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We mention some (perhaps surprising) connections among the objects of the title. Whilst the results are
not new, we do give different proofs in a number of cases to emphasise the interrelationships.

1. Notions and Notation

1.1 By R we denote an integral domain; then R[[x]] is the ring of formal power series over R in the
variables x = (x1, . . . , xn). We write a series f(x) ∈ R[[x]] as f(x) =

∑
ai1···in

xi1
1 · · ·xin

n =
∑

aνxν where
ν = (ν1, . . . , νn) is a multi-index and xν = xν1

1 · · ·xνn
n . In the sequel R is usually the finite field Fp of p

elements or the ring of p-adic integers Zp. One says that f(x) ∈ R[[x]] is algebraic if it is algebraic over the
quotient field of the polynomial ring R[x]. If f(x) ∈ Zp[[x]] we say that f is algebraic mod ps if there is an
algebraic g(x) ∈ Zp[[x]] with f ≡ g mod ps.

1.2 Given f(x, y) =
∑

aijx
iyj it is natural to refer to the series Ixyf =

∑
aiix

i as its diagonal . In general,
if f(x) =

∑
ai1···inxi1

1 · · ·xin
n we define its diagonal I12f by I12f =

∑
ai1i1i3···inxi1

1 xi3
3 · · ·xin

n ; generally, for
k �= l , the other Ikl are defined correspondingly. By a diagonal we mean any composition of the Ikl s. The
(complete) diagonal is If =

∑
aii···ixi

1 . We shall also need the off-diagonals Jklf =
∑

ik>il
ai1···in

xi1
1 · · ·xin

n .
The Hadamard product of series f(x) =

∑
aνxν and g(x) =

∑
bνxν is (their “child’s product”) f ∗g(x) =∑

aνbνxν .

1.3 The operations of diagonal and Hadamard product are connected by:

f ∗ g(x) = I1,n+1 . . . In,2nf(x1, . . . , xn)g(xn+1, . . . , x2n) ; (1.3.1)

I12f = f ∗
( 1
1 − x1x2

n∏
j=3

1
1 − xj

)
. (1.3.2)

Over C, the diagonal is also given by the integral

I12f(t, x3 . . . , xn) =
1

2πi

∮
x1x2=t

f(x1, . . . , xn)
dx1 ∧ dx2

dt

=
1

2πi

∮
|y|=ε

f(
t

y
, y, x3, . . . , xn)

dy

y
.

(1.3.3)

Noting (1.3.1) and (1.3.2), one sees that if a ring of power series is closed under one of the two operations
of taking diagonals or Hadamard products then it is also closed under the other operation. From (1.3.3)
it follows (cf [19]) that the diagonal of a rational function f(x, y) of two variables is an algebraic function.
Indeed,

(If)(t) =
1

2πi

∮
|y|=ε

f(
t

y
, y)

dy

y
=

1
2πi

∮
|y|=ε

P (t, y)
Q(t, y)

dy .

Writing Q(t, y) =
∏(

y−yi(t)
)
, where the yi(t) are algebraic, and evaluating the integral by residues verifies

the claim. In fact, every algebraic power series of one variable is the diagonal of a rational power series of
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two variables ([19]) and, indeed, every algebraic power series in n variables is the diagonal of a rational power
series in 2n variables ([16]). However, as we see below (§2.10), in characteristic zero diagonals of rational
functions in more than two variables do not generally yield algebraic functions.

1.4 A finite automaton (cf [32]) is a ‘machine’ with a finite number of states S , a finite input alphabet I,
and a finite output alphabet O . In the immediate sequel we will take I = {0, 1, . . . , p− 1} and will presume
there to be n input tapes. The output O will consist of elements of Fp . At each stage of the computation
the automaton reads one digit from each tape and accordingly alters its internal state, reporting its new
state as an element of Fp . Thus, formally, a finite automaton is a transition function τ : In × S → S and
an output function o : S → Fp . Some distinguished state is the initial state.

1.5 Such an automaton generates its characteristic function f =
∑

aνxν by the rule that aν is the output
after the words ν = (ν1, . . . , νn) , each expressed in p-adic notation (that is, in base p), have been fully read
from the input tapes. The principle of irrelevance of symbols is plain: the elements of the output alphabet
just serve as markers—if f =

∑
aνxν is generated by a finite automaton then, for each output symbol i , so

are the series f (i)(x) =
∑

aν=i xν ; and conversely. Thus our choice of output alphabet is of no matter. In
§3 we consider automata with output alphabet Z/ps . In the above spirit, notice that if for each k < s the
series

∑
aν(k)xν is generated by a finite automaton then so is the series∑(

aν(0) + aν(1)p + · · · + aν(s − 1)ps−1
)
xν ;

and, once again, conversely.
A basic property of finite automata is their cyclic nature: Since it has only finitely many internal states,

after a sufficiently long input the automaton will be in the same state as it was after a shorter portion of
that input. (Incidentally, it follows that a finite automaton can add numbers in base p , but that no finite
automaton can square arbitrarily large numbers.)

1.6 We digress, both to detail the foregoing and to provide an (apparently) alternative description for finite
automata. Consider, for example, the sequence (rh)

0001001000 0111010001 0010111000 1000010010 0001110111 . . . . . .

which, for the viewer’s convenience and as a blow in the battle against the binary, we have split into groups
of 10 symbols.

The ‘pattern’, which is to say a formation rule, becomes plain, by our viewing the symbols in pairs as
binary integers. We then see that the resulting sequence is self reproducing under the uniform (or regular)
2-substitution θ on the symbols {0, 1, 2, 3}:

0 �→ 01 , 1 �→ 02 , 2 �→ 31 , 3 �→ 32 .

Finally the output map o replacing 3 by 1, 2 by 1 and 1 by 0 yields the given sequence:

0001001000 0111010001 0010111000 1000010010 0001110111 . . . . . .
0 1 0 2 0 1 3 1 0 1 0 2 3 2 0 2 0 1 0 2 0 1 3 1 3

0102013101 0232020102 0131323101 3101020131 0102320232 . . . . . .
0001001000 0111010001 0010111000 1000010010 0001110111 . . . . . .

The ‘what is going on here’ is somewhat disguised by our notation. The intermediate symbols {0, 1, 2, 3}
represent the four states {s0, s1, s2, s3} of a binary automaton (p = 2 in our description at 1.4). The
substitution θ provides the transition map τ as in the transition table:

0 1
s0 s0 s1

s1 s0 s2

s2 s3 s1

s3 s3 s2
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The output map o is as described above.
The sequence (rh) is generated by the automaton in all of the following senses: It is (an image of) a

sequence invariant under the substitution θ (that is, under the transition map). That invariant sequence is
limh→∞ θh(0), where

θ(0) = 01 , θ2(0) = θ(01) = θ(0)θ(1) = 0102 , . . . , θh(0) = θ(θh−1(0)θh−1(1) = . . .

Finally, the automaton induces a map h �→ rh on the nonnegative integers in the following way (as is
obviously equivalent to the foregoing): We have just one input tape containing the digits of h written in base
2; s0 is the initial state. The automaton reads the digits of h successively (from left to right, disregarding
irrelevant leading zeros since these leave the automaton in state s0). The final state reached is transformed
by the output map and yields rh .

We will, in the sequel, use the sequence (rh) as a convenient and interesting example of an automatic
sequence. Cobham [13] shows that the interconnections displayed by the example are general.

At 1.5 we have already remarked that, more generally, a multiplicity of input tapes causes a finite
automaton to induce a map ν �→ aν on n-tuples of nonnegative integers.

1.7 The following “breaking up” procedure will be fundamental to several of our arguments: If y(x) ∈ Fp[[x]]
and S = {0, 1, . . . , p−1}n then, for α ∈ S , there are unique yα(x) ∈ Fp[[x]] such that y(x) =

∑
α∈S xαyp

α(x) .
In different words: {xα = xα1

1 · · ·xαn
n : α ∈ S} is a basis for Fp[[x]] over

(
Fp[[x]]

)p .

1.8 We choose to work over Fp for clarity and definiteness, but, with only minor modifications, the results
cited remain valid if Fp is replaced by an arbitrary finite field F and Zp by the complete discrete valuation
ring with prime p and residue field F .

2. Algebraic power series in characteristic p , diagonals and automata

2.1 If y(x) ∈ Fp[[x]] is algebraic then y satisfies an equation of the shape

s∑
i=r

fi(x)ypi

= 0 ,

with r , s ∈ N , the fi ∈ Fp[x] and fr �= 0 . In fact, we may take r = 0 , for if r > 0 then writing fi =
∑

α xαfp
iα

as in 1.7 we get that ∑
α

xα
( s∑

i=r

fiα(x)ypi−1)p = 0 .

Hence
∑s−1

i=r−1 fi+1,α(x)ypi

= 0 and some frα �= 0 .
2.2 Thus if y ∈ Fp[[x]] is algebraic, y satisfies an equation of the shape

f(x)y =
s∑

i=1

fi(x)ypi

= L
(
yp, . . . , yps)

,

where L is linear with coefficients polynomials in x . After multiplying by fp−1 , breaking up y and the
coefficients of L as in 1.7 and then taking p-th roots, we get the equations

f(x)yα1 = Lα1

(
y, yp, . . . , yps−1)

. (2.2.1)

Now multiplying by fp−1 and substituting for f(x)y on the right hand side of (2.2.1) yields

fpyα1 = Lα1(f
p−2L(yp, . . . , yps

), fp−1yp, . . . , fp−1yps−1
) ,
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which is linear in yp ,. . . , yps

. This brings us back, more or less, to the start and shows that iterating the
process described leads to equations of the shape

f(x)yα1...αe = Lα1...αe

(
y, yp, . . . , yps−1)

.

If, during this procedure, we keep track of the (multi-) degree in x of Lα1...αe
we see that that degree remains

bounded. Hence, since Fp is finite, there are only a finite number of distinct yα1...αe and we have:

2.3 Theorem([9], [16]) If y =
∑

aνxν is algebraic then
(F) there is an e such that for every (α1, . . . , αe) ∈ Se there is an e′ < e and a (β1, . . . , βe′) ∈ Se′

such that
yα1...αe = yβ1...βe′ ;

equivalently,
(A) there is an e such that for all j = (j1, . . . , jn) with the ji < pe there is an e′ < e and a

j′ = (j′1, . . . , j
′
n) with the j′i < pe′

such that

apeν+j = ape′ν+j′ for all ν .

2.4 Conversely, if y satisfies (F) then taking yβ1...βe′ and breaking it up e− e′ times, we see that the yα1...αe

satisfy a system of the form

yα1...αe =
∑

xγype−e′

β1...βe
. (2.4.1)

Viewing this system as a system of equations in the yδ1...δe
we see (because, happily, the derivative of a p-th

power vanishes) that its Jacobian is 1. By the Lemma below it follows that the yα1...αe
, and hence y , must

be algebraic.

2.5 Lemma([25], p.286) If K ⊂ L are fields and y1, . . . , yN ∈ L satisfy a system of N polynomial equations
Fi(Y1, . . . , YN ) = 0 over K with J(y1, . . . , yN ) �= 0 , where J = det

(
∂Fi/∂Yj

)
is the Jacobian of the system,

then the yi are all algebraic over K .
To see this, observe that if the conclusion were false there would be a nontrivial derivation D on

K(y1, . . . , yN ) which is trivial on K . But by applying D to the equations Fi(y1, . . . , yN ) = 0 we obtain

(∂Fi

∂Yj
(y1, . . . , yN )

)
(Dyi) = 0 ,

which forces Dyi = 0 for all i .

2.6 If we interpret the equations (2.4.1), in the unknowns yδ1...δe , over Zp instead of over Fp , they have
Jacobian ≡ 1 mod p . Hence, by the Implicit Function Theorem for Zp[[x]] (which is just Hensel’s Lemma;
an elementary proof is given at [16], p.50) these equations have a unique solution ỹα1...αe ∈ Zp[[x]] with
ỹα1...αe

= yα1...αe , where the denotes reduction mod p . By Lemma 2.5 the ỹα1...αe are also algebraic.
Thus we see that every algebraic power series in Fp[[x]] is the reduction of an algebraic power series in
Zp[[x]] . Below, at 4.3 we mention a further, rather extraordinary, “lifting theorem” whereby every algebraic
power series in Fp[[x]] is shown to lift to a series in Z[[x]] which is a solution of a system of functional
equations.

2.7 Suppose that the series
∑

aνxν is generated by a finite automaton M , as explained at 1.4-6. Choose
e so large that every state that M enters in the course of any computation is entered in a computation of
length less than e . Then the aν satisfy version (A) of Theorem 2.3.

Conversely, if the aν satisfy (A) one can construct a finite automaton M that generates
∑

aνxν . M
will be equipped with a table detailing the identifications (A) and an output list of the values of the aj for
j = (j1, . . . , jn) with the ji < pe . M computes as follows: It reads e digits from each tape. Then it uses the
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table (A) to replace those e digits by e′ digits. It reads a further e − e′ digits and iterates. At each stage it
outputs the appropriate value from its output list. So we have:

2.8 Theorem([9], [16])
∑

aνxν ∈ Fp[[x]] is algebraic if and only if it is generated by a finite automaton.

This has the immediate
2.9 Corollary([19], [15], [16]) Let f , g ∈ Fp[[x]] be algebraic. Then

(i) Every diagonal of f is algebraic, as is every off-diagonal.
(ii) The Hadamard product f ∗ g is algebraic.
(iii) Each characteristic series f (i) =

∑
aν=i xν is algebraic.

2.10 We emphasise that the situation in characteristic 0 is very different. Neither diagonals nor (equivalently,
see 1.3) Hadamard products preserve algebraicity. For the latter, the standard example is

(1 − 4x1)−1/2 =
∑ (

2h

h

)
xh

1 , but
∑ (

2h

h

)2

xh
1

is not algebraic. We note that the first remark is just the useful identity

(
2h

h

)
= (−4)h

(− 1
2

h

)
.

Congenial facts such as this are of interest in constructions useful to logicians; see, for example [23]. Then,
with a little work and some first-year introductory calculus∗ the latter series is given by the integral

2
π

∫ π/2

0

dt√
(1 − 16x1 sin2 t)

.

This is a complete elliptic integral well known not to represent an algebraic function.

3. Algebraic power series mod ps

3.1 Theorem If f ∈ Zp[[x]] is algebraic and I is any diagonal then If is algebraic mod ps for all s ∈ N .
Proof . It is enough to show the Theorem for I = I12 . As above, denotes reduction mod p . Then
f ∈ Fp[[x]] is algebraic and hence so is I12f . By 2.6 there is an algebraic g ∈ Zp[[x1, x3, . . . , xn]] such
that g = I12f . Similarly, there are algebraic h1, h2 ∈ Zp[[x]] such that h1 = J12f and h2 = J21f ,
whilst I12h1 = I21h2 = 0 . (Before lifting to characteristic 0 write J12f = x1k(x1, x1x2, x3, . . . , xn) and
lift k(x1, z, x3, . . . , xn) .) Set g̃ = g(x1x2, x3, . . . , xn) and note that I12g̃ = g . Now, by induction on s ,
I12

1
p (f − g̃ − h1 − h2) is algebraic mod ps−1 ,

3.2 Corollary If f , g ∈ Zp[[x]] are algebraic then their Hadamard product f ∗ g is algebraic mod ps , for
all s .

Next we generalise Theorem 2.3:
3.3 Theorem([15], [16]) If f(x) =

∑
aνxν ∈ Zp[[x]] is algebraic then for every s there is an e such that for

every j = (j1, . . . , jn) with the ji < pe there is an e′ < e and a j′ = (j′1, . . . , j
′
n) with the j′i < pe′

such that

aνpe+j ≡ aνpe′+j′ mod ps for all ν

(and hence the aν mod ps can be generated by a finite automaton).

∗ Nowadays, probably at best second-year, if one is lucky.
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Proof . For i ∈ {1, . . . , p − 1} each characteristic series f (i) is algebraic. Lift f (i) to f (i) ∈ Zp[[x]] with f (i)

algebraic and f (i) = f (i) . Then gi = ∗ps

f (i) , the ps-fold Hadamard product of f (i) is algebraic mod ps . Of
course each coefficient aνi of gi =

∑
aνix

ν is congruent to either 0 or 1 mod ps . Hence g = 1
p (f − ∑

igi) is
algebraic mod ps−1 and the result follows by induction.

4. Automata, functional equations and arithmetic

4.1 We return to the example 2-automatic sequence (rh) of 1.6 to notice the pattern:

0001001000 0111010001 0010111000 1000010010 0001110111 . . . . . .
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 . . . . . .0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 . . . . . .

The second row is (r2h) . Remarkably, it coincides with the original sequence, illustrating that rh = r2h .
The third row is (r2h+1) . With careful attention, we see that r4h = r4h+1 but r4h+2 �= r4h+3 . Setting
P (X) =

∑
(−1)rhXh , these observations amount to the functional equation

P (X) = P (X2) + XP (−X2) . (4.1.1)

Noticing that for an arbitrary sequence (ih) , with ih ∈ {0, 1} , one has

2
∑

ihXh = (1 − X)−1 −
∑

(−1)ihXh ,

we find that the function R(X) =
∑

rhXh satisfies

2X(1 − X4)R(X4) + (1 − X4)(1 − X)R(X2) − (1 − X4)R(X) + X3 = 0 . (4.1.2)

To discover this functional equation directly we recall the generated sequence

0102013101 0232020102 0131323101 3101020131 0102320232 . . . . . .

and the defining substitutions
0 �→ 01 , 1 �→ 02 , 2 �→ 31 , 3 �→ 32 .

4.2 It is quite as convenient to deal with the general case (as in [11]): Accordingly, let a0, a1, . . . , am−1 be
a given alphabet and suppose we are given a substitution

a0 �→ w0, a1 �→ w1, . . . , am−1 �→ wm−1

with words wi , in the aj , each of length t ≥ 2. Denote by s0s1s2 . . . . . . a sequence fixed by the substitution
and consider its generating function

∑
shXh. Denote the characteristic function of each symbol ai by

fi(X) =
∑

sh=ai
Xh =

∑
h≥0 uihXh , so that

∑
h≥0 shXh =

∑m−1
i=0 aifi(X). Note that sthsth+1 . . . st(h+1)−1

depends only on sh. Accordingly, set vijk = 1 if ai is the (k +1)-st symbol of the word wj (and 0 otherwise),
so that ui,th+k =

∑m−1
j=0 vijkujh . In other words,

fi(X) =
∞∑

s=0

uisX
s =

∞∑
h=0

t−1∑
k=0

ui,th+kXth+k

=
m−1∑
j=0

(
t−1∑
k=0

vijkXk

) ∞∑
h=0

ujhXth =
m−1∑
j=0

pij(X)fj(Xt) .

If we denote by A(X) the m × m matrix A(X) =
(
pij(X)

)
and by f(X) the column vector f(X) =(

f0(X), f1(X), . . . , fm−1(X)
)′, then we have the matrix functional equation

f(X) = A(X)f(Xt) .
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Moreover, it is plain that every linear combination of the fi(X) over the field of rational functions satisfies
an equation of the shape

∑m
i=0 ci(X)g(Xti

) = 0 , with polynomial coefficients ci(X) .
Special cases of such functional equations were studied by Kurt Mahler in the late twenties; see [28]. It

is therefore fitting to refer to these systems of equations as Mahler systems and to their solutions as Mahler
functions.

4.3 Let f(x1) ∈ Q[[x1]] be algebraic. Because of Eisenstein’s Theorem f has a reduction f mod p for
almost all primes p , and that reduction is, of course, an algebraic element of Fp[[x1]] . By 2.6 such an
algebraic power series lifts to an algebraic power series in Zp[[x1]] and its reductions mod ps have coefficients
generated by an automaton which reads its input in base p . Treating its coefficients, which are of the shape
ah(0)+ah(1)p+ · · ·+ah(s− 1)ps−1 , as elements of Z the new series satisfies a Mahler p-functional equation
by the argument of 4.2 above. The theorem of Pólya-Carlson (the most convenient reference is [33], part
VIII, Chap. 3, §5) tells us that the new series is either rational, in which case its sequence of coefficients
is (eventually) periodic, or it represents a transcendental function with the unit circle as natural boundary.
(In the light of the remark at 1.8 we also refer the reader to [3], Chap. 5.)

Thus the reductions of algebraic power series are either rational or, when viewed in characteristic zero,
are transcendental functions satisfying Mahler functional equations.

Our example R(X) =
∑

rhXh , when viewed as an element of F2[[X]] , satisfies the algebraic equation

(1 + X)5R2 + (1 + X)4R + X3 = 0 .

When viewed as an element of C[[X]] the series is a transcendental function and the algebraic equation lifts
to the Mahler 2-functional equation (4.1.2)

2X(1 − X4)R(X4) + (1 − X4)(1 − X)R(X2) − (1 − X4)R(X) + X3 = 0 .

In much this spirit, there is a theorem of Cobham:
4.4 Theorem([12]) If f(x1) =

∑
i∈S xi

1 is generated by both an s- and a t-automaton and s and t are
multiplicatively independent integers (equivalently, log s/ log t is irrational), then the set S is a finite union
of arithmetic progressions (equivalently, the given function is rational).

Recall that by “irrelevance of symbols” (cf 1.5) there is no loss of generality in supposing given algebraic
power series over finite fields to have just coefficients 0 and 1. We have that, if gcd(p, q) = 1 , a power series
algebraic as an element of both Fp[[x]] and Fq[[x]] , is rational. Incorporating the remarks of 4.3 we see that
a power series is either rational, or is algebraic in at most one characteristic and transcendental in all others.

The argument in [12] seems easy locally, but is difficult globally. It remains of interest to find a more
direct proof (cf [38]).

4.5 The definition of finite b-automaton entails that a sequence of integers generated by the automaton
exhibits some ‘digit pattern’ in the base b representation of the integers. For example, the sequence (rh)
counts the number of occurrences (mod 2) of the pair 11 in the binary expansion of h :

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 . . .
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 . . .

In these terms, Cobham’s Theorem at 4.4 states that a sequence of integers has ‘digit pattern’ in multi-
plicatively independent bases if and only if it is (eventually) periodic.

In characteristic zero it makes sense to speak of values taken by a series. In an attempt to decrease the awe
of the transcendental we sketch the proof of the theorem:
4.6 Theorem([29]) Let t ≥ 2 be an integer. If s0s1s2 . . . . . . is a t-automatic sequence and f(X) =

∑
shXh

is a transcendental Mahler t-function then, for integers b ≥ 2 , the numbers f(b−1) are transcendental.
To understand transcendence theory one need only know the fundamental lemma of the subject:

If n ∈ Z and |n| < 1 then n = 0 .
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Notice, firstly, that to show that a number α is transcendental amounts to demonstrating that no nontrivial
expression a0 + a1α + · · · + amαm−1 , with the ai in Z , can vanish. Thus one seeks to establish the linear
independence of numbers 1, α, . . . , αm−1 over Z for all m . Similarly, to prove that numbers α1, . . . , αn are
algebraically independent one considers all monomials αµ = αµ1

1 · · ·αµn
n , and proves the linear independence

over Z of arbitrary finite collections of the αµ .
We have a single transcendental function f(z) satisfying a functional equation of the shape

cn(z)f(ztn

) + · · · + c1(z)f(zt) + c0(z)f(z) = c(z) ,

with c(z) and the ci(z) ∈ Z[z] and wish to show that α = f(b−1) is transcendental. Set fi(z) = f(zti

) . We
take a finite set of monomials fµ = fµ0

0 · · · fµn
n , linearly independent and stable under the transformation

z �→ zt over Q(z) . For the present application the column vector g , say, of these monomials may be
supposed to satisfy a matrix functional equation of the shape g(z) = A(z)g(zt) , with an m×m matrix A of
polynomials with integer coefficients.

We apply this as follows: Suppose (contrary to what we want to show) that there is, over Z , a nontrivial
linear relation

a1g1(b−1) + · · · + amgm(b−1) := a · g(b−1) = 0 .

Then, by the iterated form g(z) = A(k)(z)g(ztk

) of the functional equation, we have for k = 0, 1, . . . . . .

0 = a · A(k)(b−1)g(b−tk

) := a(k) · g(b−tk

) .

This allows us to study the functions gi at points conveniently close to the origin.
To prove the transcendence result, we construct a nonzero integer which, given the relation just mentioned,

has absolute value less than 1. Our construction requires some notions from the theory of simultaneous
polynomial approximation of functions that derive from work of Mahler ([30]).

In the sequel ρ = (ρ1, . . . , ρm) denotes an m-tuple of integers with sum σ . By ord we denote the order of
vanishing at z = 0 . We say that the vector of polynomials (p1, . . . , pm) with deg pj ≤ ρj − 1 , approximates
the vector g at ρ if

ord
(
r(z) =

∑
pj(z)gj(z)

)
≥ σ − 1 .

If no approximations at ρ have ord r(z) > σ − 1 then the vector g is said to be normal at ρ . We claim that
if g is normal at ρ then there exists a (unique) m × m matrix Pρ =

(
pij

)
of polynomials with the following

properties:
(i) The pii are monic and deg pii = ρi ; whilst, off the diagonal, deg pij ≤ ρi − 1 .
(ii) ord

(
ri(z) =

∑
pij(z)gj(z)

)
≥ σ .

(iii) detPρ = zσ .
This is not hard to see. The polynomials pii must have exact degree ρi , since otherwise we contradict
normality at ρ . Plainly detPρ = zσ+ lower order terms, whilst, by multiplying by a gi , and applying (ii),
we see that ord(det Pρ) ≥ σ .

Thus detPρ vanishes only at z = 0 . Set B = btk

. There is then no loss of generality in supposing that the
vector a(k) and the last m − 1 rows of Pρ(B−1) are linearly independent over C . Now consider the m × m
determinant ∆ whose rows are these m vectors, noting that ∆ is a nonzero rational number. There is some
integer Qρ , depending only on ρ and not on k , so that all the Qρpij have integer coefficients and there is a
constant C > 0 , independent of ρ and k , so that BCa(k) is an integer vector. Set ρmin = min ρi . Then, on
expanding the determinant ∆ by its first row, we see that

BCQm−1
ρ Bσ−ρmin∆ (4.6.1)

is an integer.
Now multiply ∆ by g1(B−1) , say. After simple manipulation, g1(B−1)∆ assumes the shape∣∣∣∣∣∣∣∣

0 a2(k) . . . am(k)
r2(B−1) p22(B−1) . . . p2m(B−1)

...
...

. . .
...

rm(B−1) pm2(B−1) . . . pmm(B−1)

∣∣∣∣∣∣∣∣
.
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Expanding by the first column shows that ∆ is surprisingly small; only the factor B−σ depends jointly on
the parameters k and ρ .

By Theorem 1 of [29] we may suppose that the vector g is normal at a sequence of parameter points ρ
with ρmin → ∞ . Thence, choose ρ so that ρmin is much larger than C and subsequently select k so that
B dominates the remaining quantities (which depend only on ρ and not on k). It follows that the nonzero
integer in (4.6.1) has absolute value less than 1. This contradiction proves the transcendence result.

4.7 We have shown that if s0s1s2 . . . . . . is a sequence generated by a finite automaton then a number∑
sib

−i = s0.s1s2 . . . . . . (with the “decimal” point indicating expansion in base b ) is either rational or
transcendental. In different words: The digits of an irrational algebraic number cannot be generated by a
finite automaton.

4.8 There is transcendence theory in characteristic p > 0 . For example ([31]), consider, over Fp , the formal
power series

∑
h≥0

(
λ

h

)
Xh = (1 + X)λ = (1 + X)

∑
i≥0

λip
i

=
∏
i≥0

(1 + Xpi

)λi =
∑
h≥0

∏
i≥0

(
λi

hi

)
Xh ;

with λ =
∑

λip
i ∈ Zp and h =

∑
hip

i expanded in base p . It is natural to guess that (1 + X)λ yields a
formal power series algebraic over Fp(X) if and only if λ is rational. Indeed, if the series is algebraic then the
sequence

((
λ
h

))
is p-automatic, and that entails that the sequence

((
λ
ph

))
is periodic. But, as we saw above,(

λ
ph

)
= λh , so the sequence (λh) is periodic, which is to say that λ is rational as we had predicted. More

generally, similar, though more sophisticated arguments [2] show that if f ∈ Fp[[X]] , and is algebraic with
constant coefficient 1, then the formal power series fλ1 , . . . , fλs are algebraically independent over Fp(X) if
and only if the p-adic integers 1, λ1, . . . , λs are linearly independent over Z .

The classical theory of diophantine approximation in fields of positive characteristic is described by Geijsel
[20].

4.9 The growing literature on the subject of finite automata is readily reached by iteration of references.
Our example automatic sequence (rh) , the Rudin-Shapiro sequence, is a hero of the story “FOLDS!”[14]. A
more recent survey is that of Allouche [1].

5. Diagonals of rational functions

5.1 In this section we consider the class of power series in Q[[x]] which occur as the diagonals of rational
functions f(x) = P (x)/Q(x) with P , Q polynomials and Q(0, . . . , 0) �= 0 .

Many combinatorial generating functions are diagonals of rational functions (cf [34]). Moreover, functions
of number-theoretic interest arise in this way, as, for example, with Apéry’s function ([37])

A(x1) =
∞∑

h=0

∞∑
k=0

(
h

k

)2(
h + k

k

)2

xh
1 ,

which occurs in the proof of the irrationaliy of ζ(3) , and which is the diagonal

A(x1) = I{(1 − x1)[(1 − x2)(1 − x3)(1 − x4)(1 − x5) − x1x2x3]}−1 .

At 1.3 we mentioned that every algebraic power series is the diagonal of a rational power series, whilst we
saw at 3.1 that every such diagonal is algebraic mod ps for all s and almost all p (since if f(x) is a rational
power series over Q then f(x) ∈ Zp[[x]] for almost all p).

The complete diagonals of rational power series have many other interesting properties:
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5.2 Theorem(cf [8]) If f(x1) is the diagonal of a rational power series over Q then
(i) f has positive radius of convergence rp at every place p of Q and rp = 1 for almost all p .
(ii) for almost all p the function f is bounded on the disc Dp(1−) = {t ∈ Cp : |t| < 1} , where

Cp is the completion of the algebraic closure of the p-adic rationals Qp and, for almost all p ,
sup{|f(t)| : t ∈ Dp(1−)} = 1 .

(iii) f satisfies a linear differential equation over Q[x1] ; and
(iv) this equation is a Picard-Fuchs equation.

5.3 Whilst (i) and (ii) are reasonably straightforward, (iii) and (iv) are more difficult and are proved by
Deligne using resolution of singularities (see [6], the footnote on p.5). Dwork [18] has given a proof which
avoids resolution. An elementary proof of (iii) and its generalisations appears in [26].

Picard-Fuchs equations are equations that “come from geometry”—they are satisfied by those analytic
functions (of the parameter) which are the periods of differential forms along cycles in pencils of curves. (A
number of concrete examples are worked out in [36].) The singular points of these equations are regular with
rational exponents.

One readily notices that f(x1) =
∑

aix
i
1 satisfying a linear differential equation with coefficients from

Q[x1] is equivalent to the Taylor coefficients ai satisfying a linear recurrence relation

p0(h)ah+k = p1(h)ah+k−1 + · · · + pk(h)ah ,

where the pj are polynomials; see [35], and [27] for generalisations to several variables. Algebraic functions
over Q , of course, satisfy differential equations of the sort just mentioned. The linear recurrence can be
useful in computing their Taylor coefficients (cf [10]).

5.4 There is a great deal of folklore on the subject matter of Theorem 5.2. There are conjectures of
Bombieri and Dwork in [17] to the effect that if the solutions of a linear differential equation, over Q[x1] ,
have “large” radii of convergence in Cp for almost all p , then they are functions that “come from geometry”.
This has been verified for the Apéry function ([17]). Christol [8] conjectures that if f(x1) satisfies the first
three properties cited in 5.2 then f is the diagonal of a rational function; a special case is proved in [8].

5.5 The results of §3 constitute a vast range of congruences for the Taylor coefficients of diagonals of rational
functions. Such, and other, congruences have been obtained for the coefficients of the Apéry function (for
example [21], by elementary arguments, and [4], [36], [5]). It would be interesting to see if these congruences
can be obtained by the methods of §3, which are, of course, effective.

5.6 We conclude by mentioning Grothendieck’s Conjecture: If a linear homogeneous differential equation
with coefficients from Q[x1] , and of order n , has, for almost all p , n independent solutions in Fp[[x1]] then all
its solutions are algebraic. This has been proved in a number of special cases (for example, for Picard-Fuchs
equations) by Katz (see [24]). Some results have also been obtained by elementary methods ([22]).
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[7] Gilles Christol , Diagonales de fractions rationnelles et équations de Picard-Fuchs, Groupe d’étude d’analyse
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[33] G. Pólya and G. Szegő, Problems and theorems in analysis, Springer-Verlag (translation of 4th edition,
1976)

[34] Richard P. Stanley , Generating functions, in Gian-Carlo Rota, ed., Studies in Combinatorics, MAA Stud-
ies in Mathematics, 17 (1978), 100–141

[35] Richard P. Stanley , Differentiably finite power series, European J. Comb. 1 (1980), 175–188
[36] Jan Stienstra and Frits Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain

elliptic K3-surfaces, Math. Ann. 271 (1985), 269–304
[37] Alfred van der Poorten, A proof that Euler missed. . .Apéry’s proof of the irrationality of ζ(3) ; An informal
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