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Abstract

Today’s theories of computing and machine learning developed within a nineteenth-century
mechanistic mindset.  Although digital computers would be impossible without quantum physics,
their physical and logical architecture is based on the view of a computer as an automaton
executing pre-programmed sequences of operations exactly as instructed. Recent innovations in
representations and algorithms suggest that a shift in viewpoint may be occurring.  In the newly
emerging view, a computer program executes a stochastic process that transforms inputs and
internal state into a sequence of trial solutions, as it evolves toward an improved world model and
better task performance.  A full realization of this vision requires a new logic for computing that
incorporates learning from experience as an intrinsic part of the logic, and that permits full
exploitation of the quantum nature of the physical world.  Knowledge representation languages
based on graphical probability and decision models have now attained sufficient expressive power
to support general computing applications.  At the same time, research is progressing rapidly on
hardware and software architectures for quantum computing. It is hypothesized that a sufficiently
expressive probabilistic logic executing on quantum hardware could perform Bayesian learning
and decision-theoretic reasoning with efficiency far surpassing that of classical computers.
Moreover, a computer architecture based on graphical models can support multi-level
representations spanning the sub-symbolic through the cognitive levels, opening the possibility for
human-computer interfaces unprecedented in their adaptability and flexibility.

Keywords: Bayesian networks, decision theory, graphical models, quantum computing, quantum
measurement

1 Introduction
The challenge of Thagard (1988) on which this special issue is based was presaged by Newell

and Simon’s 1976 paper urging an empirically grounded approach to theories of computation,
cognition and intelligence. Intelligence, Newell and Simon argue, is a property possessed by
physical agents operating in a physical environment, whose cognition is performed by a physical
brain and nervous system.  Therefore, the means by which an agent identifies, evaluates, selects
among, and implements policies to control its motor system is constrained by the laws of physics.
A scientifically valid theory of intelligent behavior must be formulated in a manner that supports
assessment of its degree of empirical confirmation.  In particular, theories of intelligence must be
tested by implementing them in physical devices that can carry out the required computations and
actions rapidly and accurately enough to allow the agent to operate successfully in its
environment.  Thus, Newell and Simon regard intelligence as a property possessed to greater or
lesser degree by a physical symbol system, which they define as:

"...a set of entities, called symbols, which are physical patterns that can occur as
components of another type of entity called an expression (or symbol structure).
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[Symbols in a structure] are related in some physical way…  A physical symbol
system … produces through time an evolving collection of symbol structures. Such a
system exists in a world of objects wider than just these symbolic expressions
themselves."

Two essential capabilities a physical symbol system must possess are designation and
interpretation.  Symbol structures can designate objects in the world external to the system, thus
allowing the system to affect and/or be affected by the designated object.  Symbol structures
designating a sequence of actions can be interpreted, thus allowing the system either to act in the
world or to issue instructions to control the actions of an external system. Given this definition,
Newell and Simon articulated the physical symbol system hypothesis:

“A physical symbol system has the necessary and sufficient means for intelligent action.”

They offered the physical symbol system hypothesis as a rigorously formulated, empirically
falsifiable scientific hypothesis about the nature of intelligence. They challenged the community
to develop the hypothesis further and subject it to empirical test.  The intervening years have seen
a substantial literature on the physical symbol system hypothesis, the correctness of which is
viewed by many as a fundamental tenet of artificial intelligence.  Considerable progress has been
achieved in both theory and applications of computational intelligence.  Attempts to build devices
that behave intelligently have resulted in partial success, in vastly improved understanding of the
nature of the challenge, and in a better appreciation of what we do and do not understand about
intelligence and its role in Nature.  The resulting cross-fertilization between artificial intelligence,
biology and cognitive psychology has led to advances in all these disciplines.

The search for empirically grounded computational theories of intelligence raises the
possibility of a new and far-reaching integration of our theories of the physical and the
informational aspects of Nature.  Prior to the twentieth century, science focused on constructing
and evaluating theories of a physical world viewed as external to the theorizing agent.  The
relationship of the domain under investigation to the mind that formulates and tests scientific
theories was regarded as outside the province of science.  This separation has been rendered
untenable by the advent of quantum theory, the most stunningly successful scientific theory
humanity has yet achieved.  In a radical departure from classical physics, an observer in quantum
theory enters into the dynamics of a physical system in a fundamental way. According to the
orthodox interpretation of the theory, the observable behavior of a quantum system depends on
whether an agent decides to observe it, and if so, on when it is observed and what features the
agent chooses to observe.  Quantum theory also departs from the strict determinism of classical
physics.  Although statistics is important in classical thermodynamics, it is regarded as an
approximation due to imperfect knowledge of the details of systems whose underlying dynamics
are deterministic. According to quantum theory, uncertainty is a fundamental:  there are aspects
of the physical world that are intrinsically unpredictable. Moreover, the very act of acquiring
knowledge about a system alters the system under observation in ways that can be predicted only
imperfectly. Despite considerable effort, no attempt to remove uncertainty and observer
dependence from quantum theory has been fully successful. This state of affairs suggests strongly
that a unified science of cognition and information processing must include theories not just of
how an agent represents and reasons about the world it inhabits, but also of the physical processes
by which the agent acquires information to create and revise its representations, and of the
relationship between the physical and cognitive aspects of intelligent systems.  Furthermore, it is
not inconceivable that a better understanding of the processes by which cognitive agents acquire
and process information will lead to a better understanding of some of the more puzzling aspects
of quantum theory.
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The ability to form, manipulate and evolve representations is vital to intelligence. An
intelligent agent maps percepts from the environment into action policies that are likely to
achieve its goals. The transformation from percepts to actions is mediated by an internal
representation of task and environment that enables the agent to evaluate different candidate
policies and select one for execution. Learning is a core capability that allows an agent to
improve its performance over time, to modify its policies to apply to new kinds of situations, and
to adapt to changing environments.  Learning, representation and action are intimately connected,
in that the purpose of learning is to produce a representation that is effective for the target class of
tasks.  The development of computationally feasible architectures for knowledge representation,
learning and action selection depends in an essential way on the physical constraints governing
the interface between the physical world and agents that acquire information about and act upon
the world.

Recent years have seen great strides in theory and methods for representing knowledge in
computational form, as well as for using observations to learn improved representations. The vast
majority of research in knowledge representation and machine learning takes as given the view of
computation as algorithms running on digital computers. There are several major problems with
this assumption. First, a fundamental aspect of intelligence as we know it is the ability to learn
about the world by deliberately manipulating the environment and observing the consequences, as
well as by observing and communicating with other agents.  All operations executed by an
algorithm are programmed by its designer.  There is no provision in classical computing theory
for how a system can make its own choices that involve deliberate manipulation of its
environment.  Second, the correspondence of symbol structures in a classical computer to what
the symbols represent in the world is external to the theory, added in by the designer of a
computer program. Classical computing theory provides no account of how representational
content, or “aboutness,” arises within the agent itself.  Third, classical computing theory is
inherently deterministic, with no principled means for accruing evidence and drawing plausible
conclusions in an uncertain world.  Finally, classical computing theory is sequential and single-
agent, while an intelligent agent must perceive and act in parallel with other agents inhabiting its
world.

Recently, there has been a surge of interest in randomized algorithms.  Randomized
algorithms can find highly accurate solutions to some problems for which no efficient
deterministic algorithm is known (e.g., Solovay and Strassen, 1976).  Randomization steps can
permit escape from local optima (e.g., Kirkpatrick, et al., 1983) and achieve good statistical
coverage of large, high-dimensional search spaces (e.g., Gilks, et al., 1996). The right amount of
randomness can ensure that a system escapes local optima in finite time, yet still permit a
reasonable degree of predictability and control. A useful feature of many randomized algorithms
is their characterization as stochastic processes evolving toward a target stationary distribution
(e.g., Gilks, et al., 1996).  One selects a target stationary distribution that places high probability
on good solutions to the problem at hand, and attempts to identify an evolution dynamic that
yields trajectories converging as rapidly as possible to the target.  The theory of stochastic
processes provides methods for analyzing convergence rates and bounds on performance metrics.

Many of the most successful randomized algorithms have been imported from or inspired by
statistical physics.  Their theoretical basis is the principle of action minimization in physical
systems.  All physical systems evolve in time according to a trajectory that minimizes a quantity
called action, having the units of energy×time.  To exploit the action minimization analogy, one
formulates an inference or optimization problem as a fictitious physical system in which better
solutions map to lower action in the physical system. Computation then simulates an action-
minimizing trajectory perturbed by random fluctuations corresponding to thermal noise. The
rapid proliferation of general-purpose inference and optimization methods in this class suggests
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the possibility of formulating a theory of intelligent information processing and decision-making
in terms of stochastic processes modeled after physical systems.  In this view, an information
processing system is conceived not as an automaton deterministically executing steps someone
has programmed into it, but as a stochastic process that transforms inputs and internal state into a
sequence of trial solutions, and evolves over time to improved solutions.  Software engineering in
this view is the design of dynamic systems that evolve over time to solutions of better quality,
where quality is inversely related to action in the corresponding physical system. A new theory of
computing would apply the theory of stochastic processes and Bayesian statistical inference to
analyze asymptotic solution quality, the rate of improvement in solution quality over time, and
the process by which a system learns better representations and improved policies.  Such a theory
could be used to develop statistical tests for evaluating the cost of further computation against the
benefit of an improved solution.  A new axiomatic semantics of computational processes would
be based on decision theory, dynamic programming, and partially observable Markov decision
processes (e.g., Cassandra, et al, 1994).

Randomized algorithms provide a solution to the problem of determinism and escape from
local optima.  In itself, however, randomization provides no way to address the problem of
“aboutness,” nor does it provide a satisfactory account of how a physical symbol system can
make choices in pursuit of goals.  We hypothesize that the advent of quantum computing may
open up new ways of addressing these issues.

Although it is common to equate computation with algorithms running on classical
computers, interest in quantum computation (Aharanov, 1999; Deutsch, 1985; Nielson and
Chuang, 2000) is increasing rapidly.  As the relentless pursuit of miniaturization is pushing
computer hardware into the realm in which quantum effects cannot be ignored, the classical
computing model may soon encounter physical limitations on its applicability. At the same time,
indications are appearing that quantum computers may be intrinsically more powerful than Turing
machines with randomization operations. It has been demonstrated that quantum computers can
solve some important classes of problems with far less computational resources than the best
known classical algorithms (e.g., Grover, 1995; Shor, 1994). It has been hypothesized that the
advantage of quantum computation lies in the ability to perform Fourier transforms with much
greater efficiency than any known classical algorithms (Aharanov, 1999).  Although research in
quantum computing hardware is in its infancy, there has been rapid progress in the ability to
construct and control coherent multi-qbit systems.1  Progress in quantum computing hardware and
software may also spark new insights regarding some of the thorny philosophical issues
associated with quantum theory.

This paper argues that a marriage of quantum theory with Bayesian decision theory provides
a unifying account of the physical and informational aspects of physical symbol systems.  Section
2 provides an introduction to computational Bayesian decision theory and graphical decision
theoretic models. Graphical models have become increasingly popular as a language for
expressing logically sound and tractable computational theories. Section 3 describes an
interpretation for quantum theory that maps directly to Bayesian decision theory and presents a
graphical model representation of quantum evolution and quantum measurement. With no
changes to the mathematical structure of existing physics, the ontology proposed here connects

                                                       
1 In quantum mechanics and quantum computing, the term coherent refers to a system in which the elements have a
definite phase relationship to each other.  In decision theory, the term refers to an agent who follows the principle of
maximizing subjective expected utility (or minimizing subjective expected loss).  In this paper, the term is used in the
former sense. Coherence in the quantum mechanical sense is essential to the ability of quantum computers to improve
on the efficiency of classical computers.
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physical reality in a plausible way to efficacious choices by agents. Section 4 concludes with a
summary and discussion.

2 Graphical Probability and Decision Models
Intelligence requires the ability to reason and act in the presence of uncertainty. One of the

most difficult challenges in artificial intelligence has been the development of tractable and
logically sound methods for plausible reasoning and decision making in the presence of
uncertainty and incomplete information.  Although once controversial, Bayesian decision theory
is now regarded as a foundational theory for computational inference and decision making under
uncertainty, and a standard against which proposed alternative approaches should be compared
(c.f., Russell and Norvig, 2002).  Game theory, or multi-agent decision theory, is becoming
standard as a foundation for systems of multiple interacting agents (e.g., Kearns, 2002).

2.1 Bayesian Decision Theory

Bayesian decision theory is a mathematical theory of rational decision making under
uncertainty. The theory provides a sound way to combine beliefs with values to arrive at logically
consistent, value-driven decisions. It applies to situations in which an agent must choose an action
or series of actions from among a set of alternatives.  The consequence of the choice depends on
both the selected action(s) and the state of the world.  The state of the world, which may be
unknown to the agent at the time the choice is made, belongs to a set of mutually exclusive and
collectively exhaustive possible states.  The agent expresses uncertainty about the state of the
world by attaching a probability to each possible state.2  The agent expresses preferences among
consequences by assigning a numerical utility to each consequence (alternatively, the agent may
assign losses, which are negative utilities). Taken all together, the possible actions, possible
states, possible consequences, the probability function and utility (or loss) function comprise a
decision theoretic model for the agent’s decision problem.  According to the model, the agent’s
optimal choice is to select the action for which the mathematical expectation of the utility is
maximized (or for which the loss is minimized).  When the agent acquires information about the
world, probability assignments are updated according to a mathematical formula called Bayes
rule.  The revised probabilities are used for subsequent predictions and decisions.

Many arguments have been put forward both for and against the principle of maximum
expected utility as a model of rational decision making under uncertainty (e.g., Howsen and
Urbach, 1993).  A number of authors (e.g., Savage, 1972; Pratt, et al, 1965) have developed
axiomatic systems that capture intuitive notions of rational behavior, and demonstrated that the
axioms imply the optimality of subjective utility maximization.  Such optimality proofs are
invoked to argue that that rational decision making requires utility maximization.  A common
objection to axiomatic arguments is that computing optimal policies for realistically complex
decision problems is intractable.3 Great strides have been made in recent years (e.g., Pearl, 1988;
Jensen, 2001; Neapolitan, 2003; Korb and Nicholson, 2003) in tractable exact or approximate
algorithms for computational probabilistic inference and decision making. Decision theoretic
methods have found their way into numerous successful applications (e.g., Levitt, et al., 1995;
Parker and Miller, 1987).  Among pragmatists, successful applications provide a much stronger
argument in favor of Bayesian decision theory than axiomatic arguments.  It has been argued that
                                                       
2 If the set possible states is uncountably infinite, then probabilities must be specified via a probability density function.
3 Other counter-arguments question some of the standard axioms, such as those implying a simple ordering of all
options.  Relaxing the objectionable axioms has led to alternative decision theories, such as theories of interval
probabilities and utilities.  These theories are not discussed here, except to note that they typically pose even more
challenging computational issues than standard Bayesian decision theory.
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intelligence requires the functional equivalent of approximate Bayesian inference and decision
theory (e.g., Lee and Mumford, 2003).  Many heuristic methods proposed as alternatives to
decision theory can be shown to result in approximate decision theoretically optimal behavior
within their domain of applicability (e.g., Martignon and Laskey, 1999). When computational
limits are taken into account, decision theory itself would recommend an approximately optimal
heuristic strategy over an optimal solution that cannot be computed rapidly enough to be applied
in a real situation (c.f., Gigerenzer, et al, 1999).

There has been a great deal of controversy over the interpretation of the probabilities that
appear in a decision theoretic model (e.g., Howson and Urbach, 1993; Fine, 1973).  The dominant
view in artificial intelligence is subjectivism, in which probability is viewed as a measure of the
degree of belief of a rational agent about uncertain hypotheses. Subjectivists assign probabilities
to any hypotheses about which they are uncertain.  To a subjectivist, reasonable individuals may
assign different probabilities to the same outcome.  The only requirements are that beliefs must
conform to the mathematical properties of the probability calculus, and may not contradict
evidence known to the agent. Although the subjectivist view is gaining favor in statistics, until
recently the frequentist view has dominated. To a frequentist, probabilities are limiting
frequencies in long sequences of outcomes generated by intrinsically stochastic systems. Unlike
subjectivists, frequentists regard it as illegitimate to assign probabilities to anything except
chance set-ups that give rise to sequences of random events. It is meaningless to assign
probabilities to individual events in a sequence or to hypotheses with a definite but unknown
truth-value (except trivially to assign probability one if an event happens and zero if it does not).
Frequentists view probability as an objective property of a chance set-up.  If two individuals
assign different probability distributions to a chance set-up, at least one of them must be wrong.
Although frequentists criticize subjectivists for lack of objectivity, the ability to represent and
reason with subjective information is a necessary aspect of intelligent behavior.  Furthermore,
some of the most successful applications of probability theory (including thermodynamics and
classical statistical mechanics) are to problems involving incomplete knowledge about a system
whose underlying dynamic is assumed to be deterministic.  Another strength of the subjectivist
approach is its ability to handle small data sets and large numbers of parameters, a situation that
occurs frequently in the types of problems encountered in artificial intelligence and machine
learning. The theory of precise measurement (deGroot, 1970; von Winterfeldt and Edwards,
1987) identifies conditions under which subjectivist agents beginning with different prior
probabilities will converge to nearly identical posterior probabilities.  The conditions under which
these results hold are also characteristic of situations for which objective propensities might be
hypothesized.  Thus, the frequentist and subjectivist views can be reconciled on problems to
which both are willing to apply probability, but subjectivists extend the domain of applicability of
probability far beyond what frequentists consider legitimate.  Much of machine learning and data
mining falls outside the zone of applicability of frequentist statistics, and applications of
probability theory require a subjectivist interpretation.

Subjectivist Bayesian decision theory demands conformance to rationality principles that
seem empirically questionable and may be computationally unachievable.  Recently developed
game-theoretic interpretations (Dawid and Vovk, 1999; Nau and McCardle, 1991; Shafer and
Vovk, 2001) regard probability as arising out of the behavior of interacting agents who receive
rewards for correctly forecasting events.  Agents participate in an economic system in which they
can announce forecasts, make bets, and/or buy and sell contingent options whose values depend
on the outcomes of uncertain events.  If the market is sufficiently liquid and the rules of
interaction permit opportunities for arbitrage4 to be exploited, then consistent probability
                                                       
4 Arbitrage means executing a sequence of trades leading to a riskless profit.  Efficient markets evolve prices that
eliminate opportunities for arbitrage.
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forecasts can be expected to emerge from the prices at which contingent options are traded. De
Finetti (1974) showed that any agent who violates the axioms of decision theory would agree to a
sequence of transactions resulting in a sure loss.  Agents violating the rationality axioms present
arbitrage opportunities that can be exploited by other agents, and if not corrected, will lead to
bankruptcy. The agents remaining in the market will tend to behave as utility maximizers.  Prices
for contingent options in such a market measure a market consensus probability for the
contingencies on which the options depend.  There is evidence that markets for contingent
options can provide more accurate probability estimates than standard methods of eliciting
probabilities from experts (Berg, et al., 2001).  Unlike standard axiomatic decision theory,
market-based evolutionary theories do not impose rationality axioms as constraints.  Rather,
selective pressure for rationality is only one of the “forces” operating on a bounded rational
agent5 engaging in trades. Thus, game-theoretic probability is in many ways a more satisfying
foundation for probabilistic knowledge representation than either the subjectivist or frequentist
interpretations.

2.2 Graphical Probability Models

Explicitly representing and reasoning with all possible exceptions and contingencies results in
a combinatorial explosion of possibilities.  Graphical probability models have become popular
because they can tractably represent and perform inference on reasonably faithful models of the
uncertainties involved in realistically complex tasks.  In a graphical probability model, a directed
or undirected graph is used to represent qualitative information about probabilistic dependencies.
Nodes in the graph represent random variables, or sets of mutually exclusive and collectively
exhaustive hypotheses.  Edges in the graph represent direct dependencies of the probabilities of
the possible values of a random variable on the value of its neighboring random variables.
Quantitative information about the strength of dependency is represented by local probability
distributions associated with the nodes in the graph.  Whereas the resources required to store
and/or compute with a general probability distribution are exponential in the number of random
variables, knowledge representation in a graphical probability model with a bounded number of
neighbors per node scales linearly in the number of random variables. When the graph is singly
connected (i.e., there is only one path between any two random variables), inference also scales
linearly with the number of random variables.  Although there are special cases in which a singly
connected graph is adequate, realistic tasks often require more complex connectivity. Exact
inference algorithms have been developed for multiply connected graphs.  Although their worst-
case complexity is exponential, there are interesting classes of problems for which exact methods
are tractable.  In the general case, approximate inference is required.  A number of general-
purpose methods have been developed for approximating Bayesian inference in multiply
connected dependency graphs.

Figure 1 shows a directed graphical model, called a Bayesian network, for a notional problem
of reasoning under uncertainty.  This model is highly oversimplified, but suffices to illustrate the
essential features of graphical probability models.  A model such as this might be used by an
agent (the reasoning agent) to reason about the behavior of a second agent (the behaving agent).
This model is a static snapshot. It will be extended later to a model that represents sequences of

                                                       
5 Fienberg and deGroot (1982) showed that proper scoring rules (rules that reward correct probability assessments) can
be decomposed into components measuring coherence (conformance to the laws of probability), calibration (fit to
empirical frequencies), and refinement (the ability to make fine distinctions).  While it is true that an incoherent agent
can always improve its score by finding and eliminating inconsistencies, it may be the case that the potential for
improvement by improving calibration or refinement is far greater.  When resource costs are taken into account and the
goal is global task performance rather than accurate probability forecasts, it may be optimal to sacrifice strict coherence
for better performance.  See also the discussions of rationality in Russell and Norvig (2002).
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actions carried out over time. According to the model, the probability that the behaving agent will
engage in an activity depends on its goal, which in turn depends probabilistically on what type of
agent it is.  Different activities give rise (probabilistically) to characteristic spatial configurations
of the physical elements of the behaving agent (e.g., an outstretched arm would provide evidence
that the agent was picking up an object), and are likely to occur at characteristic locations (e.g.,
eating would be likely to occur in a kitchen or dining room; driving would tend to occur on a
road).  Evidence may be acquired about location, configuration, activity and type.  The agent’s
goal is unobservable, but inferences can be drawn about the goal from evidence about variables
related to the goal.  Evidence about location and configuration are derived from sensors directly
observing the behaving agent.  Raw sensor inputs must be transformed into values for the
evidence random variables (e.g., intensities of pixels on an image are transformed into a measure
of how closely the pictured agent’s arm resembles the typical configuration for an agent raising
its arm).  Although not pictured in the figure, the relationship between the evidence random
variables and the raw pixel data is also probabilistic, and can itself be represented in the language
of graphical models (e.g., Levitt and Binford, 2003; Grenander, 1993). Thus, graphical models
provide a consistent, theoretically justified theory of knowledge representation and evidential
reasoning that spans the subsymbolic through the cognitive levels.

The example of Figure 1 can be extended to a decision graph (also called an influence
diagram) as shown in Figure 2.  Two new types of node have been introduced:  decision nodes,
represented as rectangles, and utility nodes, represented as hexagons.  Decision nodes represent
choices open to the reasoning agent.  The model of Figure 2 represents a decision of whether the
reasoning agent should intervene to prevent an undesirable action by the behaving agent (e.g., in a
building security application, the reasoning agent might intervene to prevent theft or terrorist
acts).  The utility nodes measure how well the agent’s objectives are satisfied.  In this example,
the agent’s utility function depends on the cost of intervening and the damage if the undesirable
action succeeds. The arcs entering a decision node represent information available to the
reasoning agent at the time the decision is made.  In this example, the reasoning agent knows the
reported location and configuration, but not the reported type or activity. The reasoning agent can
choose as its policy any function of the information available at decision time.  The optimal
policy according to the model maximizes the sum of the mathematical expectations of the utility
nodes (or minimizes the sum of expected losses) given the available information.  In this
example, a rational agent would choose a function of the observed location and observed
configuration that minimizes the total expected costs from intervention and/or damage.

A natural question to ask about Figure 2 is why, if a decision graph represents a mathematical
model for value-driven decision making, there is no arc from the utility nodes into the decision
node.  A naïve reading of the graph might give the impression that the agent’s choice of whether
to intervene is not affected by the intervention and damage costs. To understand why this is not
the case, it is necessary to examine the semantics of the diagram more closely. The diagram and
corresponding numerical information specify a mathematical model of task-relevant aspects of
the world viewed from the reasoning agent’s perspective. The arcs represent three kinds of
influences. Arcs into world state nodes represent deterministic or stochastic relationships. For
cause and effect relationships, the convention is to draw the arc from cause to effect; for
correlations, the arc can go in either direction. Arcs from world state nodes into action nodes
reflect information available to the agent at the time of choice.  Arcs into utility nodes represent
mappings from situations in the world to degrees of satisfaction the agent experiences on the
corresponding dimensions of value. Arcs may not exit utility nodes. The agent’s experience of
satisfaction occurs as a result of the choice, and at a later time than the agent’s action.   Thus, the
actual experienced satisfaction can neither cause the agent’s action, nor be available as
information on which the agent can base the decision.
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The effect of values on
decisions is brought about by
s o l v i n g  the decision graph.
Conceptually, solving the diagram
proceeds in two steps.  The first
step is to compute the
mathematical expectation of the
total  cost  (damage plus
intervention) for each possible
intervention action, given each of
the possible information states of
the reasoning agent at the moment
of choice.  The expectation is a
function mapping values of
ObservedLocation, ObservedCon-

figuration, and Intervene? to real numbers representing the total expected cost if the reasoning
agent observes the given location and configuration and takes the indicated action.  The second
step in solving the graph is to select an optimal decision policy that maps information states to
actions.  The optimal policy maps an information state (value of ObservedLocation and
ObservedConfiguration to the action for which the expected cost is lowest. After the diagram has
been solved, the optimal policy is stored with the Intervene? node.  The agent then receives
observations on location and configuration, looks up the optimal action corresponding to these
observations, and executes that action.

The graph of Figure 1 is simple and easily solved.  Decision graphs for realistically complex
problems can easily become intractable.  There is an extensive and rapidly growing literature on
exploiting independence relationships among random variables and decomposability of value
functions to perform efficient computation of optimal or approximately optimal decision policies
(e.g, Jensen, 2001; Neapolitan, 2003; Boutilier, et al., 1999).

The model of Figure 2 was constructed from the point of view of the reasoning agent. To the
reasoning agent, the behaving agent’s goal and activity are represented as uncertain world state

Goal Activity

Location Configuration

Type

ObservedLocation ObservedConfiguration

ReportedActivity

ReportedType

Figure 1:  Bayesian Network
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Location Configuration

Type

LocationEvidence ConfigurationEvidence

ActivityEvidence

TypeEvidence

Damage

Intervene?

InterventionCost

DamageCost

Figure 2:  Decision Graph
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random variables, whereas the reasoning agent’s intervention decision and costs are represented
as decision and utility nodes, respectively.  If the model were being constructed from the point of
view of the behaving agent, the behaving agent’s goal would be represented as a utility node, the
behaving agent’s activity would be represented as a decision node, and the reasoning agent’s
intervention act (if any) and the damage and intervention costs would be represented as uncertain
world state nodes.  From the point of view of an external agent observing both the reasoning and
behaving agents, all nodes in Figure 2 would be uncertain world state nodes.  Formulating and
solving a model of another agent’s decision problem can be a useful aid to predicting the other
agent’s behavior, because the agent can be expected to select actions that serve his or her
objectives given the information he or she has available, taking into account cognitive limitations.

Standard Bayesian networks and decision graphs are limited to problems with a fixed number
of uncertain hypotheses in which all the relevant variables and relationships can be specified in
advance of problem solving.  This restriction is inadequate for complex real-world problems
involving an unspecified number of objects of different types interacting in varied ways. A
rapidly growing research area is the development of extensions to the language of graphical
models that allow a graph to contain repeated sub-structures representing instances of classes of
similar hypotheses.  For example, all photographs of the same subject from the same angle under
the same lighting conditions using the same type of camera produce the same probability
distribution for image pixels. If a decision graph were being constructed for a problem involving
more than one behaving agent, being observed under similar viewing conditions, it would include
multiple copies of the Configuration → ObservedConfiguration portion of Figure 2, one for each
observation event.

Figure 3 shows an extension of the decision model of Figure 2 to a multi-entity decision
graph (Laskey, 2003; Laskey, et al., 2001).  A multi-entity decision graph (MEDG, pronounced
“medge”) consists of a collection of partially specified graphical models, called MEDG
fragments, that collectively specify a decision model involving a variable, possibly uncertain, and
possibly unbounded number of interacting entities.  The nodes in a multi-entity decision graph
have arguments referring to entities, thus allowing multiple copies to refer to different entities.
For example, different instances Activity(G1,T1) and Activity(G2,T2) of the random variable
Activity(g,t) represent the activities of two different behaving agents G1 and G2 at two different
times, T1 and T2. Figure 2 illustrates how multi-entity decision graphs can be used to represent
composite systems evolving in time.  The same basic structure of the example of Figure 1 is
retained, but in this case the model is built to reason about groups of vehicles engaging in a
common activity, such as driving down the road together or converging toward a rendezvous
point.  MEDG fragments may contain resident random variables, whose distributions are defined
in the fragment, input and context random variables that condition the distributions of resident
random variables, and decision and utility nodes representing choices open to a decision maker
and the objectives used to guide the choice.

The MEDG represented in Figure 3 contains a random variable referring to the composition
of a group, as well as random variables that relate the type and location of a vehicle to the type
and location of the group of which it is a member.  These random variables can be instantiated for
any number of vehicles and groups.  The model also specifies probabilistic rules by which
activities and locations evolve in time, including how these random variables depend on random
variables at previous times.  Note that the parents of the node Outcome(t) refer to an argument g
that is not an argument to Outcome(t). The parents of Outcome(t) consist of all copies of
Intervene(g,t) and Activity(g,t) that match on the argument t.  The node Outcome(t) thus has a
variable and possibly uncertain number of parents.  An influence combination rule (Laskey and
Mahoney, 1997) specifies a function mapping the set of parents of Outcome(t) to a probability
distribution.  For example, in a counterterrorist application, the activities might include
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preparation and detonation of a bomb, and the outcome might indicate whether a bomb detonated
by any of the groups under observation explodes at a given time.   The influence combination
function would map the activities of all groups under consideration and all intervention acts
undertaken to a probability distribution on whether a bomb detonates.

Multi-entity decision graphs represent one of several emerging formal frameworks for
extending graphical models to permit expression of repeated sub-structures. Other languages
include pattern theory (Grenander, 1995), hidden Markov models (Elliott, et al., 1995), the plates
language implemented in BUGS (Gilks, et al., 1994; Buntine, 1994; Spiegelhalter, et all, 1996),
object-oriented Bayesian networks (Koller and Pfeffer, 1997; Bangsø and Wuillemin, 2001;
Langseth and Nielsen, 2003), and probabilistic relational models (Getoor, et al., 2000, 2001;
Pfeffer, 2001). Decision graphs can also be extended to multi-agent problems, in which each
agent has its own utility and decision nodes, and each agent’s optimal policy is to maximize the
expectation of its utility nodes conditional on its available information (e.g., Kearns, 2002).
Attractive features of graphical models as a language for representing knowledge are their
principled treatment of uncertainty, their provision for specifying knowledge as modular
components with well-defined interfaces, and the existence of general-purpose exact and
approximate inference and learning algorithms.

3 Quantum Theory and Bayesian Decision Theory
Classical mechanics is a dynamically complete theory with no role for conscious thought and

efficacious deliberate action.  Once initial conditions are specified, a classical physical system
follows a definite trajectory that, at least in principle, can be predicted with absolute precision
indefinitely into the future.  Of course, in practice this predictability is limited by approximation
and measurement error in the specification of both the initial conditions and the parameters of the
dynamical equations. Nevertheless, in principle, the evolution of a classical system is perfectly
determined by initial conditions.

Early in the 20th century it was discovered that the classical picture of a world of perfectly
deterministic physical systems evolving according to purely local influences was incorrect.  The
classical picture was replaced by the explicitly probabilistic quantum theory. The degree of
accord between the theoretical predictions of quantum theory and empirical measurements
performed on quantum systems is stunning.  Nevertheless, many physicists remain uncomfortable
with the theory.  There are three major reasons for this discomfort.  First, quantum theory makes
only probabilistic predictions about the trajectory of a system. Many scientists are uncomfortable
with a picture of Nature that has an intrinsically stochastic component.  Second, the theory is
nonlocal.  That is, there are correlations between spacelike separated events that cannot be
explained by a hidden variable theory with strictly local influences.  Third, the theory contains a
major explanatory gap known as the “measurement problem,” in which deterministic evolution of
the wave function is interrupted by “reduction events” for which current physics has no theory.
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Figure 3:  Multi-Entity Decision Graph
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3.1 The Measurement Problem

The state of a quantum system at any time is described by a mathematical structure called the
quantum state. According to quantum theory, the quantum state evolves in time according to
three distinct processes (Stapp, 1999; Penrose, 1994; Shankar, 1994).  The first process,
Schrödinger evolution, concerns how the state evolves in the absence of interactions with its
environment.  The second and third processes concern an abrupt change called state reduction.
The second process specifies a time at which reduction occurs and the set of possibilities for the
quantum state after reduction. The third process selects one specific possibility to be actualized.
Quantum theory describes the first and third processes to a high degree of accuracy. Between
reduction events, Schrödinger evolution specifies that the system state evolves deterministically
according to a differential equation called the Schrödinger equation. Although the state after
reduction cannot be predicted with certainty, once the time of reduction and the set of possibilities
have been specified, quantum theory provides a precise rule for calculating the probabilities of
the different possibilities. As currently formulated, however, quantum theory has nothing at all to
say about the manner in which the time of the next reduction and the set of possible outcomes is
specified. Bohm (1951) states that although the quantum state has been called a “wave of
probability,” it is more accurately described as a “wave from which many related probabilities
can be calculated.”  Different reduction operators applied at different times give rise to different
probability distributions for outcomes, but they all can be calculated from the evolving quantum
state.

State reduction is thought to be associated with the interaction of a quantum system with its
environment. The orthodox interpretation of quantum theory associates reductions with
measurements performed on a system by scientists.  Measurement involves an interaction of a
measuring apparatus with the system, in which some feature of the microscopic quantum system
is “amplified” to produce a macroscopically detectable change in the measurement device.  The
behavior of a system after measurement depends on the measurement outcome, and is different
from what its behavior would have been if no measurement had occurred.

Although there exist experimental procedures, described in classical language, for effecting
measurements on various types of physical systems, there are no fundamental physical laws
governing how the agent, considered as a physical system, makes the choice of which
measurement, if any, to perform, and the time at which this action occurs. Although there have
been attempts to explain measurement as nothing but Schrödinger evolution on a larger system
comprising both the observing agent and the observed system, none has been fully successful.
Additional rules are required to reproduce the quantitative predictions of quantum theory. In the
standard interpretation, these rules correspond to initiation of reduction events by agents and
selection of outcomes by Nature. Our capacity to perform measurements is taken as a given
empirical and phenomenological fact.  The lack of fundamental physical theory for the timing and
possible outcomes of state reduction is called the “measurement problem.”  The very means by
which we are able to learn about the behavior of quantum systems, and thus construct a theory to
predict a system’s behavior between measurements and the probabilities of different
measurement outcomes, is itself unexplained by quantum theory.

Thus, the dynamic behavior of a quantum system depends in macroscopically observable
ways on a process for which physics has no theory.  In particular, an observer can choose which
of several distinct macroscopic effects to actualize by choosing which aspects of the system to
observe.  It is important to note that although quantum theory includes statistical laws governing
Nature’s choice of outcome when a measurement operator is applied, the known physical laws do
not fix, even statistically, which measurement operators are applied under what conditions.  Thus,
the theory contains a contingent element. It specifies behavior of the system given the actions an



K B LASKEY

14

agent external to the theory takes to observe the system. This dependence of the predictions of the
theory on an aspect of reality for which there is no theory bothers some physicists. However,
agents with brains and bodies built from the material particles studied by atomic physics have a
demonstrated capacity to perform plausible reasoning. Moreover, there are aspects of the physical
architecture of the brain that make it likely that quantum mechanical effects are important in its
dynamical behavior (Schwartz, et al, 2004).   Thus, a cognitive agents should be modeled not as
a classical computer, but as a quantum Bayesian decision maker interacting with an environment
that needs to be represented, reasoned about, and acted upon.

3.2 Ontologies for Quantum Theory

The orthodox interpretation for quantum theory is associated with Bohr (1934) and is called
the Copenhagen interpretation.  According to the Copenhagen interpretation, quantum theory
replaces a classical theory that refers to an external material universe with a new theory that refers
only to the experience of observers and not to the external universe itself.  Conditional on a
choice of experimental set-up that defines the macroscopically detectable possibilities available to
the system, quantum theory predicts the probability that each of these classically describable
possibilities will occur. Proponents of the Copenhagen interpretation make no ontological
commitments regarding the entities that give rise to the experienced sequence of observations.  It
is sometimes asserted that it is meaningless to speak of the "actual state" of a quantum system.
The quantum state is asserted to be nothing but a mathematical construct for organizing the
experiences of observers and enabling the computation of accurate predictions of the outcomes of
experiments.  Thus, according to the orthodox interpretation, quantum theory represents a set of
computational rules by which scientists can make predictions about which classically describable
outcomes will occur as a result of the classically describable experiments they conduct.  The
quantum state is a mathematical construct used to make predictions about observables, but being
inaccessible to direct observation, is not to be regarded as corresponding to any definite
phenomenon in Nature.

Although the Copenhagen interpretation is the standard view, most physicists prefer, at least
informally, to operate with an ontology that connects the terms in the theory to a physical reality
that is reflected in the experience of observers.  One popular ontology, known as many worlds,
asserts that the system actually realizes all possibilities open to it, but each occurs in a separate
reality inaccessible to the other realities.  There is a copy of each of us in all the different realities,
but only the copy in this particular reality has the experiences associated with this reality. The
many worlds interpretation is common in the field of quantum computing. Another interpretation
is the pilot wave ontology (Bohm and Hiley, 1993), a nonlocal deterministic theory that includes
both classical-like particles and a wave function that guides their evolution. Yet another
interpretation is due to Penrose (e.g., 1994), who hypothesizes that wave function reduction
represents the singling out of an actual event to occur by a mechanism hypothesized to be related
both to consciousness and gravitation.

Stapp (1999) and McFadden (2000) suggest an ontology closely related to the measurement
theory first proposed by von Neumann (1932) and further elucidated by Wigner (1967). Their
interpretation is similar to Penrose’s in that it takes a realist view of state vector reduction, but
does not specifically implicate gravity as a causal factor in reductions. The universe is
hypothesized to include systems that can cause state reductions.  These reducing agents can
choose, within as yet to be determined physical limits, when the next reduction will occur and
what are the possible outcomes of the reduction.  A reducing agent’s choice may depend, in an as
yet to be determined way, on the quantum state of the reducing agent. Both Stapp and McFadden
hypothesize that human beings are one type of reducing agent. Thus, complementary explanatory
gaps in physics and psychology are filled by postulating an interaction between the informational
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structure represented by the quantum state and the informational structure of conscious
experience.  Stapp (1999) argues that such an interaction allows consciousness to become
efficacious without disturbing any of the precepts or rules of quantum theory.  McFadden
suggests the induced electromagnetic field of the brain as the physical substrate corresponding to
conscious experience. He notes the tendency of physicists to use terms connoting volition in
describing wave function reduction and quantum measurement, and points out that textbooks on
quantum theory assign to human agents the choice of what experiment to perform on a quantum
system.  Thus, the reducing agent ontology is consistent with the informal language used in most
quantum theory texts and by most practicing physicists.

With no change to the mathematical machinery of quantum theory, the reducing agent
ontology connects physical reality in a plausible way to conscious experience and deliberate
choice. Because the evolution of a quantum system depends on the choice and timing of state
reductions, ascribing reductions to the free choices of conscious players provides a means
consistent with known physics for conscious agents to affect outcomes in the world.  Moreover,
deliberate conscious choice is inserted into physics at exactly the place where current physics
lacks a theory. The commonly held view that quantum theory is nothing but a recipe for
calculating probabilities and says nothing directly about physical reality is replaced by a realist
theory with a role for deliberate choice. This ontology thus provides science with a theory of both
the physical and informational aspects of nature, and describes how deliberate choices of
conscious agents affect both the agents themselves and the world they inhabit.  Moreover, the
physical constraints necessary for deliberate choice to be operative in this way appear to be
satisfied by the conditions occurring in live animal brains (Stapp, 1999).

Stapp (1998) and McFadden (2000) provide empirically verified examples of
macroscopically detectable differences in behavior resulting from different policies for effecting
state reductions in quantum systems.  The quantum Zeno effect (Itano, et al., 1990; Gribbin,
1996) predicts that observations taken sufficiently rapidly can keep a quantum system within a
constrained region of phase space.  The inverse quantum Zeno effect (McFadden, 2000) induces a
quantum system, via a sequence of rapidly repeated measurements, to follow a particular path in
phase space.  Stapp (1998) argues that an organism might use the quantum Zeno effect to keep its
brain state within a given basin of attraction sufficiently long to trigger behaviors the organism
desires to bring about.  The quantum Zeno effect has been confirmed experimentally (Itano, et al.,
1990) and is thought to occur at time and frequency scales consistent with patterns of
electrochemical activity occurring in brains.

Stapp suggests that the quantum states for different outcomes of a reduction event caused by
a player are associated with different psychological states, or qualia of experience. For human
observers, qualia are multifaceted, highly complex gestalts that defy simple description.
Nevertheless, Stapp argues, human observers may be able to select reduction policies that bring
about brain states associated with qualia they prefer.  Both Stapp and McFadden suggest that the
choice of reduction policy occurs via a physical mechanism corresponding to what psychologists
call will or attention (Anderson, 1999; James, 1890).  That is, an organism complex enough to be
labeled conscious can anticipate with some degree of accuracy the qualia associated with the
different available reduction-causing policies, identify those that are most desirable, and focus
attention on bringing about one of the most preferred policies. To do this, Stapp hypothesizes that
the brain encodes a "body-world schema" that represents the body, the environment, and the
predicted effects of alternative reduction-causing policies.  The organism uses its body-world
schema to direct its focus of attention to bring about desired qualia.  McFadden (2000) cites
Libet’s theory of a conscious mental field that generating a unified subjective experience (Libet,
et al., 1979).  Invoking Occam’s razor, he suggests that Libet’s conscious mental field be
identified with the induced electromagnetic field of the brain, and notes that electromagnetic
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fields are commonly used in computing and communication devices to encode and transmit
information.

Although both Stapp and McFadden hypothesize that humans are reducing agents, there is no
implication that humans are the only reducing agents or that reducing agents must be conscious.
Reductions that occurred prior to the evolution of conscious organisms would have been caused
by unconscious or proto-conscious reducing agents.  Although it is conceivable that some form of
the property we call consciousness at the human level exists throughout the natural world, the
reducing agent ontology does not require it.  McFadden raises the question of why, if
consciousness is equated with electromagnetic fields, the electromagnetic fields generated by
electronic devices are not also conscious. “The somewhat surprising answer,” he says, “is that we
have no way of knowing whether or not any of these fields are indeed conscious.  The only
conscious minds that can state that they are conscious are those that can communicate their
consciousness.” Although it would be unreasonable to suppose that computing devices
constructed with current technology would possess a sophisticated form of consciousness,
McFadden offers the opinion that a computer constructed with an appropriately sophisticated
electromagnetic feedback loop would possess a primitive form of consciousness.  Such a device
would also be capable of making choices that were not programmed by its designer.

Whatever one's stance on the level of complexity at which consciousness can be said to exist,
the question arises of why and how evolution would select for an increasingly sophisticated
ability to direct actions via conscious intent.  Stapp argues that because choice of reduction policy
affects the evolution of a quantum system, the ability to predict outcomes of reduction events and
use attention to effect those predicted to bring about desired outcomes would be expected to have
survival value.  In addition, agents that can communicate with each other can develop coordinated
reduction policies that enhance collective survival.  That is, it seems reasonable that evolution
would tend to select for organisms that could form accurate representations of the choices
available to them and select those options likely to lead to survival.

The viewpoint is gaining favor (e.g., Pearl, 1988; Russell and Norvig, 2002; Lee and
Mumford, 2003; Levitt and Binford, 2003) that intelligence requires the ability to perform the
functional equivalent of approximate Bayesian reasoning.  Graphical models are attractive as a
logically consistent language for formulating theories of computational intelligence and
developing computer implementations capable of approximately optimal inference and decision
making. Improved understanding of the relationship between the sensory and cognitive levels of
description has fostered advances in computer vision, robotics, and multi-source fusion.  It seems
reasonable to suppose that improving our understanding of the interface between the quantum and
the classical realms will generate additional advances in the field of intelligent systems. The next
subsection argues that the language of graphical models can be extended into the quantum realm.
Bayesian decision theory and graphical models provide a unified theoretical foundation, spanning
the quantum through the cognitive level, for the design of hardware and software architectures for
intelligent agents.

3.3 A MEDG Representation of Quantum Evolution

Figure 4 shows a representation of the reducing agent ontology as a multi-entity decision
graph.  The model shown here is consistent with the mathematics of quantum measurement as
typically presented in texts on quantum theory (e.g., Shankhar, 1994), and with the measurement
ontology proposed by Stapp (1999).
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The graph of Figure 4 represents an interaction between two systems, the reducing agent RA
and the observed system OS. In quantum theory texts, the observed system is described in the
language of quantum theory and the reducing agent is described in classical language. Textbook
measurement situations assume that OS has been prepared in a manner that shields it from all
environmental influences except those carefully controlled by the experimenter.  An experiment
begins with OS in a definite known quantum state.  OS is then subjected to known forces that
guide its evolution for a specified length of time, after which a measurement event is initiated by
the experimenter. In Figure 4, T1 denotes the time at which the initial state is prepared,
QuantumState(OS,T1+) denotes the initial state just after preparation, H(OS) denotes the
“Hamiltonian” operator that summarizes the effects of the forces acting on OS  between
measurements, T2 denotes the time at which the measurement occurs, and QuantumState(OS,T2-)
denotes the state of the system just prior to the measurement interaction.  In introductory
treatments, the Hamiltonian is usually assumed constant during the time between measurement
events, although this assumption is not necessary for the validity of the theory.  The pre-
measurement state QuantumState(OS ,T2-) is a deterministic function of the initial state
QuantumState(OS,T1+), the Hamiltonian H(OS), and the time interval T2-T1.  Its value can be
calculated from these quantities using a differential equation called the Schrödinger equation.  At
time T2, a measurement operator, denoted in Figure 4 by Operator(T2), is applied to the system,
and an outcome occurs. In non-degenerate measurement situations, this outcome, denoted in
Figure 4 by Outcome(T2), completely determines the state QuantumState(OS,T2+) of OS just
after the measurement event. In a more general situation, the quantum state of OS after the
measurement event is a deterministic function of the outcome of the measurement and the pre-
measurement quantum state of OS.  Although the outcome of a quantum measurement typically
cannot be predicted with certainty, quantum theory provides a rule for calculating the

Figure 4:  Decision Graph for Quantum Evolution
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probabilities of the possible measurement outcomes given an experimental set-up and the state of
OS just prior to the interaction. The outcome Outcome(T2) is one of the eigenvalues of the
measurement operator Operator(T2).  The post-measurement state QuantumState(OS,T2+) is an
eigenstate corresponding to the eigenvalue that occurs.  In non-technical language, an eigenstate
of an operator is a state that is left unchanged by application of the operator, and an eigenvalue is
the measurement outcome corresponding to a given eigenstate. Thus, if the system is measured
again immediately after a previous measurement using the same operator, the same measurement
outcome will occur and the post-measurement state will be the same as the state after the previous
measurement.6 In a non-degenerate measurement, the eigenvalues and eigenvectors are in one-to-
one correspondence; in a degenerate measurement, there may be many eigenvectors for a given
eigenvalue.  The pre-measurement state QuantumState(OS,T2-) is represented as a sum in which
each summand is a complex-valued weight (called an amplitude) multiplied by an eigenvector of
Operator(T2).  The amplitudes are normalized so that the sum of their squared magnitudes is 1.
The probability that Outcome(O2) will equal a given eigenvalue is equal to the sum of the
squared magnitudes of the complex amplitudes for its corresponding eigenvectors.  The weighted
sum of eigenstates of Operator(T2) is called a superposition of the corresponding eigenstates.
After measurement, the amplitudes for eigenstates corresponding to outcomes that do not happen
become zero, and the amplitudes are re-normalized so that the squared amplitudes for eigenstates
corresponding to outcomes that happen sum to one. This re-normalization step is mathematically
equivalent to applying Bayes rule to Bohm’s “wave from which many related probabilities can be
calculated.” That is, after a measurement has occurred, the “wave of related probabilities” is
conditioned on the measurement operator that was applied, the time of application, and the actual
outcome that occurred.  Predictions about the future behavior of the state are revised accordingly.
In experimental tests, the probability forecasts produced by this recipe have proven to be
stunningly accurate.

The model presented thus far simply restates in the language of decision graphs the standard
method of predicting the evolution of quantum systems and the outcomes of measurement
events.7   The remaining parts of Figure 4 are discussed only informally in most quantum theory
texts.  The model presented here is consistent with standard informal accounts and with the
mathematics of quantum theory.  The parts of the model involving the thoughts and decisions of
the reducing agent RA are quantum systems whose defining properties are expressed in the
language of classical physics and psychology rather than in the language of quantum theory.  The
model is consistent with a physical realization of RA  as a quantum system, but empirical
predictions for this part of the model cannot be obtained to anything approaching the level of
precision of the probabilistic predictions for Outcome(T2).

The language used in quantum theory texts to describe the measurement process clearly
implies that the time of measurement and the operator applied are free choices of the
experimenter.  Many authors have speculated that because the bodies and brains of experimenters
are presumed to obey the laws of physics, it might some day be possible to develop a fundamental
theory of measurement in which the experimenter, the experimental apparatus, and the system
undergoing measurement are all described in the language of quantum theory. Although there
exist experimental protocols, described in classical language, that specify the processes a
physicist carries out to apply a given operator at a given time, present-day physics has no

                                                       
6 This property of eigenstates, together with the fact that probabilities, unlike probability amplitudes, evolve non-
linearly in the Schrödinger equation, provide the mathematical basis for the quantum Zeno effect that has been
hypothesized as a mechanism by which conscious affects observable outcomes.
7 The description is qualitative because it is not our purpose is to provide detailed calculations of quantum probabilities.
Mathematical formulas for standard problems can be found in any quantum theory text.
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fundamental theory governing the generation of the choices made by the agents. Our current
knowledge of the allowable operators and the allowable temporal intervals between application of
operators is entirely empirical.

The model of Figure 4 formalizes the assignment of T2-T1 and Operator(T2) as free choices
of the experimenter by representing these variables as decision nodes in the graph. The possible
values of these decision nodes are specified by means of existing phenomenological theories that
depend on the particular type of system being analyzed and the physical parameters of the
experimental apparatus.8 The information available to inform RA’s choice is labeled
Prevision(RA), borrowing a term used by de Finetti (1934) to refer to agents’ subjective
predictions of the outcomes of uncertain events.  The prevision depends on RA’s state.  As noted
above, the defining properties of this state are expressed in classical language, but its physical
realization is as a quantum system. RA’s prevision is described in psychological terms.  Thus, the
prevision mediates between the physical description of RA’s state and the psychological variables
in a cognitive-level model of RA’s prediction and decision-making process. We can think of
QuantumState(RA,T1+) as describing the hardware of RA’s sensory and computing apparatus, and
Prevision(RA,T1) as describing RA’s mental state in a higher-level language.  Indeed, we may
think of RA’s prevision as a more or less faithful rendition of the decision graph of Figure 4. The
job of the unconscious processes of RA’s brain is to solve the influence diagram:  identify a set of
action policies, compute their expected utilities given the currently available evidence, discard all
but the few with the highest expected utility, and present the results to consciousness for selection
of a policy to be implemented.  The job of RA’s conscious attention-directing mental process is to
select and implement a policy from among those presented by the unconscious processors.

Graphical probability models provide a convenient language both for representing RA’s
prevision and for describing its relation to RA’s physical state. A prevision model would include
cognitive-level random variables such as those discussed in Section 2 above.  For example, RA
might reason about the likelihood of different macroscopically described consequences such as
whether a dial on a measuring instrument will point in the up or down direction, or whether the
ink cartridge needs to be replaced in a device that records measurement results. Also described in
psychological terms is the degree of satisfaction RA  experiences with the outcome of the
experiment.  In the model of Figure 4, the utility node Satisfaction(RA,T1) may depend on the
entire trajectory of RA’s state until the next interaction event. Thus, RA’s satisfaction depends on
RA’s state just after the last interaction with OS, the forces to which RA is subject, and the time
until the next interaction -- these being the variables that affect the evolution of RA’s state
between measurement events.  Unlike the carefully controlled conditions under which the state of
OS evolves, it may not be reasonable to suppose that RA’s state is completely shielded from all
external influences during the time between measurements.  Fortunately, no such assumption is
required for the graph of Figure 4 to apply to RA’s evolution.  We can model RA as being in a
mixed rather than a pure state and include random fluctuations in the equation governing the
evolution from QuantumState(RA,T1+) to QuantumState(RA,T2-).  It also may be desirable to
assume a time-varying Hamiltonian.

The utility node in Figure 4 represents RA’s actual experienced satisfaction with the outcome
of the decision.  As noted above, RA’s  satisfaction is experienced after the choice has been made,
and therefore cannot influence the choice RA makes.  However, RA’s anticipated satisfaction is
represented in the prevision.  This is depicted in Figure 4 by a miniature copy of the decision
graph inside the Prevision(RA,T1+) node representing RA’s model of the decision situation.  A
rational reducing agent makes a choice among the available policies by comparing the anticipated

                                                       
8 A more complete representation would include these parameters as context random variables affecting the possible
values and probability distributions of the random variables in the classically described part of Figure 4.
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satisfaction for the different policies and selecting the one with the highest expected utility.  An
agent whose decision graph is an accurate model of the decision situation and who chooses
optimally according to the decision graph will, on average, achieve a higher level of satisfaction
than agents with the same evidence and utilities who either have inaccurate models or choose
non-optimally.

Schwartz, et al. (2004) present a model of the relative roles of brain and mind that is
consistent with Figure 4:

“[Schrödinger evolution] can do most of the necessary work of the brain. It can do
the job of creating, on the basis of its interpretation of the clues provided by the
senses, a suitable response, which will be controlled by a certain pattern of neural or
brain activity that acts as a template for action. But, due to its quantum nature, the
brain necessarily generates an amorphous mass of overlapping and conflicting
templates for action. [Application of a reduction operator] acts to extract from this
jumbled mass of possibilities some particular template for action.”

A great deal is known about the physical mechanisms by which the brain operates.  Schwartz,
et al. (2004) state that nerve firings are triggered by the flow of calcium ions through ion channels
that are less than a nanometer in diameter at their narrowest point.  At these dimensions, they
state, quantum effects cannot be ignored.  The spatial constriction implies, by the Heisenberg
uncertainty principle, a corresponding spread in the lateral velocity.  They hypothesize that
multiple patterns of nerve firings representing different macroscopic possibilities for the agent’s
plan of action evolve in superposition until the agent chooses a reduction operator that defines the
possibilities (perhaps just two) between which Nature then chooses in accordance with the
statistical rules.  Nature’s choice actualizes one of the possibilities:  an eigenvalue and its set of
eigenvectors.  Schwartz, et al. suggest the quantum Zeno effect as a mechanism by which the
agent’s choice merely of the timings of its own actions, can hold a long sequence of Nature’s
choices in place and thereby strongly influence what eventually is actualized.  The different
possibilities, they hypothesize, would most likely be

“…constructed out of oscillating states of macroscopic subsystems of the brain,
rather than out of the states of individual particles.  The states associated with
[measurement outcomes would involve] large assemblies of particles of the brain…
moving in a coordinated way that will lead on, via the mechanical laws, to further
coordinated activities.”

These oscillating states of macroscopic subsystems of the brain may be performing the
functional equivalent of a quantum computer constructing a decision graph for the problem faced
by the reducing agent and solving for an optimal policy.  One important function of conscious
control might be to mediate value conflicts, such as the conflict between the craving for a
cigarette and the desire for a long and healthy life.  Deliberate focusing of attention directs the
system toward more nearly optimal choices and away from the ones that would be favored if
purely physical automatic processors were left unmonitored.

The above description summarizes the decision graph representation of the process of
evolution of quantum systems.  The upper part of Figure 4 restates the standard account of
Schrödinger evolution and the measurement process as described in texts on quantum theory.
The lower part of the graph corresponds to standard informal accounts of the quantum
measurement process.  The time of measurement and the operator to be applied are represented as
free choices of the reducing agent.  This choice depends on the agent’s quantum state through the
reducing agent’s prevision, which can be thought of as a rendering in psychological terms of
those aspects of the quantum state that are relevant to the agent’s anticipated satisfaction with the
outcome.
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An intelligent reducing agent’s brain is organized to simulate task-relevant aspects of its
environment and to improve the fidelity of its simulations in a manner that approximates
Bayesian learning from observations.  It is hypothesized that evolution selects for the ability to
make accurate forecasts of outcomes, the ability to apply attention to effect reduction events that
bring about desired outcomes, and the desire for outcomes conducive to survival.  It is
hypothesized that evolution also selects for systems of agents that co-evolve toward
evolutionarily stable patterns of interaction.

4 Discussion:  Quantum Computing Agents
The above sections provided a sketch of the basic elements of a graphical model based

software architecture for physical symbol systems implemented in quantum hardware.  To behave
intelligently, an implementation of the reducing agent architecture described in Figure 4 would
need to possess the basic attributes the artificial intelligence and machine learning communities
have learned are essential to intelligent performance.  Among these capabilities are the following:

– RA’s state would need to include a memory subsystem in which past events are
recorded, and from which information about past events can be recalled.

– The physical architecture of RA’s memory should be such that recorded memory
traces remain stable over time.

– RA would require a physical means for recording the outcomes of measurement
events in its memory and retrieving outcomes of remembered events.

– RA’s memory would require a large storage capacity and its contents should be
indexed for efficient retrieval.  In particular, its contents should be organized
according to high-level conceptual categories.  Data organized purely as records of
raw sensor inputs, no matter voluminous, may be worse than useless from the
perspective of supporting task performance.

– RA would need to have a method for forecasting the outcomes of its actions, that
includes flexible methods for reasoning under uncertainty and adapting to
unanticipated situations.  These methods should be functionally equivalent to
approximate Bayesian inference.

– RA would require a method for identifying and selecting actions or policies predicted
to lead to desired outcomes.  These methods should be functionally equivalent to
approximate maximization of subjective expected utility.

– The objective function built into RA’s hardware (what might be termed its instinctual
desires) should be conducive to long-term survival of RA and others of its kind,
should minimize negative impact on its natural environment, and should be
supportive of human society.

The above characteristics have been treated extensively in the literature on intelligent
systems, without any reference to quantum computing.  Current classical architectures implement
many of these features, and their power and capabilities are advancing rapidly.  So why should
researchers in machine learning and artificial intelligence pay attention to quantum computing?

First, the argument that current technology is advancing rapidly and there is no apparent need
for a new, unproven, and as yet poorly developed technology was used against the development
of decision theoretic technology prior to the 1980’s.  Yet in a few short decades, decision theory
has moved from the fringes into the mainstream of machine learning and artificial intelligence.
Arguments that real intelligent agents do not optimize and that the intrinsic impracticality of
decision theoretic optimality necessitates abandoning it in favor of ad hoc heuristics have given
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way to acceptance of approximate optimality as a fundamental characteristic of intelligence and a
view of decision theoretic optimality as a standard of comparison and foundation for the design of
good heuristics.  In a similar vein, if we are going to demand that our theories of intelligent agents
be validated in physically realizable implementations, then our foundational theory for the
construction of the physical hardware for our implementations should be based on accurate
physical theory, and our foundational theory for software architectures should fully exploit the
capabilities of the hardware.  Most scientists, even those who believe quantum theory is
fundamental to an understanding of intelligence and cognition, believe that classical physics will
be adequate for many aspects of the architecture of intelligent agents.  But there is a vocal and
growing community arguing that quantum effects are likely to be fundamental for some aspects
of intelligence and learning.  A theory of computing built on a quantum theoretic foundation can
address questions classical computing theory cannot, while reducing to classical theory in areas to
which classical theory applies.

Second, quantum algorithms appear to be intrinsically more powerful for some types of
problem than classical algorithms.  This power appears to be related to the ability to perform
Fourier analysis with great efficiency.  Efficient spatio-temporal reasoning is among the most
important and as yet intractable challenges in machine learning and artificial intelligence.
Because Fourier analysis is an essential element of standard methods for spatial and temporal
reasoning, it is reasonable to suggest that quantum computation might provide new and more
powerful methods for reasoning and learning in problems involving space and time.

Finally, quantum theory with the reducing agent ontology provides a plausible physical
mechanism for efficacious free choice.  Standard theories of computing, cognition and learning
are limited to two categories of dynamic behavior -- deterministic evolution and randomization.
The reducing agent ontology treats genuine free choice as an intrinsically different category of
behavior from either determinism or randomness.  If indeed genuine free choice exists in the
natural world, is fundamentally different from both deterministic causation and random effects,
and produces observable effects in the world, then a science that excludes the possibility of
genuine free choice is incomplete and fundamentally flawed as a foundation for theories of
cognition and learning.
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