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Abstract. The relational model, as proposed by Codd, contained the
concept of relations as tables composed of tuples of single valued at-
tributes taken from a domain. In most of the early literature this domain
was assumed to consist of elementary items such as simple (atomic) val-
ues, de�ned complex data types or arbitrary length binary objects. Sub-
sequent to that the nested relational or non-�rst normal form model
allowing set-valued or relation-valued attributes was proposed. Within
this model an attribute could take multiple values or complete relations
as values. This paper presents a further extension to the relational model
which allows domains to be de�ned as a hierarchy (speci�cally a lattice)
of concepts, shows how di�erent types of imperfect knowledge can be
represented in attributes de�ned over such domains, and demonstrates
how lattices allow the accommodation of some forms of inductive queries.
While our model is applied to 
at relations, many of the results given are
applicable also to nested relations. Necessary extensions to the relational
algebra and SQL, a justi�cation for the extension in terms of application
areas and future research areas are also discussed.

1 Introduction

Attribute values in relational databases which are not numeric, spatial or tem-
poral are commonly interpreted as labels with no semantic connection between
them beyond that of simple ordering. For example, consider the attribute do-
main fMonday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, weekday,
weekendg. As well as the order of the days of the week, there is also an inclusion
relationship between Sunday and weekend (since Sunday is part of the weekend).
This type of relationship can be expressed in a concept lattice, which can be
represented in the database as a domain concept relation { a simple child-parent
binary relation between pairs of labels from the domain [10, 11]. Kedad and
M�etais [4] have looked at hierarchical domains, but their approach is limited to
trees.



Mannila [5] de�nes inductive databases as databases that contain inductive
generalisations about data. The inductive queries discussed in this paper, al-
though relevant to these inductive generalisations (for example, see [9{11]), are
not restricted to inductive databases, but can be used in any database which
has the ability to represent hierarchical domains and store imperfect data.

There are many terms used in the literature for di�erent types of imper-
fect information. Parsons [6] o�ers a classi�cation of imperfect information into
�ve categories: uncertainty (lack of information), imprecision (lack of granu-
larity), vagueness (the fuzziness implied by terms such as `young' or `short'),
incompleteness (lack of relevant information) and inconsistency (contradictory
information). We wish to consider three cases of imperfection which we present
in detail in the next section of this paper. The type of imperfect information
captured by the use of weekend instead of Sunday we term incomplete. Our �rst
example using a lattice built on geographic locations gives rise to imperfect in-
formation of this type. Our second example uses a lattice of temporal intervals,
with intervals at a higher level of the lattice containing those at lower levels. This
type of information we term imprecise. Our third example is of inconsistent in-
formation, where one piece of data contradicts another. The term uncertainty
in this paper is reserved for describing the e�ect of matching domain values at
di�erent levels of the hierarchy with the attribute value in an inductive query.
Parson's uncertainty and vagueness are not addressed explicitly, but vagueness
does not di�er signi�cantly from the incomplete information example, and uncer-
tainty could be modelled using inconsistency if information with 70% certainty
was interpreted as weights of 0.7 on the information and 0.3 on its negation.

This paper explores the use of lattices for describing the three examples, then
introduces inductive queries (queries on attributes de�ned on lattice-structured
domains) and discusses the uncertainty inherent in these queries. Necessary func-
tions that operate on lattices, such as H and L [9] which retrieve all the concepts
in the lattice above and below a given concept, are de�ned and an algorithm
which uses these functions to divide the elements in the lattice into three sets
corresponding to the truth values t (true), f (false) and u (uncertain) for a given
inductive query is given. The implications of inductive queries for relational alge-
bra operations is investigated, and some extensions to the algebra are proposed.
These extensions, and other changes to the de�nition and data update facilities
of query languages for inductive queries are discussed within the framework of
an implemented query language (SQL).

The paper closes with a discussion of application areas and future research
for this work.

2 Lattice-structured Domains

The structure of any hierarchical domain can be described by a domain con-
cept relation DS = (element, concept), where each tuple describes a relation
between two elements of the domain { the �rst element belongs to the concept
that the second element describes. Consider a domain D with the twelve ele-



ments fAmericas, North America, Central America, South America, USA, Canada,
Mexico, Nicaragua, Brazil, Chile, northern hemisphere, southern hemisphereg. Fig-
ure 1 (a) shows a tree-structured domain built from ten of them, describing the
geographical relationship between the elements. Each element at the lower levels
of the structure has a single parent at the previous level, leading to unique paths
from any node to the root of the structure to which it belongs.

USA Canada Mexico Nicaragua Brazil Chile

northern hemisphere southern hemisphere

Central America

Americas

North America South America

USA Canada Mexico Nicaragua Brazil Chile

(a) (b)

Fig. 1. (a) Tree-structured domain and (b) lattice-structured domain

Allowing children to have multiple parents in a structure changes the struc-
ture from a tree to a lattice: a simple example is that shown in Fig. 1 (b), where
one child, Brazil, has two parents. Table 1 shows a domain concept relation
combining the two hierarchical structures shown in Fig. 1. Top level concepts
(Americas, northern hemisphere and southern hemisphere) are identi�ed by never
appearing in the element column, base level concepts (the names of the individ-
ual countries) by never appearing in the concept column. Middle level concepts
appear in both columns.
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Fig. 2. (a)Lattice of intervals and (b) lattice of attribute sets

This example shows that information at di�erent levels of granularity can be
combined into a single lattice-structured domain, allowing the use of incomplete
(i.e. coarser grained) information in relations de�ned on this domain. Lattices
can also be used for imprecise information represented as intervals, by labelling



Table 1. Domain concept relation

element concept

USA North America

Canada North America

Mexico Central America

Nicaragua Central America

Brazil South America

Chile South America

North America Americas

Central America Americas

South America Americas

USA northern hemisphere

Canada northern hemisphere

Mexico northern hemisphere

Nicaragua northern hemisphere

Brazil northern hemisphere

Brazil southern hemisphere

Chile southern hemisphere

each node in the lattice with an interval as shown in Fig. 2 (a). The idea of
representing interval data in lattices is not new, see [2] for example. Similarly,
a lattice whose nodes are sets of attributes can be de�ned for any relation and
used to identify inconsistent information in tuples of the relation. If the same
object is described as both red, small and square, and blue, small and square,
we can represent this inconsistency by the node marked fcolourg in Fig. 2 (b).

3 Uncertainty in Inductive Queries

For the domain shown in Fig. 1 (b), the semantic interpretation appears to
be that Canada, USA, Nicaragua and Mexico are wholly within the northern
hemisphere, Chile is wholly within the southern hemisphere, and Brazil is split
between both hemispheres. However, the way the domain is used may change the
meaning, so that uncertainty is inherent in relations using this domain. Consider
relation R = (name, location) shown in Table 2, where location is de�ned on
the lattice-structured domain described in Table 1. If the locations refer to a
speci�c, if unknown, address, then this relation says that John lives somewhere
in Brazil, and almost certainly either in the northern hemisphere or the southern
hemisphere, but not both. This introduces a degree of uncertainty into whether or
not conditions on these elements hold or not. Given any condition C on attribute



Table 2. Relations R, S and Q using a lattice-structured domain

Relation R Relation S Relation Q

name location name location location language

John Brazil Susan South America Canada English

Susan Chile Peter Brazil Canada French

Peter southern hemisphere USA English

Betty Nicaragua Mexico Spanish

Nicaragua Spanish

Brazil Portugese

Chile Spanish

A de�ned on lattice-structured domain D, that condition can be categorised as
known to be true, uncertain (may or may not be true), or known to be false. For
example, the condition location = 'southern hemisphere' is known true for
Susan, known false for Betty, and uncertain for John. These categories create
three mutually exclusive sets T , U and F for the elements e 2 D, where T =
fejC trueg, U = fejC uncertaing and F = fejC falseg. In addition to these
sets, we can de�ne another three (useful) groupings by combining them in pairs.
This leads to the de�nition of the six inductive conditions shown in Table 3.
The symbol ? indicates that condition C may be true (i.e. true or uncertain),
and the symbol ! that the value of C is not uncertain (i.e. true or false). The

Table 3. Inductive conditions

condition meaning included elements

C C true T

:C C false F

:(!C) C uncertain U

?C C true or uncertain T [ U

:(?C) C uncertain or false U [ F

!C C true or false T [ F

inductive conditions degenerate as expected where no uncertainty exists. In the
case of unstructured domains U = �, so ?C and :(?C) are equivalent to C and
:C respectively, and !C is always true and :(!C) always false.

As well as the uncertainty introduced in relation R by saying that John lives
somewhere in Brazil, there is another type of uncertainty in saying that Peter



lives in the southern hemisphere. This means that Peter might live in either
Chile or Brazil, but not both. One type of uncertainty is introduced because of
the use of an element in the tuple at a higher level than that in the query (type
1 uncertainty), and another because of the use of an element in the query that is
a member of more than one higher level concept (type 2 uncertainty { this does
not arise if structures are limited to trees).

Consider the conditions C1 (location = 'Brazil') and C2 (location =

'northern hemisphere'), where C1 leads to type 1 uncertainty, and C2 to type
2. Table 4 shows the names in sets T , U and F for each condition. Only T

Table 4. Sets T , U and F for conditions C1 and C2

C1 C2

T fJohng fBettyg

U fPeterg fJohng

F fSusan, Bettyg fSusan, Peterg

and U need to be calculated by examining the lattice de�ned by relation DS,
since F = 
 � T � U . Once T and U have been determined, the type of uncer-
tainty is no longer of importance. Consider a simple condition of the type a = e,
where a is an attribute de�ned on a structured domain, and e is an element
from that domain. For domains with type 2 uncertainty, T = ftjt 2 R ^ (a =
e _ a must be a descendent of eg and U = ftjt 2 R ^ (a is an ancestor of e _
a may be a descendent of e)g. For domains with only type 1 uncertainty, if there
are no lower level concepts with multiple parents, the algorithm needed to con-
struct sets T and U can be simpli�ed. Structurally, the di�erence between type
1 and type 2 uncertainty for domain value e is whether any descendents of the
node e in the lattice have a path to the top of the lattice which does not go
through e.

In the case of compound conditions such as Ca ^ Cb or Ca _ Cb, the set to
which a given tuple belongs can be determined by considering the 3-valued logic
truth tables shown in Table 5. Here t, u and f represent the truth values true,
uncertain and false respectively.

4 Determining Truth Values for Inductive Queries

In order to construct sets T and U , we need to be able to identify higher and
lower level concepts for elements from a structured domain. Let e be an elemental
value from a lattice-structured domain D whose structure is de�ned by domain
concept relation DS. H(e) is the set of higher-level concepts of e, i.e. H(e) =
fcjc 2 D ^ c is an ancestor of eg, and L(e) is the set of lower-level concepts of



Table 5. 3-valued logic truth tables

C :C Ca _Cb t u f Ca ^Cb t u f

t f t t t t t t u f

u u u t u u u u u f

f t f t u f f f f f

e, i.e. L(e) = fcjc 2 D ^ c is a descendent of eg. If e is a base concept, then
L(e) = �, and if e is a top-level concept, then H(e) = �. If D is an unstructured
domain, then L(e) = H(e) = � for all e. For our example, H(South America) =
fAmericasg, L(South America) = fBrazil, Chileg,H(Brazil) = fSouth America,
Americas, southern hemisphere, northern hemisphereg and L(Brazil) = �.

Another useful hierarchical function A(e1; e2) is de�ned as the set of all
elements from D which are ancestors of e2 which are not related to e1. If
fe2je2 2 L(e1) ^ A(e1; e2) 6= �g is not empty, then type 2 uncertainty exists
for a query using e1. The function ancestor is used to formally de�ne the set-
valued functions H, L and A, and thus determine the sets T and U for a given
domain element value e. These functions are de�ned below.

ancestor(x; y) = (x; y) 2 DS _ ((x; z) 2 DS ^ ancestor(z; y))

H(x) = fyj ancestor(x; y)g

L(x) = fyj ancestor(y; x)g

A(x; y) = fzjz 2 H(y) ^ z 62 fxg [H(x) [ L(x)g

T = fxjx = e _ (x 2 L(e) ^A(x; e) = �)g

U = fxjx 2 H(e) _ (x 2 L(e) ^A(x; e) 6= �)g

Evaluating functions H, L and A involves the recursive function ancestor. De-
termining the sets T and U involves evaluating A(e; x) for all x 2 L(e). To
determine T , U and F for a query with type 2 uncertainty involving domain
element e:

1. Evaluate H(e) and L(e).
2. Evaluate A(e; x)8x 2 L(e).

3. Calculate T = feg [ fxjx 2 L(x) ^A(e; x) = �g.
4. Calculate U = H(e) [ fxjx 2 L(x) ^A(e; x) 6= �g.
5. Calculate F = 
 � T � U .

For a domain with only type 1 uncertainty, A(e; x) = � for all x 2 L(e), which
eliminates step 2 and simpli�es steps 3 and 4. Algorithms whose complexity can
be described in terms of the number of elements n in the domain have been
developed for functions H(e), L(e) and A(e; x) [8]. These algorithms are all
polynomial { O(n4).



5 Relational Algebra Operations for Lattice-structured
Domains

Introducing lattice-structured domains necessitates some extensions to the re-
lational languages underpinning the relational model. Consider the �ve basic
operations of the relational algebra: � (selection), � (projection), � (cartesian
product), [ (set union) and � (set di�erence). Working with these domains will
not a�ect � and �, but will a�ect �, [ and �. All other operations, such as \
(set intersection) and ./ (join), can be constructed from the basic operations.

For simplicity, the relations in this section all contain exactly one attribute
de�ned on a lattice-structured domain. The examples use the relations R and
S (primary key name), and relation Q (primary key (location, language)

de�ned in Table 2. As is usual for SQL, results of queries are allowed to include
duplicate tuples. The changes required for � are due to the e�ect of structured
domains on conditions as previously described. This can be indicated in the
algebra by using the inductive condition notation developed in the previous
section. For example, �?C2

(R) would return all tuples from R where C2 is true
or uncertain, i.e. f(Betty, Nicaragua), (John, Brazil)g.

The various join operations where join-columns are de�ned on lattice-struct-
ured domains can be expressed using inductive conditions in a similar way. Con-
sider relation Q which shows the o�cial languages for all six countries. The
attribute location is de�ned on a 
at subset of domain D which has been re-
stricted to countries. R ./?(R:location =Q:location) Q returns all tuples from R�Q

where the location values are or may be equal, whereas R ./R:location =Q:location Q

only includes the tuples where the location values are known to be equal. Table 6
shows some joins involving relations Q and R.

For the set operations, uncertainty can be introduced when relations with
di�erent levels of re�nement for the same information are combined. Without
further knowledge, it is reasonable to choose the information with the �nest
granularity when combining these relations, but sometimes this involves a loss
of information. Susan has di�erent locations in each relation, Chile and South
America, only one of which can appear in R[S and R\S. Chile is the most spe-
ci�c, so it is chosen. Peter on the other hand has the locations southern hemisphere
and Brazil. Choosing either location causes the loss of some information, either
the hemisphere, or the country. Without allowing attributes to take on multiple
values, the best we can do is to make a decision about which information is the
most useful. In cases such as this where one of the values is a descendent of the
other in the lattice, the best method is likely to be to choose the descendent, and
include or exclude the tuple depending on the set operation being performed.
(Where neither of two di�erent values representing the same information is the
descendent of the other, they represent inconsistent information.) Table 7 shows
R [ S, R \ S and R� S.



Table 6. Joins involving relations R and Q

R ./R:location =Q:location Q

name R.location Q.location language

Betty Nicaragua Nicaragua Spanish

John Brazil Brazil Portugese

Susan Chile Chile Spanish

R ./?(R:location =Q:location) Q

name R.location Q.location language

Betty Nicaragua Nicaragua Spanish

John Brazil Brazil Portugese

Peter southern hemisphere Brazil Portugese

Peter southern hemisphere Chile Spanish

Susan Chile Chile Spanish

R ./?(R:location ='Brazil') Q

name R.location Q.location language

John Brazil Brazil Portugese

Peter southern hemisphere Brazil Portugese

R ./?(R:location ='northern hemisphere') Q

name R.location Q.location language

Betty Nicaragua Nicaragua Spanish
John Brazil Brazil Portugese

6 Query Language Implications

Query languages such as SQL include statements for data de�nition and data
update as well as querying the database. In this section describe an extension
to the WHERE clause for inductive queries. See [8] for suggestions on de�ning
lattice-structured domains and how the syntax of multi-table queries using the
JOIN keyword might be adapted.

The WHERE clause needs to be adapted to incorporate inductive queries
using the ? and ! symbols. The keyword MAYBE can be used as a condition
modi�er to represent ? with no confusion, since ? and : are associative (i.e.
:(?C) = ?(:C)). Since !C = !(:C) care needs to be taken with choosing a key-
word for !. TRUEORFALSE, although clumsy, has the advantage that the equiv-
alence between TRUEORFALSE C and TRUEORFALSE NOT C is clear, and
NOT TRUEORFALSE C can be used for :(!C). UNCERTAIN C could be used
instead of NOT TRUEORFALSE C, but this might lead to semantic confusion



Table 7. Results of set operations using R and S

R [ S R \ S R � S

name location name location name location

John Brazil Susan Chile John Brazil

Susan Chile Peter Brazil Betty Nicaragua

Peter Brazil

Betty Nicaragua

between UNCERTAIN and MAYBE. Using just MAYBE and TRUEORFALSE
leads to WHERE clauses of the type shown below:

WHERE NOT TRUEORFALSE location = 'northern hemisphere'

WHERE MAYBE location = 'northern hemisphere'

WHERE MAYBE NOT location = 'northern hemisphere'

WHERE TRUEORFALSE location = 'northern hemisphere'

7 Conclusions and Further Research

Hierarchical domains are useful whenever there is a need to combine data from
relations with di�erent schemas, whether that di�erence arises from schema evo-
lution over time in the same database or from relations from di�erent sources.
One important area of application is likely to be queries of web databases. Con-
cept hierarchies used for web-based queries are discussed by Davulcu et al in
[3].

Incomplete and imprecise information of the type that can be represented in
concept and interval lattices can arise in many ways, such as by summarising
or sampling data, from space restrictions imposed by mobile equipment or main
memory databases, by needing to infer values for points not explicitly stored,
and performance considerations in multimedia databases.

Allowing domain hierarchies to be lattice-structured rather than simple trees
does not add much complexity to hierarchical domains: their de�nition and rep-
resentation in the database is no more complex, and the additional (type 2)
uncertainty introduced does not increase the complexity of the algorithm for
determining the results of inductive queries.

Further work needs to be done to investigate the use of the lattices of intervals
and attribute sets discussed in Section 2 of this paper, and how best to represent
and reason with inconsistent information in databases. It is also important to test
the behaviour of the hierarchical algorithms on realistic examples, and improve
them where necessary.
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