
Shared Virtual Memory with Automatic Update Support

Liviu Iftode1, Matthias Blumrich2, Cezary Dubnicki3,
David L. Oppenheimer4, Jaswinder Pal Singh5 and Kai Li5

1Rutgers University, Department of Computer Science, Piscataway, NJ 08855,
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598,

3NEC Research Institute, Princeton, NJ 08540,
4 University of California, Computer Science Division, Berkeley, CA 94720,

5Princeton University, Department of Computer Science, Princeton, NJ 08540

Abstract

Shared virtual memory systems provide the abstrac-
tion of a shared address space on top of a message-
passing communication architecture. The overall per-
formance of an SVM system therefore depends on both
the raw performance of the underlying communication
mechanism and the efficiency with which the SVM
protocol uses that mechanism. The Automatic Update
Release Consistency (AURC) protocol was proposed to
take advantage of simple memory-mapped communi-
cation and automatic update support to accelerate a
shared virtual memory protocol. However, there has not
yet been a real system on which an implementation of
this protocol could be evaluated.

This paper reports our evaluation of AURC on
the SHRIMP multicomputer, the only hardware plat-
form that supports an automatic update mechanism.
Automatic update propagates local memory writes to
remote memory locations automatically. We compare
the AURC protocol with its all-software counterpart pro-
tocol, Home-based Lazy Release Consistency (HLRC).
By integrating AU support into the protocol as well,
the AURC protocol can improve performance. For
applications with write-write false sharing, an AU-based
multiple-writer protocol can significantly outperform an
all-software home-based multiple-writer LRC protocol
that uses diffs. For applications without much write-
write false sharing, the two protocols perform similarly.
Our results also show that write-through caching and
automatic update traffic does not perturb the compu-
tation, validating the implementation as achieving its
goals.

1 Introduction

Shared virtual memory systems provide the abstrac-
tion of a shared address space on top of a message-
passing communication architecture. The overall per-
formance of an SVM system therefore depends on both
the raw performance of the underlying communication
mechanism and the efficiency with which the SVM
protocol uses that mechanism. In recent years, industrial
and academic researchers have focused a great deal of
work on the interconnect and messaging layer so that
the performance of these components might improve at
a rate comparable to that of processor speed. Memory-
mapped network interfaces such as the SHRIMP [5]
network interface and Digital’s Memory Channel [11]
transfer individual memory updates from one virtual
memory to another across the network in less than 4
microseconds in a non-blocking fashion. An interesting
question is how well shared virtual memory protocols
can take advantage of such network interface support.

A number of shared virtual memory protocols have
been proposed that use relaxed consistency models to
tolerate communication latency and end-point overhead
but most of these assume a standard network inter-
face. Munin [7], TreadMarks [21] and Home-based
Lazy Release Consistency (HLRC) [29], for example,
all implement multiple writer protocols without special
network interface support. These protocols use the CPU
to compute local updates by determining the difference
(diff) between a clean and dirty copy of the page that
has been written. The protocols differ in how and when
they propagate and merge diffs [14].

Recently, several protocols have been proposed to
take advantage of memory-mapped communication that
supports fine-grained remote writes [12, 15, 23]. These
protocols are all home-based Lazy Release Consistency
(HLRC) protocols in which each page is assigned a
fixed node called home to collect updates from multiple
writers. The Automatic Update Release Consistency
(AURC) protocol was the first proposal to take ad-



vantage of memory-mapped communication to imple-
ment an LRC protocol [12]. It uses memory-mapped
communication in two ways. First, it maps non-home
copies of a shared page to the home page. Once these
mappings are established, the network interface ensures
that writes performed to the local copy of the page
are transparently propagated to the home copy by the
Automatic Update (AU) mechanism. Second, it uses
memory-mapped communication to transfer data from
the home page to a non-home page directly to bring the
non-home copy up-to-date. Such a data transfer requires
very little software overhead, no memory copy, and no
additional overhead at the receiving node.

A previous paper compares the AURC protocol with
a “homeless” diff-based LRC protocol [13] using a
simulator, but its evaluation has two limitations from the
viewpoint of evaluating memory mapped communication
and AU support. First, the protocols it compares differ
not only in the update propagation mechanism used
(diffs versus hardware-supported automatic update), but
also in the type of multiple-writer scheme used (“home-
less” versus home-based). As a result, the contribution
of the AU support to the improvement in performance
cannot be isolated from the contribution of the different
scheme used for merging updates from multiple writers.
Second, because the study was based on simulations, it
was not possible to accurately account for the effects of
network traffic, or to capture any possible limitations
in the AU mechanism that might be visible only in a
real implementation, such as its interaction with other
architectural features. AURC could generate more
network traffic of some kinds than all-software LRC
because AURC propagates writes into the network in a
write-through manner. For these reasons, a comparison
of HLRC to AURC using real hardware is needed in
order to truly assess the performance benefit of AU
support for an SVM protocol.

With the SHRIMP system now running in a sizeable
configuration, we now have an opportunity to assess the
benefits for SVM protocols of a true AU mechanism
implemented in hardware. Simulation studies have
helped us understand what components of execution
time and protocol activity AU can potentially help and
to what extent, and what application characteristics
make AU potentially valuable. Using our completed
system, we can examine not only the benefits of AU but
also how well its implementation in SHRIMP delivers
on the potential capabilities of an AU mechanism, and
what if any critical implementation bottlenecks remain.

We ran eight SPLASH-2 applications on top of two
shared virtual memory protocols HLRC and AURC. For
applications with write-write false sharing, an AU-based
multiple-writer protocol can significantly outperform an
all-software home-based multiple-writer LRC protocol

that uses diffs. For applications without much write-
write false sharing, the two protocols perform similarly.
In our experiments, we did not see contention in the
AURC case, though it requires all shared, non-home
pages to use a write-through caching strategy, while
the HLRC protocol can employ a write-back caching
strategy for all pages.

2 The SHRIMP System

The SHRIMP multicomputer system [6] consists of
16 Pentium PC nodes connected by an Intel Paragon
routing network [27, 17]. Each PC uses an Intel Pentium
Xpress motherboard [18] that holds a 66 MHz Pentium
CPU, 256 Kbytes of L2 cache, and 40 Mbytes of DRAM
memory. Peripherals are connected to the system
through the EISA expansion bus [2]. Main memory
data can be cached by the CPU as write-through or
write-back on a per-virtual-page basis, as specified in
the process page tables. The caches snoop DMA trans-
actions and automatically invalidate the corresponding
cache lines, thereby keeping the caches consistent with
all main memory updates, including those from EISA
bus masters.

The custom network interface is the key system
component of the SHRIMP system: it connects each
PC node to the routing backplane and implements
hardware support for virtual memory-mapped commu-
nication (VMMC) [5]. The single-word update latency
from one node’s virtual memory to that of another node
is under 4 microseconds. The data transfer bandwidth
achieved is about 25 Mbytes/sec, which is close to the
PC’s I/O bus bandwidth.

The network interface supports the VMMC abstrac-
tion in three ways. First, it provides an automatic
update mechanism that allows memory writes snooped
from the Xpress memory bus to be propagated to the
physical memory of a remote node. Because it does
not require an explicit send instruction, AU allows data
to be sent with no software overhead on the sending
side. Second, the network interface supports deliberate
update (DU) operations. An explicit send instruction is
required for DU, but a user-level DMA mechanism [5]
reduces the send overhead to a few instructions. Third,
the network interface supports a notification mechanism
that uses fast interrupts to notify a receiving process that
data has arrived (if the receiving process has requested
notifications for a particular mapping).

The shared virtual memory systems described in this
paper are built on top of the VMMC library, a thin
user-level library that implements the VMMC API. This
library implements calls for exporting and importing
memory buffers, sending data with and without noti-



fications, and managing receive buffer memory. The
receiving process expresses the permission to receive
data in its address space by exporting regions of its
address space as receive buffers. A sending process
must import remote receive buffers which it will use
as destinations for data transfers. There is no explicit
receive operation in VMMC. To use AU transfer to
a remote receive buffer, the sender must first create
an AU-mapping between a region of its address space
and the previously imported remote buffer. Since the
sender can AU-map a local address to only one remote
buffer, AU-broadcast is not supported in the SHRIMP
implementation of VMMC.

3 Protocols

This section describes the two coherence proto-
cols we have compared on the SHRIMP multicom-
puter system: Home-base Lazy Release Consistency
(HLRC) [29, 16] and Automatic Update Release Con-
sistency (AURC) [12]. We will first briefly review the
lazy release consistency model.

3.1 Lazy Release Consistency

Lazy Release Consistency (LRC) is a consistency
model similar to release consistency [10] that is intended
for software implementation. It delays the propagation
of (page) invalidations until the latest possible acquire
time. To achieve memory coherence with such a degree
of laziness, the LRC protocol uses vector timestamps to
maintain the “happens-before” partial ordering between
synchronization events.

LRC was first proposed, implemented, and evaluated
in the TreadMarks SVM system [21]. TreadMarks
supports concurrent writers to the same page using a
“homeless” software multiple-writer scheme based on
distributed diffs. Every writer records locally the changes
it makes to every shared page during each interval.
These records, called diffs, are computed by comparing
the current dirty copy of the page against a clean copy,
called a twin, which was created before the first write
occurring in that interval. When a processor page
faults, it makes its local copy of a page consistent by
obtaining the diffs from all the “last” writers to that page
(according to the vector timestamps described earlier)
and applying those diffs to its local copy in the proper
order. Diffs can be created eagerly at the end of intervals
or lazily when the first request for a diff arrives from
another node.

The lazy release consistency protocol based on dis-
tributed diffs was a major advance in SVM, but it has
some drawbacks. The first problem is that a node may

have to obtain diffs from several nodes when there is
substantial write-write false sharing–precisely the case
in which the multiple writer mechanism is useful. This
obtaining of diffs requires several expensive round-trip
messages upon a page fault. In the worst case, O(n2)
messages must be exchanged. This happens when all
nodes are last writers and all need the page, e.g. all
nodes false write-share the page before the barrier and
then read the page after the barrier. The best case is
when the sharing pattern is migratory; then diffs are
totally ordered and can be fetched in one message from
the last writer. Without using an adaptive scheme of the
type recently proposed [1, 20], the sizes of the messages
increases during the migration due to diff accumulation
(since a processor is fetching diffs, it fetches not only the
diffs created by the last writer but also those created by
previous writers in the intervals that it has not already
seen).

Another problem with distributed diffs is that the
same diff may need to be applied as many as O(n)
times at O(n) different nodes that fetch that diff. Diff
application and diff creation incur a lot of cache misses,
so diff application should be minimized.

Finally, since the node that creates a diff stores
it locally until no other node may need it (which is
difficult to predict), distributed diff schemes usually do
not discard the diffs until they are garbage collected.
This can result in significant memory consumption by
the protocol during program execution; indeed, the
memory required to store diffs can eventually exceed the
memory used by the application [29]. Garbage collection
is usually triggered at global barriers to free up the diff
storage, but this garbage collection is itself an expensive
global operation that increases protocol overhead.

3.2 Home-Based LRC Protocols

A home-based multiple-writer scheme is an alterna-
tive approach to supporting multiple concurrent writ-
ers [16]. This approach combines eager propagation of
data at release time with lazy invalidations. For every
shared page, a single node (usually the first writer) is
designated as the page’s home. The home’s copy of the
page is eagerly updated before the next release point.
Non-home copies are updated on demand at page fault
time by fetching the whole page from the home, rather
than as diffs from the recent writers. Non-home copies
are invalidated on acquire according to the standard
LRC algorithm described earlier.

One way to propagate writes to a page’s home is
to compute diffs at the next synchronization point and
to then send them explicitly. This method can be
used to implement a home-based protocol entirely in
software. Another way to propagate these writes is to



use the automatic update hardware mechanism provided
by a network interface like SHRIMP [5] or Memory
Channel [11].

A previous study showed that home-based protocols
could achieve better performance and scalability than
the traditional “homeless” LRC protocol based on dis-
tributed diffs [29]. There are several reasons for this:
reads and writes to a page by the page’s home node can
always be performed using local operations without page
faults or communication, diffs only need to be applied
once (at the page’s home), non-home nodes update their
copy of a page using a single round-trip message (to the
home) rather than potentially several messages, memory
consumption due to protocol data is low The main
drawback of home-based protocols is the need to select
homes for pages well, i.e. to distribute data carefully
across nodes [8].

Home-based protocols are well-suited to the current
generation of memory-mapped network interfaces be-
cause a page can be transferred directly into the physical
page to which a faulting page is mapped, with zero-
copy and no additional overhead. Moreover, given that
processor speed is growing faster than memory access
time (making diff computation and application more
expensive relative to program execution, especially for
programs that operate primarily out of their cache)
and communication bandwidth is growing faster than
message latency is shrinking, the performance gap be-
tween the home-based approach and the traditional
“homeless” approach may increase in the future. This
trend motivates us to compare all-software home-based
protocols with those that take advantage of memory-
mapped network interface features.

3.2.1 Home-based LRC

The all-software HLRC uses the same diff-based mecha-
nism as traditional LRC to detect updates. But unlike
traditional LRC, in which diffs are created on demand,
stored and provided possibly many times, in HLRC diffs
are created at the synchronization time, immediately
sent to the home, then discarded. At the home diffs
are applied in the arrival order and then discarded.

Version numbers represented as per-shared-page
timestamp vectors are used to maintain the order of
updates. The page version at the home is incremented
each time a received diff is applied. Non-home nodes also
keep a vector timestamp per page, indicating the current
version of valid pages or the expected version of invalid
ones. On a page fault the faulting node requests the
expected version of the page from the home. The home
sends the page when that version is available. Because
the home sends back its timestamp vector along with

the page, a prefetching effect can be obtained and future
invalidations may be avoided.

One way to utilize hardware AU support in an HLRC
protocol is to simply use the AU mechanism to map the
page holding the diffs to the home page. As the protocol
computes the diffs at a release point, the memory writes
that create the diffs are be propagated to the home
page automatically. This method allows the protocol
to avoid buffering diffs and sending them to the home
in an explicit message. We shall evaluate this approach
(HLRC-AU) in this paper. A more promising approach
is to incorporate the AU support into the protocol itself.

3.2.2 Automatic-Update RC

Compared to the traditional LRC protocol, the software
HLRC protocol can reduce communication traffic and
memory overhead in the presence of write-write false
sharing. But HLRC does not eliminate the expensive
operations related to manipulating diffs (twin creation,
diff creation, and diff application); these operations can
add significant memory and time overhead to the HLRC
protocol.

Automatic Update Release Consistency (AURC) im-
plements a home-based multiple-writer scheme using
automatic update (AU) hardware instead of software
diffs to detect, propagate to the home page, and merge
writes performed by concurrent writers. This method
eliminates diffs entirely from the protocol (see Table
3). The basic idea of AURC is to establish an AU
mapping from the non-home copies of a shared page
to the home copy, so that local writes to these copies
at the non-home nodes are automatically propagated
to the home. The rest of the protocol is similar to
HLRC. The main difference between AURC and HLRC
is that AURC propagates writes immediately, through
the AU mappings, while HLRC detects modified words
and propagates them at the next release time. AURC
will therefore propagate multiple updates to the same
memory location multiple times, whereas HLRC will
propagate only the last change at the next release time.
On the other hand, AU update propagation is pipelined,
whereas diff computations and propagations in HLRC
can be bursty.

A minor difference between AURC and HLRC is
that in AURC timestamps are used not only to ensure
the “happens-before” ordering before synchronization
events, as in HLRC, but also to flush the AU links at
synchronization time. Because the network interface
performs write combining in the hope of reducing the
need to send frequent small messages, a block of writes
may be propagated to the destination (home) by the
network interface after an arbitrary time delay. Flushing



an AU link forces the writes in the sender’s write buffer
or network queue into the network and therefore to the
receiver; this flush is accomplished by sending a time-
stamp. The flush operation, combined with the fact that
AU messages are delivered in FIFO order, ensures that
once the timestamp sent by the writer arrives in the cor-
responding slot of the home’s timestamp vector, all the
previous writes performed by that writer are guaranteed
to be in place in the home’s copy. Because AURC’s re-
laxed consistency model tolerates lazy updating, AURC
can take advantage of the performance benefit of the
network interfaces write-combining feature.

The relative performance of AURC and HLRC,
representing a high-level trade-off between potentially
higher bandwidth needs in AURC (due to multiple
writes to the same word being propagated multiple
times) and higher end-point overhead (and perhaps end-
point contention) in HLRC due to diff computation and
bursty propagation, has not been evaluated using an
actual implementation because no AU implementation
of this type has existed until now. Previous evaluations
of AURC were performed using simulations [12, 13]
and the software-only protocol used for comparison
was a “homeless” LRC protocol. This paper is the
first evaluation of the actual performance benefits of
AU-support for a home-based LRC protocol on a real
SHRIMP system.

4 Performance Evaluation

4.1 Applications

To evaluate the performance of our protocols, we
chose to run a subset of SPLASH-2 [26] benchmark suite
consisting of four applications (Barnes, Ocean, Water-
Nsquared and Water-Spatial) and three kernels (FFT,
LU and Radix).

Sequential
Application Problem Size Execution

Time (secs)
Barnes 8K bodies 55
FFT 256K 23
LU 512× 512 26

Ocean 130× 130 13
Radix 1 M keys 7

Water-Nsquared 512 molecules 64
Water-Spatial 512 molecules 119

Table 1: Applications, problem sizes, and sequential
execution times.

Table 1 shows the problem sizes and the sequential
execution time for all applications. Problem sizes are

small due to the current limitations of the memory
mapping size in SHRIMP.

4.2 Basic Costs

Table 2 shows the costs of the basic operations on
the SHRIMP system.

Operation Time in microseconds
Message Latency 6
4K Page Transfer 180
Message Notification 53
4K Page Copy 64
Page Fault 20
Page Protection 22

Table 2: Basic operations on SHRIMP

4.3 Results

Our performance evaluation consists of two parts.
First, we evaluate the impact of using automatic update
support simply to accelerate the communication in an
all-software protocol. In particular, we implemented an
HLRC protocol that use AU to propagate diffs trans-
parently as they are produced, rather than buffering
them and sending them using a Deliberate Update (DU)
message as in standard HLRC. This eliminates the
memory overhead of buffering and sending the diff.

Second, we take full advantage of AU support at the
protocol level. We implemented AURC which eliminates
diffs altogether and propagates writes to shared data to
the remote home immediately rather than waiting for
the next release. We compare AURC with the diff-based
HLRC.

4.3.1 AU as a Communication Accelerator

The benefit of using AU to transfer diffs via fine-grained,
overlapped writes (HLRC-AU) rather than buffering
them together and sending them with DU in standard
HLRC is very small.

Figure 1 show that HLRC-AU either slightly im-
proves performance for some applications (e.g. Radix
and Ocean-square) or it slightly hurts the performance
of some others (e.g. Ocean-row, Barnes and Water-
spatial). This is because while AU reduces overhead at
the sender compared to explicit transfer, it increases the
occupancy of the sender’s and receiver’s memory buses,
possibly reducing the ability of nodes to respond quickly
to remote requests. Nonetheless, the performance effects
of this limited use of AU are small.



barnes fft lu ocean_row ocean_sq radix water-nsquared water-spatial

Applications

0

20

40

60

80

100
E

xe
cu

ti
on

 t
im

e 
(n

or
m

al
iz

ed
) Overhead

Lock

Barrier

Communication

Computation

3.1 3.1 4.3 4.3 5.8 5.9 4.5 4.4 2.1 2.1 1.8 1.8 6.7 6.7 6.6 6.5

Figure 1: Comparative performance: HLRC vs HLRC-AU. Left hand side of each pair of bars is HLRC. Number on
top of each bar is speedup.

4.3.2 Using AU to Implement AURC

Figure 2 shows the performance comparison between
HLRC and AURC. The results confirm our expectations
and hopes for AURC.

AURC significantly outperforms HLRC for applica-
tions that exhibit significant write-write false sharing:
by 15%, 20%, 52%, and 78% for Ocean-row, Barnes,
Ocean-square, and Radix, respectively. The communica-
tion in Water-Nsquared and Water-Spatial also benefits
from AURC, but overall performance does not benefit
significantly due to low communication-to-computation
ratio in these applications. Radix, an application known
for its poor performance on SVM systems [13] obtains a
substantial performance improvement. This is because
Radix performs irregularly scattered writes to remotely
allocated data in its communication phase, which leads
to a lot of diffing in HLRC but is quite well suited to the
automatic fine-grained propagation of writes in AURC.
Using AURC five applications improve their parallel
efficiency compared to HLRC, exceeding 50% with the
exception of Barnes, Ocean-square and Radix, which
come between at 20% and 40%.

On the other hand, HLRC and AURC perform sim-
ilarly for applications that exhibit little or no multiple-
writer false sharing. These applications are single-writer
applications even at page granularity, and if the pages
that a processor writes are allocated in its local memory
then there is no need for the propagation of updates to
remote homes. Thus, there is no need for diffs in HLRC,
and the AU mechanism is hardly used at all.

Detailed analysis of execution time and protocol cost
breakdowns shows that AURC does its job of eliminating
diff related overhead very well (see Table 3), without

noticeably increasing computation time or network con-
tention due to write-through page mapping and AU
traffic. This is true even in Radix which tends to stress
communication bandwidth. Thus, it appears to deliver
completely on the aspect of performance improvement
for which it was designed. The effect on overall perfor-
mance depends on the characteristics of the application
and how much time is spent in computing diffs and its
side-effects. The savings in protocol overhead (time the
processor spends executing protocol code) is more than
a factor of 4 in Radix, 3 in Barnes, and 2 in the two
Ocean applications.

As a side effect of reducing protocol overhead, the
synchronization time of both locks and barriers is also
reduced. This is because the computation of diffs
at release points dilates the critical sections protected
by lock, and hence increases the synchronization and
average wait time for a lock. This serialization and
the diff computation itself may also magnify load im-
balances among processors, causing more idle time to be
spent waiting at barriers. AURC occasionally increases
communication or synchronization time due to increased
network traffic, but we can see that such costs associated
with AURC are much smaller in applications than the
benefits that AURC affords to other components of a
program’s execution time.

Table 4 shows that by replacing diffs with AU, AURC
achieves significant savings in the number of explicit
messages (up to an order of magnitude difference in the
Radix case). In terms of data traffic the gain of AURC
due to diff elimination is smaller than the gain in number
of messages. The dominator of communication traffic
in HLRC is full page transfer. In the current system
the AU traffic cannot be measured. However, if we



barnes fft lu ocean_row ocean_sq radix water-nsquared water-spatial

Applications

0

20

40

60

80

100
E

xe
cu

ti
on

 t
im

e 
(n

or
m

al
iz

ed
) Overhead

Lock

Barrier

Communication

Computation

3.1

3.7

4.3 4.3 5.8 5.8 4.5

5.2

2.1

3.2

1.8

3.2

6.7 6.8 6.6 6.6

Figure 2: HLRC vs AURC. Left hand side of each pair of bars is HLRC. Number on top of each bar is speedup.

assume that the AU traffic in AURC is comparable to
the diff traffic in HLRC then we can conclude that the
AU traffic doesn’t contribute much to the total traffic
in AURC. The result implies that a good selection of
homes (whose writes do not generate AU) is helpful.
This agrees with the previous simulation results [12]. It
is further confirmed by the absence of visible effects of
contention in the computation time of AURC compared
to HLRC.

5 Related Work

Since shared virtual memory was first proposed ten
years ago [24], a lot of work has been done on it.
The Release Consistency (RC) model was proposed in
order to improve hardware cache coherence [10]. The
model was used to implement shared virtual memory
and reduce false sharing by allowing multiple writers [7].
Lazy Release Consistency (LRC) [22, 9] further relaxed
the RC protocol to reduce protocol overhead. Tread-
Marks [21] was the first SVM implementation using the
LRC protocol on a network of stock computers. That
implementation has achieved respectable performance
on small-scale machines.

Cashmere [23] is an eager Release Consistent (RC)
SVM protocol that implements a home-based multiple-
writer scheme using the I/O remote write operations
supported by the DEC Memory Channel network in-
terface [11] rather than AU. Memory Channel [11]
network allows remote memory to be mapped into the
local virtual address space but without a corresponding
local memory mapping. This is why writes to remote
memory are not automatically performed locally at the
same virtual address, making a software shared-memory

scheme more difficult to implement.

Cashmere has been evaluated in comparison with
TreadMarks [21], the best-known all-software dis-
tributed diff-based LRC protocol. Cashmere takes
advantage of the broadcast support provided by the
Memory Channel for update propagation and to en-
sure a total ordering. This simplifies the protocol
by eliminating the need for timestamp techniques to
preserve partial ordering. Moreover, the write propa-
gation mechanism in Memory Channel requires explicit
remote write instructions in software and therefore is
not a transparent automatic update mechanism. Be-
sides requiring explicit remote write operations to be
inserted into the executable code, Memory Channel’s
write propagation differs from that of AU in that it
allows writes to be propagated selectively. Compared
to AU, the explicit remote write operations might de-
tract from the benefits of automatic write propagation,
while the selective propagation might help performance
by reducing network traffic. For these reasons the
comparison between Cashmere and TreadMarks cannot
conclusively assess the performance benefit of zero-
software-overhead, non-selective AU support as provided
in the SHRIMP network interface.

Bianchini et al. [3] proposed a dedicated protocol
controller to offload some of the communication and
coherence overheads from the computation processor.
Using simulations they show that such a protocol pro-
cessor can double the performance of TreadMarks on a
16-node configuration and that diff prefetching is not
always beneficial.

The PLUS [4], Galactica Net [19], Merlin [25] and its
successor SESAME [28], systems implement hardware-
based shared memory using a sort of write-through



Page Diffs Diffs
Application misses created applied Lock Barriers

HLRC AURC HLRC AURC HLRC AURC Acquires
Barnes 2,517 2,498 3,398 0 3,398 0 20,468 8
FFT 2,240 2,240 0 0 0 0 1 10
LU 234 234 0 0 0 0 1 65

Ocean-row 432 443 365 0 365 0 92 399
Ocean-sq 1,822 1,740 1,785 0 1,785 0 92 399

Radix 166 166 1,941 0 1,941 0 25 10
Water-Nsquared 391 387 222 0 222 0 64 22
Water-Spatial 631 641 111 0 111 0 22 18

Table 3: Average number of operations on each node.

Update traffic Protocol traffic
Number of Message traffic Number of Message traffic

Application messages (Mbytes) messages (Mbytes)
HLRC AURC HLRC AURC HLRC AURC HLRC AURC

Barnes 5,915 2,498 10.4 10.1 39,600 32,785 2.2 2.16
FFT 2,240 2,240 9.2 9.2 4,600 4,600 0.4 0.4
LU 234 234 0.9 0.9 990 990 0.04 0.04

Ocean-row 797 443 2.0 1.4 6,782 6,063 0.15 0.13
Ocean-sq 3,607 1,740 9.1 7.0 12,130 8,478 0.4 0.32

Radix 2,107 166 2.1 0.7 4,471 589 0.15 0.09
Water-Nsquared 613 387 1.6 1.3 1,813 1,365 0.09 0.08
Water-Spatial 742 641 1.8 1.7 1,880 1,668 0.1 0.1

Table 4: Average communication traffic on each node.

mechanism which is similar in some ways to automatic
update. These systems do more in hardware, and thus
are more expensive and complicated to build. Our
automatic update mechanism propagates writes to only
a single destination node; both PLUS and Galactica
Net propagate updates along a “forwarding chain” of
nodes. Although this sounds like a simple change,
hardware forwarding of packets leads to a potential
deadlock condition, since conventional multicomputer
networks are deadlock-free only under the assumption
that every node is willing to accept an arbitrary number
of incoming packets even while its outgoing network
link is blocked. PLUS and Galactica Net both avoid
this deadlock by using deep FIFO buffers, and limiting
the number of updates which each node may have
“in flight” at a time. (The limit is eight in PLUS,
five in Galactica Net.) Our hardware is simpler, and
application performance is better, because we do not
have to enforce such a limit.

6 Conclusions

We have investigated the performance benefit of
automatic update in improving shared virtual memory
protocols, on a real hardware implementation.

Using SHRIMP, the only available platform which
supports automatic update exclusively in hardware, we
implemented and evaluated several home-based proto-
cols on a subset of SPLASH-2 applications. Our results
confirmed the expectations set by earlier simulation
studies.

First, we showed that by taking advantage of the
automatic update mechanism in the LRC protocol, one
can further improve the performance. For applications
with write-write false sharing, an AU-based multiple-
writer protocol can significantly outperform an all-
software home-based multiple-writer LRC protocol that
uses diffs. For applications without much write-write
false sharing, the two protocols perform similarly.

Second, in our experiments we did not see any effect
on the execution time due to write-through caching
and AU traffic. This says that the AU mechanism is
indeed implemented in a way that accelerates shared



virtual memory without any hidden costs, and that the
expectations from AU in such protocols is confirmed.

Acknowledgments

This work benefited greatly from discussions the
authors had with Doug Clark and Margaret Martonosi.
We thank Stefanos Damianakis for his help in improving
the quality of the presentation. This work is sponsored
in part by ARPA under contract under grant N00014-
95-1-1144, by NSF under grant MIP-9420653, by Digital
Equipment Corporation and by Intel Corporation.

References

[1] C. Amza, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel. Soft-
ware DSM Protocols that Adapt between Single Writer and
Multiple Writer. In Proceedings of the 3rd IEEE Symposium
on High-Performance Computer Architecture, 1997.

[2] BCPR Services Inc. EISA Specification, Version 3.12, 1992.

[3] R. Bianchini, L.I Kontothanassis, R. Pinto, M. De Maria,
M. Abud, and C.L. Amorim. Hiding Communication Latency
and Coherence Overhead in Software DSMs. In Proceedings
of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, October
1996.

[4] R. Bisiani and M. Ravishankar. PLUS: A Distributed
Shared-Memory System. In Proceedings of the 17th Annual
Symposium on Computer Architecture, pages 115–124, May
1990.

[5] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and
J. Sandberg. A Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer. In Proceedings of the 21st
Annual Symposium on Computer Architecture, pages 142–
153, April 1994.

[6] M.A. Blumrich, R.D. Alpert, A. Bilas, Y. Chen, D.W. Clark,
S. Damianakis, C. Dubnicki, E.W. Felten, L. Iftode, K. Li,
M. Martonosi, and R.A. Shillner. Design Choices in the
SHRIMP System: An Empirical Study. In Proceedings of
the 25th Annual Symposium on Computer Architecture, June
1998.

[7] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Imple-
mentation and Performance of Munin. In Proceedings of
the Thirteenth Symposium on Operating Systems Principles,
pages 152–164, October 1991.

[8] A.L. Cox, E. de Lara, Y.C. Hu, and W. Zwaenepoel.
Scalability of Multiple-Writer Protocols in Software Shared
Memory. In Proceedings of the 5th IEEE Symposium on High-
Performance Computer Architecture, January 1999.

[9] A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and
W. Zwaenepoel. Software Versus Hardware Shared-Memory
Implementation: A Case Study. In Proceedings of the 21st
Annual Symposium on Computer Architecture, pages 106–
117, April 1994.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In
Proceedings of the 17th Annual Symposium on Computer
Architecture, pages 15–26, May 1990.

[11] Richard Gillett. Memory Channel Network for PCI. In
Proceedings of Hot Interconnects ’95 Symposium, August
1995.

[12] L. Iftode, C. Dubnicki, E. W. Felten, and Kai Li. Improving
Release-Consistent Shared Virtual Memory using Automatic
Update. In Proceedings of the 2nd IEEE Symposium on High-
Performance Computer Architecture, February 1996.

[13] L. Iftode, J. P. Singh, and Kai Li. Understanding Application
Performance on Shared Virtual Memory. In Proceedings of
the 23rd Annual Symposium on Computer Architecture, May
1996.

[14] L. Iftode and J.P. Singh. Shared Virtual Memory: Progress
and Challenges. Proceedings of the IEEE, 87(3):498–507,
March 1999.

[15] L. Iftode, J.P. Singh, and K. Li. Scope Consistency: a Bridge
Between Release Consistency and Entry Consistency. In
Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, June 1996. Also in Theory of
Computing Systems Journal 31, 451-473 (1998).

[16] Liviu Iftode. Home-based Shared Virtual Memory. PhD
thesis, Princeton University, 1998. Technical Report TR-583-
98.

[17] Intel Corporation. Paragon XP/S Product Overview, 1991.

[18] Intel Corporation. Express Platforms Technical Product
Summary: System Overview, April 1993.

[19] Andrew W. Wilson Jr. Richard P. LaRowe Jr. and Marc J.
Teller. Hardware Assist for Distributed Shared Memory. In
Proceedings of 13th International Conference on Distributed
Computing Systems, pages 246–255, May 1993.

[20] P. Keleher. On the Importance of Being Lazy. Technical
Report UMIACS-TR-98-06, University of Maryland, College
Park, 1998.

[21] P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems. In Proceedings of the Winter
USENIX Conference, pages 115–132, January 1994.

[22] P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Consistency
for Software Distributed Shared Memory. In Proceedings
of the 19th Annual Symposium on Computer Architecture,
pages 13–21, May 1992.

[23] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas,
M. Ciernak, S. Parthasarathy, W. Meira Jr., S. Dwarkadas,
and M. Scott. VM-based Shared Memory on Low-Latency,
Remote-Memory-Access Networks. In Proceedings of the 24th
Annual Symposium on Computer Architecture, 1997.

[24] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems. In Proceedings of the 5th Annual ACM
Symposium on Principles of Distributed Computing, pages
229–239, August 1986.

[25] Creve Maples. A High-Performance, Memory-Based Inter-
connection System For Multicomputer Environments. In
Proceedings of Supercomputing ’90, pages 295–304, November
1990.

[26] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Gupta. SPLASH: Stanford Parallel Applications for Shared
Memory. Computer Architecture News, 20(1):5–44, 1992.
Also Stanford University Technical Report No. CSL-TR-92-
526, June 1992.

[27] Roger Traylor and Dave Dunning. Routing Chip Set for Intel
Paragon Parallel Supercomputer. In Proceedings of Hot Chips
’92 Symposium, August 1992.

[28] Larry D. Wittie, Gudjon Hermannsson, and Ai Li. Eager
Sharing for Efficient Massive Parallelism. In Proceedings of
the 1992 International Conference on Parall el Processing,
pages 251–255, August 1992.

[29] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two
Home-Based Lazy Release Consistency Protocols for Shared
Virtual Memory Systems. In Proceedings of the Operating
Systems Design and Implementation Symposium, October
1996.


