complexi- 
ty of constructing @l~aximum independent set in ran- 
dom instances of M ~ ) A M (2) . Although in practice, 
we often have that if the efficient algorithm ~{. 
Section 4 succeeds with high probability on M" ) 
and M (2) separate}y, ~n it succeeds with high 
probability on M A M ~ ". 

In contrast, ~itney matro~ds are not cZos~d 
under intersection. The problem of constructing a 
maximal independent set in the intersection of k. 
Whitney matroids has a polynomial time (in IEI) 
algorithm [Lawler, 1977] for k = 2, but is known 
to be a NP complete problem for any k ~ 3. 

2.8. Weighted Random Matroids 

We now extend our definition of random matroids 
so that the elements are independently, randomly 
weighted over given probability distributions. We 
wish upper and lower bounds on the weight of the 
maximum independent set. Lueker [1978] considers 
this problem for graphs with a normal distribution 
of edge weights and we show his results extend to 
weighted random matroids with arbitrary uniform 
distributions. 

A weighted random matroid M is a triple (E, 
~{We}) where E is a set of elements, go2 E, and 
for each e 6 E, W e is an independent random varia- 
ble. 

An instance of M is M 0 = (E,~{We}) where 
the w e are instances of the W e for each e 6 E. 
M is unifo~n if the W e have the same distribution . 

FoE all I'6J, let w(I) = EWe. Let Wmax(M ) 
be the random variable 

e6I 

max{w(I) II6Jmax}, 

where ~max is the set of maximum elements of 
Let h 0 = size of maximum elements of ~. 

Proposition 2.4 

Wmax(M) ~ the mean of w(I) over all I e 

~m and instances of M such that w(I) = W (M). 
ax max 

For example, if the {W } are all normal with mean 
2 e 

and variance a , then Wma x(M) ~ h O ~ + 

~ h  O logIJmax I as IEI + ~. 

Let M = (E, ~, W) be a uniform weighted ran- 
dom matroid and let F be the probability distribu- 
tion of W and choose some p e (0,i). For any 

instance Mo = (Eo' Jo' w) of M, let M o' = 
! ! (Eo 'Jo ) be derived from M ° by deleting each 

element e ~ E with w < F-i(i-p) and let 
o e 

Jo' = {I + ~olI ~ Eo'}. Note that instances of 

M' = (E, J, p) have the same measure as the corres- 
ponding M ' instances. Thus, 

o 

Proposition 2.5 

Wmax(M) ! l~maxl F-i(i-p) if the mean 

Wmax(M) Irank(M') < h ° is o(l~maxlF-l(l-p)) as 

IE I + oo. 
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Note that if the restriction of Proposition 
2.5 is satisfied, we have an algorithm which with 
high likelihood (as IEI ~ ~) constructs an indepen- 
dent set with weight > I~ m IF-l{l-p) in an 

-- ax 
instance of M. This idea has been used by Walkup 
[1977] for discrete distributions of W and by 
Lueker [1978] for W with normal distributions. 

For example, assume W is normal with mean 
2 

and variance ~ , and q = Pr{rank(M') = ho}" Then if 

q/ -h O log q = o(h ~og q ) then the mean of 
o 

Wmax(M) is > h ~ + h ~{ -2 log p 
-- o o 

3. A General Nonconstructive Existence Theorem 

Let M (I) , M (2) be a sequence of uniform 
random matroids. For each £ = 1,2,... let M (~) 
= (E (Z) ,~£) ,p) . Let 

~h (~) : {I6~(Z) III) = h} for h>l. 

Let the interdependence ratio for M (~) be 

IRh(Z) = the mean of P~{I Independent I I' Independent} 

for I,I' 6~h £). Pr{I Independent} 

For a fixed h > 0, we are interested in a minimum 
p (the critical p) such that as ~÷~, 

Pr{rank(M (Z)) >h}+l 

or equivalently, 

Pr{B independent set of size h in any instance 
of M} ÷i. 

The following is a generalization of noncon- 
structive proof technique due to Erdos and Renyi. 

Theorem 3.1 If for i+~, IR~ £) = i+o(i] then 
the critical p is lower bounded by 

-1/h 
for 

Proof. Let X be the random variable giving 1 
in the event rank (M~ ~) ) ~ and else X = 0, for 
each instance M~ Z) of M ~i . Then the mean of 
X is 

X = l~i) Iph>l for the given 

The variance of X is 

VAR[X] = X 2(IR~£) - i) 

= X 2o(1) as £÷~. 

P 

By the Chebyshev Inequality, 

VAR [X ] 
Pr(X=O) < = o(i) as i+~. ~2 

In practice (for example, perfect matchings, 
hamiltonian lines, and cliques in random graphs), 

(£) -i/h 
the bound p _> I~h I is not sufficient to guar- 
antee IRu [£) = I+o(i) as £-~. TO compute 
IRu (£) , wed*introduce a new random variable u = 
I I% I' I for randomly chosen I, I' E~h(1) . Then 

-u 
= p 

h 

= ~ p-kpr{u = k} 

k=0 

Thus, we must choose p to satisfy also 

h 

p-kp~ u = k} = i+o(i) 

k=0 

Now we consider random matroids M = (E (£) , 
6~Z) ,p) for various properties of random (undir- 
ected) graphs. G n m with n vertices V and 

n(n- i} • ' E(~) {{u,v}lu,v6V } i = 2 posslb[e edges = 
each choose with probability p. For cliques of 
v vertices and h = v(v-I) edges 

2 

and the critical p is 1/2 for h = 2 log n. For 
perfedt matching8 of h edges 

,~h (1), = ( ~ i ) ( n l  2h) h, 

For a Hamiltonian path of h edges, 

(n) 
r" n 1 = h! h + i 

and the critical p is 0(l°ng~n) for h = n_l. 

The critical p for cliques and perfect match- 
ings [Erdos and Renyi, 1959] can be derived d~reetly 
from Theorem 3.1 (higher order terms can also be de- 
rived). The critical p for Hamiltonian paths was 
derived by Posa [1976]. Interestingly, his deriva- 
tion of the critical p for Hamiltonian paths is 
essentially by a constructive technique generalized 
in Section 4 and Theorem 3.1 does not seem applica- 
ble in this case. On the other hand, there is no 
known efficient (polynomial time) algorithm for 
constructing cliques of size 2 log n with probabi- 
lity 1 when the edge density is the critical p = 1/2. 

Next we describe a nonconstructive existence 
proof technique for weighted raDdom matroids M (I) 
M (zj .... , where M(£) = (E (£) ~£~ ~W ~ T~ ' 
q(~) -- . ,~, ,~ e J, .... 
~inax be the s~ts of ~£) of maximum cardinality 
and let Wk(Mt t) be the random variable: 

W k(M (%)) = 1 if (~I 6~max 

such that w(I) ~ k is an instance of M with 
weighting w;) 

= 0 else. 
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Let the weight interdependence ratio be 

WIR~ Z) = the mean of P[{W(I) = kIW(I') = k} for 
I,I' E~ £)ax " Pr{W(I) = k} 

Then the mecrn of Wk(M(i) ) is Wk(M (Z)) = ~mk~I" 
Pr{I 6~i~ ) has weight W(I) ~k} 

The v~l~ic~ce of Wk(M(£) ) is 

2 
VAR[Wk(M(Z))] = Wk(M(£)) (WIRE Z) - l) 

Again, by the Chebyshev Inequality, 

VAR[Wk(M(Z)) ] 
Pr{Wk(M(~)) = 0} < 

< 

So if Wk(M(Z) ) ~ 1 and 
then 

Pr{Wk(M(£)) = i} > 0 

Wk(M•) 2 
Wl~ £) - i 

WIRE £) + 1 + o(i) for £ ÷ 

as £ +~, (or equivalently 

Pr{BI 6~ (Z) with weight 
max 

By t h e  L i m i t  T h e o r e m ,  we h a v e :  

w(I) >k}+l.) 

Theorem 3.2. If M is uniform (as so the element 
weights have uniform probability distribution with 
mean ~ and variance G) and ~£) ax contains max- 
imum sets of size h 0, and 

k ~ Nh~,ha( ~m~I -I i) and WIRE £) i+ o(i) 

as £+~ then Pr{316~ with weight w(I) > k} 
+ 1 where Nh h is tHe~normal distribution • . ~, ~ 
functlon wzth mean h~ and varlance (h0) 2. 

4. Analysis of an Extension-Rotation Algorithm 
for ConstructinQ Independent ' Sets 

In part 4.1 of this section we describe an 
efficient algorithm for constructing an independent 
set of fixed size from an instance of a random 
matroid. 

This extension-rotation algorithm is a general- 
ization of random graph algorithms which have 
appeared in [Posa, 1976], [Karp, 1976], and 
[Angluin and Valiant, 1979]. In parts 4.2 to 4.5 
of this section we develop a general method of 
~rnalysi8 of the extension-rotation algorithm which 
provides: 

(i) Sufficient conditions for successful termina- 
tion with probability 1 - IEI -~O for any fixed 
sufficiently large ~ > I. 

o 

(ii) Upper and lower bounds on the probability 
density of the time cost of the algorithm, from 
which the mean, variance and all the moments of the 
time cost may be derived. 

4.1 The Random Extension-Rotation Algorithm 

Let M ° = (E O, ~) has an instance of uniform 

random matroid M = (E, ~, p). We wish to con- 
struct an independent set of size h > 0. 

o 
For any independent set I e ~o' let 

~(I) = {e £ E O I I U {e} e ~o }. 

Note that if ~(I) ~ @ then we may extend I by 
choosing an e e ~(I) and substituting I U {e} for I. 
Also, for any independent set I e Jo' let 

~(I) = {e ¢ ~olI U {e} M ~o but 

3e' e I with I U {e} - {e'} ~ ~o }. 

If ~(I) ~ @, we may rotate I by choosing an 
e ÷~(I) and some appropriate e' E I and substi- 
tuting I U {e} - {e'} e ~ for I. 

Actually, in the algorithm below, we choose 
a random element e e ~(I) U ~(I) and first 
attempt to extend I by e, and else rotate I 
by e. 

Algorithm E-R 

INPUT: An instance M 0 = (EO, ~ 0 )  o f  r a n d o m  

matroid M = (E, ~, {pe }) and integer h ° _> 0. 

INITIALIZATION: I ÷ @; T ÷ 0 

WHILE 1 I 1 < h DO 
o -- 

BEGIN 

i Z ~T(I) U ~T(I) = ~ THEN FAIL 

choose some random e E ~T(I) U ~(1) 

IF e E ~T(I) THEN EXTEND: I + I U {e} 

ELSE BEGIN 

choose e' e I with I U {~-{e'}e ~o 

ROTATE: I+I U {e} - {e'} 

END 

T+T + 1 

E T ÷ ET_ 1 - {e} 

END 

RETURN (I) 

We define the sets: 

~T(I) = {e e ETII U {e} C ~o } 

~T(I) = {e e ETII U {e} ~ ~o but 

3e' e I with I U {e} - {e'} ¢ ~o }. 

as "macros" which are expanded in-line within the 
algorithm. 
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4.2 Parameters of the Algorithm E-R 

We wish to analyze the algorithm relative to 
the "time" index T. (Note that each of the "unit 
time" steps from T to T+i may include 

(i) a constant number of arithmetic and set oper- 
ations 

(ii) an emptiness test for ~T(I) U ~T(I) 

(iii) choice of a random element of ~T(I) 

(iv) choice of a "rotation" element e' e I such 
that if e e~T(I) then I U {e}-{e'} e ~o 

Of course in applications (see Section 5) or a par- 
ticular machine model such as a RAM, we must 
determine bounds on the number of machine instruc- 
tions per "unit time steps" of the algorithm). 

Let H be the size of the independent set I 
on exit (either by successful termination or by 
failure). For each h = 1,2,...,H let T h be the 

value of T just after I is extended from size 
h-i to size h. Also, let T O = 0 and let T h = 

IEol for h = H+i .... ,h o. Note that H and the 

T h are random variables which are fixed only for a 

given execution of the algorithm E-R on a given 
instance M of the random matroid M. 

o 

Fix some constant ~ > i. For each t = 

0,i ..... E let 6t(h), ~t(h), At(h) , ~t(h) be 

functions of range 0 ~h~h and domain [0,I]. 
o 

We require that for a class ~o of executions of 

the Algorithm E-R with total measure ~i-IE[, -~ 

(i) £t(IIl) < Pr[ extension of I on step t 

I ~t (I) U ~t(I) ~ ~ and given an execution 

in ,~o } ~ 6t(IIJ) 

(ii) At(II I) ~ Pr{ ~t(I) U ~t(1) = ~ J given an 

execution in ~o } ~ ~(JIJ). 

let Pt(h) = (I - At(h))" (i - 6t(h)) and Also 

Pt(h) = (i - At(h)) " (i - 6t(h)). 

Note that Pt(h), ~t(h) are functions such that 

except for executions of Algorithm E-R with total 

IEJ -e, pt(IIJ) ~ Pr{rotation of I on measure 

t} ~ pt(IIJ). step 

The above (somewhat informal) statements can 
be related to the random variable T h where h = 

Ill by: 
"extension of I on step t" <=> "Th+ 1 = t + i" 

"rotation of I on step t" <=> "Th+ 1 > t + i" 

~t(~) u ~t(~):~ <:> ~h: I~oI 
Note that the functions 6t(h), 6 t (h ) ,  At(h), At(h) 
can always be trivially defined: 

6 t(h) = A t(h) = 0, 6t(h) = ~t(h) = 1 

SO they satisfy the above restrictions. In prac- 
tice, of course, we wish 

I ~t (h) - ~t(h) I and l~t(h) - A(h) 1 

to be minimal, so that the analysis techniques of 
this section yield tight bounds on the time complex- 
ity of Algorithm E-R. In our graph applications 

tight 6t(h), 6t(h), At(h), ~t(h) can be obtained 

by techniques similar to the "equiprobability" and 
"almost equiprobability" lemmas of [Angluin and 
Valiant, 1977]. 

All our applications of Section 5 satisfy the 
following monotonicity restrictions: 

it(h) are monotonically decreasing R1 £t (h), 

with h but increasing with t. 

R2 At(h) , ~t(h) are monotonically increasing 

with h and t. 

(Intuitively, assume that the conditional proba- 
bility of extension decreases with h = JIJ and 
that the probability of failure increases as I 
grows and as the elements of E ° are exhausted.) 

4.3 Sufficient Conditions for Success with High 
Likelihood 

Our goal here is to derive sufficient condi- 
tions such that for any fixed sufficiently large 

> i, 
o 

Pr{H=h}~l-IE[ o 
o 

(i.e., Algorithm E-R succeeds in constructinq an 
independent set of size h with probability 

_~ o 
- IE 1 O ) 

Assuming the above restrictions on Ri, R2, we 
can derive bounds for 

EXT h = Pr{H > h I H ~ h, t = T h, t' = Th+ I- 1 

and given an execution in ~o } 

Proposition 4.1 

I~ J E°I ~t+l 1 - Pt' (h) 

6t(h)" (i - ~t' (h)) • -< EXT h 

Pt' 

6t, (h)" (i - )~t(h))- - ~t(h) 

~t (h) 

Unfortunately, we found that a direct deriva- 

tion of Pr{H = ho} by use of Proposition 4.1 

is intractable, because of the stubborn appearance 
of the random variables T h in the conditional 

probabilities. (Thus Proposition 4.1, as stated, 
is never used in our analysis of Algorithm E-R.) 
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To bound the random variable E o, we may use 
the following known fact: 

Lemma 4.1 

If M is a uniform random matroid 
(so the elements of E are chosen from 
fixed probability p),°then 

Pr{plE I (i-~) ~ IEol ~ plEI (I+~)} ~ IEI -a 

(E, ~, p) 
E with 

/ 
where 8 = / 6 aloglE 1 

p JEI. 

proof follows from the Chernoff bounds: 

IEI 
('~') pk(l_p ) 'E'-k < exp (-B21EIp/3) 

k= r (i+8) IEIp I 

k=O 

The following two conditions in conjunction 

imply Pr{H = h } 2 1 - (i + Co) IEI -~ 
o 

C l For some fixed to, t I ..... t h 
o 

It (h) = It (h) = 0 for 0 ~ h ~ h O and 

0 ~t ~t h, 

c/ pr{T h ~t h < rEol)~l- ~oIEJ -~, 
o o 

for some c > i. o 

Note that Cl does not suffice to imply 
anything about Pr{H = h O} since we may frequently 

fail if the "time index" t exceeds t h. We now 

assume that condition CI has been verified for 
some to, tl,... , t h and derive bounds on the 

critical p which insures condition C2 is 
satisfied. 

4.4 Verification of Condition C2 

To verify C2, we require upper ~nd lower bounds 
on the distribution of steps between extensions 

We assume here Ri, R2, and Ci. Let g(x,q) = 

q(~q) x be the geometric density function. Let% 

be the class of executions of Algorithm E - R with 

measure 1 - IEI -a, which were used in the definition 

of the 6t(h). 

Also, let S be the condition: 

"Th+ 1 _< th, t = T h < IEo I and given an exe- 

cution in ~o" 

Lemma 4.2 

6t+x (h) g(x,6 (h)) < P { Th+ I- T h = x + 1 I S ) 
-~ (h) th -- r 

th 6t+x (h) (h)) 
< g(x,E t 

£t (h) 

Proof By conditions C1 and monotonicity restriction 

Ri, 

Pt(h) = (i - 6t(h)) ~ (i -6Th (h)) 

for 0 < h < h o and T h < t < tn. 

Pr{Th+l - T h = x+l I S} 
t+x-i 

6t+X (h) "k~ i" < Pk (h) 
t 

! 6t+x (h) (I - 6t(h)) x 

![6t+x(h) I 6t(h)(i - £t(h)) x 

The lower bound derivation is similar. [3 

We now derive bounds on the steps between extensions. 
h = 0,...,h ° and t = 0,...,t h let ~t(h) = MAX(h, 

I th+l I log 1 Crib)) ÷ Ct h)(lIEr 

£t (h) 
-i) 

log(l - 6 (h)) 
t h 

and let 6t(h) = log [i - ~t(h)6t(h)(1-1E I - a)I 

log(l- ~t(h )) 

Lemma 4.3 

Pr {~h) ~ Th+ 1 - T h <__ ~t (h) I Th+ I <__ th+ I' t=T h} 

! i-B IEI - ~ 

Proof Recall that Pr{ given an instance in %}~ 

1 - IEI -~ by definition. 

It suffices to verify: 

For 
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Pr{Th+ 1 - T h ! ~ (h) 1 S } 

6 (h)-i 
= ~ Pr{Th+ I- T h = x + i I S} 

x=o 

Et+~ (h)_l (h) ~ (h)-i )x 
6t (h) ~ Et(h) (l-6t (h) 

x=o 

by Lemma 4.2 

= 6t+@~t (~(h)-l(h)[l -(i- 6 t(h))~ (h)] 

> Et(h) I1 _ )6(h)] 
~t ~ - (i 6t(h) by R1 

> I - I El - ~ by elementary calculations. 

Similarly, we can show: 

for 

p~{Th+ 1 - T h > ~(h) IS} 

> 1 - IEI -~ • 0 

As a consequence of Lemma 4.3, we may use 
1 < h < h 

o 

h-i 
A(h) = ~ 6A(i) (i) 

i=o 

and h-i 

i = o  

t o  bound t h e  t i m e  c o m p l e x i t y  o f  A l g o r i t h m  

h i g h  p r o b a b i l i t y ,  when A(O) = A(O) = O, 

with 

Let M be uniform with element density p(i.e., 
each element is chosen with probability p) and assume 

R1, R2, and Ci. Let 

B = pLEI (1+¢6 = iogIEU~fF- 

Theorem 4.1 If A(h) ~ ~ then 

Pr {A(h) !Th! A(h)} !l - a(h) IEl -e 

where 

a(h) = 3h(l+r)+l with 

(B - t  h ) 
r = 

(~ - nCh) - ~(h)) 

Proof By Lemma 4.1, 

~{IEol > ~} < tel -~ 

By Lemma 4.3, 

pr{A(h) ! T h ! ~(h) ITh ! t h} ~ l-3hlEl-~ 

Note that we may assume without loss of generality 
that t h ~ B. By the monotonicity condition Ri, 

we can show Pr{T h = k} is unimodular for k e 

[0,~ ..... IEl ~. 

Thus Pr{T h > t o IIEol fi B} 

< Pr{T h < A(N) or A(h) < ThlT h ! th} " r 

= ~hrl~l -~ 

But Pr{T h > th}< Pr{Th > thl IEo I ! B} + 

< (3hr + I) IEI -e 

IEl -~ 

So 

pr{T h < A(h) or ~(h) < T h} 

< Pr{T h < A(h) or ~(h) < ThlT h ! t h} 

+ Pr{T h > t h} 

< aCh) IEl -=- E] 

Note that Theorem 4.1 may be restated: 

If ~(h) < t h then 

Pr { H > h } > 1 - IEI -e(h) 

where ~Ch) = e - 10g(iEl ) 

Further more, if we wish 

Pr { H ~ ho} ~ i - IEI-~o 

for any given ~ sufficiently large then we find a 
o 

minimal Poe (0,i) such that the restrictions of 

Theorem 4.1 are satisfied and ~ = e(h). (Note o 
that if M = (E,~,p) proper random matroid and 
(E,~ has rank ~ h O, then such a Po always exists.) 
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4.5 Bounds on the Probability Density Function of Th 

We assume here the restrictions given in 
Theorem 4.1. Actually, we have a much more general 
result, since we have from Lemma 4.2 bounds 
on the probability density function of Th+ 1 - T h 

for h =l,...,h ° - 1. By the monotonicity restrictions 

m, forx=0 ..... I~I 

6A(h+l)_l(h) (i - q(h))X 

< Pr{Th+ 1 - T h = x + i i 

A(h) < T h ! A(h), ~(h+l) < Th+ 1 ! ~(h+l)} 
^ 

< 6~(h+l)_l(h)(l - q(h))X 

^ 

where q(h) = 6&(h)(h), q(h) = 6~(h)(h). 

Corollary 4.1 for h = 0,...,ho-i 

6A (h+l) -i (h) 
g(x, q(h)) - IEi -c~(h+l) 

q(h) 

Pr{Th+ 1 - T h = x + i} 

^ 

< 6~ (h+l) -i (h) 

q(h) 
g(x,q(h)) + IEi -a(h+l) 

The Appendix gives the density function of a 
random variable which is a sum of variables with 
distinct geometric distributions, and from this and 
by the bounds of Corollary 4.1, we have upper and 
lower bounds on the probability density function of 
the sum: 

h-i 

T h = >] Tk+l - T k 

Theorem 4.2 for h = 0,...,ho-i 

e(h) - hIEi -c~(h+l) < Pr{Th=X } < Q(h) + hIEi -~(h+l) 

where h-i h-i 

Q(h) = w h ~ g(x,q(i))(i-q(i) h-2 H q[i/ 
$[i)-q(j) i=o j=l 

i#j 

h-i ) 

Wh = (k=~0 £A(-k+l)-l(k)q (k) 

h-I 

Q(h) = Qh ~ g(x,q(i))(l-q(i)) 

i=o 

Qh = 6~ (k+l)_l (k) 
q (k) 

k=o 

h-i 

h-2 H q(i) 
q(i)-q (j) 

j=l 
i~j 

Thus, if the restrictions of Theorem 4.1 are satis- 
fied (as they do in our Applications in Section 5, 
we can derive by routine methods the mean, variance, 
and in general any moment of the time cost of 

Algorithm E-R. 

5. Applications 

In the previous section, we provided a general 
method of analysis of random extension rotation 
algorithms. We discuss here applications to various 
combinatorial problems for random graph model G 

n,p" 

5.1 Motivation and Previous Work 

Pose [1976] proved a sufficient p = 0(logn/n) 
for Hamiltonian paths in Gn,p, previously an open 

problem in Erdes and Spencer [1974]. 

Karp [1976] observed that Posa's proof yields 
a polynomial time algorithm for constructing Hamil- 
tonian paths in a random instance of Gn, p. Angluin 

and Valiant [1979] then generalized this Posa-Karp 
Algorithm to detect Hamiltonian paths in random 
directed graphs. 

We can further extend the Posa-Karp Algorithm 
to the problem of identifying certain classes of iso- 
morphic subgraphs. Consider the problem for a 
fixed graph H and random graph G 

n,p 

Is H isomorphic to a subgraph of G ? 
n,p 

The answer to this problem is very useful for deter- 
mining the probability of a property characterizable 
by forbidden subgraphs (e.g., K. Kuratowski's [1971] 
forbidden subgraphsfor planar graphs, Glover and 
Hyneke's [1975] forbidden subgraphs for graphs im- 
bedded onto the projective plane, Lekkerkerker and 
Boland's (1962] forbidden subgraph characterization 
of interval graphs). Erdes and Spencer [1974] de- 
termined the probability that a random graph is planar 
by forbidden subgraph methods, and Cohen, Koml6s 
and Mueller [1979] found the probability that a ran- 
dom graph is an interval graph by similar methods. 

Actually, we can show that a large class of for- 
bidden subgraph problems or random graphs can be 
efficiently reduced to the problem of determining 
a Hamiltonian path. Suppose H is a fixed graph of 
size O(h) but homeomorphic to a graph H of size 

o 
0(n) for some constant k > 0. We wish to determine 
a subgraph G' of an instance of random graph G 

n,p 
such that G' is isomorphic to H. 
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Let k be the number of edges of H 0. By assump- 

tion, k is constant. We partition the edges of 
G into k blocks of size n/k + 0(i), with each 
n,p 

block corresponding to an edge of H . Choose these 
o 

blocks t so that they have a unique "joining 
o 

vertex" in common just in the case the corresponding 
edges of H do. Such a partitioning requires only 

o 
linear time since k is constant. Then we test (by 
the Posa-Karp algorithm) if each block of the parti- 
tioning has a Hamiltonian path between the "joining 
vertices" of the block. A slight modification of the 
Posa-Karp algorithm then yields the required Hamil- 
tonian paths with probability ! l-n -e for any suffi- 

ciently large ~ > i. 

Ho ~ Gn'p 

5 . 2  " A n a l y s i s  o f  t h e  P o s a - K a r p  A l g o r i t h m  

We now give a detailed analysis of the Posa-Karp 
algorithm for delecting a Hamiltonian path in a random 
graph Gn, p. We follow the analysis techniques develop- 

ed in Section 4. 

Step A Formulation as a random matroid 

First, we formulate the "simple path" (we require that 
simple paths contain no cycles, but allow empty simple 
paths) property for random graph Gn, p as a random matroid, 

just as described in Section 2.4. Let V be a set 
of n vertices. Let M = (E,~,p) be the uniform 
random matroid: 

(i) E = {{u,v} I distinct u,v, e V} 

(ii) J= all simple (acyclic) paths in the 
complete graph (V,E). 

Instances of M correspond to instances of the ran- 
dom graph G as describe~ in Section 2.3. Fix an 
instance n,p 

Mo= (Eo,~o, p) of M. 

Then (V,E O) has the same measure in Gn, p as in M, 

and ~o is the set of all simple paths in (V,E). 
o 

We wish to determine a maximum independent set 
I E ~o of cardinality h ° = n - i, i.e. a Hamil- 

tonian path. 

To describe Cxt~ns~on of a non-maximal simple 
path I eJo , we let V(I) be the vertices of I 

and let ENDS(I) be the set of extremal vertices of 
I (i.e. the first and last vertices, if they exist). 

Then the extension set is 

~(I) = {e e E ° - I I e = {u,v} 

u e ENDS(1), v e V - V(I)} 

The rotation set is 

~(I) = {e e E - I - ~(I) I e = {u,v} 

u e ENDS(I), v g V(I) - ENDS(I)} 

Step B Derivation of the bounding parameters: 

6t(h), St(h), It(h), It (h) 

By Lemma 4.1, 

Pr{ pZ(I-8) ! IEol !P Z(l+S)} 

when 8 = ~ (~ log £/p~, 

n (n-l) 
= IEI = 2 

and e > 1 is an arbitrary constant. 

We can show using symmetry arguments as in 
Angluin and Valiant [1979] that there exists a class 
of executions ~o of the algorithm E-R of total 

measure 1 - I EI -C~ such that for t = 0 ..... I EI 

bhP(n-h) (l-B) < l~t(h) l ! bhP(n-h) (i+8) and 

bhPh(l-8) - t/h < l~t(h) I <_ bhPh(l+8) - t/h for 

h = 0,i,.. • ,ho-l, 

where b h = 1 if h = 0 and else b h = 2 (for the 

executions in ~o we also have IEol > p£(l-B) , by 

by appealing to Lemma 4.1.) 

Therefore we may define as bounds on the con- 

ditional extension probability: 

(n-h) (l-B) 

6 t (h) = 
t 

n (1+8) - - -  
phb  h 

~t(h ) = (n-h) (1+8) 

n(1-8) - t 

phb h 

I tCh) I 
SO that 6t(h) < 

 t(h) i l h 
I 

+ 
< 6 (h) 
-- t 

for executions in ,~ of the Algorithm E-R. 
o 
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Observe that ~6t(h) > 0 , ~6t (h) > 0, ~6t(h) < 0 

~t ~ t ~h 

and ~Et (h) < 0 so the monotonicity condition 

%h 
R1 is satisfied. 

Restriction R2 can be readily verified for it 
is obvious that 

Pr{ ~t(I) U ~t(I) = ~} 

monotonicity increases with t and h =IIl. 

To satisfy condition Cl we set th=2pnh(l-8). 

Then for executions in ~o and 0 < t < t h, 

~t(1) U~t(1) ~ ~. 

Step C Verification of C2 

We now must verify condition C2 to insure the 
algorithm succeeds with high probability. For sim- 
plicity, we proceed with an asy~ptot~o anal 8i8 a8 
n ÷ ~ (although the techniques of Section 4 
allow analysis for any fixed n as well). 

Note that as n + ~, ~ ÷ 0 so 

6t(h ) _ ~t(h ) ~ n - h t 
n - 

ph b h 

so in the asymptotic case the bounding parameters are 
identical. 

~ ~ log £ 

Also, ~t(h) log (l_£t (h)) as n + ~ 

We must determine 

A(h+l) = A(h) + ~Z(h) (h) 

Let k I = pn 
log n 

We can show by induction or h that ~ (h) < 

k2h log n where k2 = _ _ 2 a  k I Thus for k I > 

2~ + k 1 

2c~ 
we have: A < t h and we conclude the Algorithm 

2~-i o 

E-R outputs a Hamiltonian path with probability 

i i-~o i > I - E where ~ < a - -- . 
-- o 2 

Step D Bounds on the Mean and Variance of T h. 

we have from Corollary 4.1 that 

Pr{Th+i-T h = x+l} ~ shq(x,q(h)) + IE] -~(h+l) 

^ 

6~ (h+l)-i (h) 
where s h q(h) and q(h) = 6A(h) (h) 

This requires calculation of the lower bound A(h), 
which in this application is trivial: A(h) = h. 

1 
~ is constant But s h c where c 1 -k2/k 1 

for p = 8(l°g~n). Also, for sufficiently large 
n 

a(h+l), IE] -~(h+l) + 0 as IEI ÷ ~. 

Let X h 

distribution 

\ 

be a random variable with geometric 

q(x,q(h)). By the Appendix, 

(l-q (h)) 
q(h) 

h 
n-h 

So \ 
o 

h -i 
o 

h=o 

ho-I 

< c h dh 
o n-h 

< cn log n + O(n) for h = n - i. 
-- o 

A similar calculation yields a lower bound on 

the mean of T h : 
o 

Th n log n + ~n), 

o >-- d 2 

1 
d = 

l-k2/(2k I ) 
where 

Note that as n ÷ ~ these bounds are tight within a 

factor of cd 2, which we may assume constant if p = 

0(log n). Thus, T = 8(~ log n) 
n h " o 

We also can apply the formulas of the Appendix 
to bound the second moment of T h : 

o 
2 

3 -d 3 --2 < C n 3 
~e n + ~(h)< T h _ ~ + 0(n 2) 

o 

and so we have tight bounds for the variance 

--2 --2 @ (n3). 
VAR [T h ] = T h - T h 

o o o 
d 2 

in the case e e is constant. 

Angluin and Valiant [1979] show that each "unit 
time" step of Algorithm E-R for this application 
requires 8(log n) instructions on a RAM machine. 
Thus, the above mean and variance bounds must be 
multiplied by a constant multiple of log n (for the 
bounds on the mean) and (log n) 2 (for the bounds on 
the variance). 
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5.3. Analysis of an A l~orithm for Matching in Random 
Graphs 

Previously, Angluin and Valiant [1979] and 
Walkup [1977] have described algorithms for detecting 
perfect matchings~ a random graph G with p 

n,p 
c log n - . We now briefly sketch an analysis of the 

n 
performance of the extension-rotation algorithm for 
perfect matching. 

To formulate the "perfect matching" problem as 
a random matroid, we assume a complete graph G=(V,E) 
with n nodes (n is assumed even). Let M = 
(E,~, p) when 

~= {E' ~ EIE' is a matching}. 

= (Eo,~o Let M ° ) be an instance of M. 

Note that for I ~o the extension set is 

~(I) = {e e E-IIthe vertices of e are 
distributed from the vertices of I} 

and 
~(I) = {e e E-IIone vertex of e is an ele- 

ment of E-I}. 

Let 

a(h) = p (2~2h) 

a' (h) = 2ph (n-2h) 

ft(h) = t (n-2h-l) (n-2h)/2n 2 

ft'(h) = 2ht (n-2h)/n 2 

Again we may use synmnetry arguments and Lemma 
4.1 to bound the cardinalities of ~t(I) and ~t(I) 

and IEol for a class of executions ,~ with measure 
o 

> i-IEI ~ 

For executions in ~o' 

(l-8)a(h) ~ l~t(I) l + ft(h) ~ (l+8)a(h) 

and (l-8)a'(h) ,< ~t(I) l + f~(h) _< (l+8)a'(h) 

Let t h = (1-8) (a(h) + a' (h)) - ft(h)-f~(h)- 

Then l~t(I) l+~t(I) I > 0 for t ! t h in executions 

of ~o' verifying condition Ci. 

We may let 

6t(h] = (i-8). a(h) - ft(h) 
(1+8) (a(h) + a' (h)) ~ ft(h)-f~(h) 

~t(h ) = (l+8)a(h) - d~(h) 
t h 

so we have I~ t (I) I 

Et(h) <--l~t(I) I+~('I) I ! Et (h) 

for h =III and executions in ~o" 

By taking partial derivatives of 6t(h) with respect 

to t and h, we can again show the monotonieity 
condition R1 is satisfied. It is also obvious that 
monotonicity condition R2 holds. 

As n ~ ~, the asymptotic bounds on the condi- 
tional extension probability is again tight: 

" it(h ) . By the routine calculations, des- 6t(h) 

cribed in Section 4, the reader may verify that 
n 

~(ho) ~ t h , where h O = ~, so the Algorithm E-R 
o 

outputs a perfect matching with probability 

> l-IEl-~(ho ). We also leave the reader to calculate 

tight bounds on the mean and variance of Th: 

--2Th 8 (n 3 ) Th = @(n log n) and = 
o o 

by applying Corollary 4.1 (which bounds the probabil- 
ity density of Th+ I - T h by geometric density 

functions) and using the formulas of the Appendix to 

calculate the moments, as we did in the Hamiltonian 
path applications. 
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Appendix 

We consider a random variable Y which is a 
sum 

Y= X1 + . . . X 
m 

of geometrically distrubuted variables Xi,... ,X m- 

This appendix provides formulas for the mean, 
variance and some low order moments of Y. 

For each i = l,...,m we assume X. has 
l 

truncated geometric density with parameter 

Pie [0,i] ; Let r i = 1 - Pi and 

gi (k) = Piri k, k = 0,1,...,n ° 

= 0 else 

The density function of X 1 + X 2 

0 < k < 2n , 
o 

k 

gl * g2 (k) = ~ gl (j) g2 (k-j) 

j=o 

is for 

PlP2 [rlk+l k+l I 
p2_Pl - r 2 

By applying induction, we derive the density 
m 

f u n c t i o n  o f  Y = ~ X, 
1 

= 

f(k) = (gl* 

m 
= 

• . . *gm) (k) 

m 

m-i -~" Pj 
gi(k) ri j=l 

i=l j~i Pi-Pj 

The moments of Y are given by 

s 

gt = ~ kt(gl* • • • *gm ) (k) 

k=o 

where s = mn . 
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