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Fig. 13. Experimental tracking outputs and errors of the fuzzy control system
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andm = 1. Dynamic Page Based Crossover in Linear Genetic
Programming
C. Experiment for the Amplifier-Motor System With Output Backlash

The parameters for the amplifier-motor system are M. 1. Heywood and A. N. Zincir-Heywood

rq = 2 € (armature-winding resistance)
Abstract—Page-based linear genetic programming (GP) is proposed in

ky =6.5- 107" V — s (back emf constant) which individuals are described in terms of a number of pages. Pages are
Ei=13-10"21b— ft/amp (torque constant) expressed in terms of a fixed number of instructions,which is constant for
s o . . all individuals in the population. Pairwise crossover results in the swap-
J=6.3-10""Ib— ft — & (inertia) ping of single pages, and thus, individuals are of a fixed number of instruc-
B=52-10"lb—ft—s (friction coefficient) t_ions. Hea_d-t_o-head comparison with Tree-structured GP and b_Iock-bas_ed
linear GP indicates that the page-based approach evolves succinct solutions
N =1 (gear ratio) (21)  without penalizing generalization ability.

Also, the inertia of the gear train is negligible compared to the inertia ofIndex  Terms—Benchmarking, genetic programming, homologous
the motor. For the amplifier-motor system with an output backlash, tESSOver. linear structures.

parameteré,; andk; are determined to ble; = .28, k; = .0008, by

using Algorithms 1 and 2. The parameters for the fuzzy rule base of the I. INTRODUCTION

fuzzy controller simply take the same values as used in the controllers . ) o .
for simulations. The satisfactory tracking performance of the amplifier- A Darwinist perspective on natural selection implies that a set of in-

motor system with an output backlash is illustrated in Fig. 13 to poifffviduals compete for a finite set of resources, with individuals sur-
out the efficacy of the proposed fuzzy controller. viving more frequently when they demonstrate traits that provide a

competitive advantage over those without similar traits. This represents
a general methodology used as the principle behind a set of search and
optimization techniques often referred to as evolutionary computation.

In this correspondence, a new fuzzy controller is designed for sysxamples include, but are not limited to, genetic algorithms [1], evo-
tems with uncertain output backlashes. The properties including tli€ion strategies [2] and genetic programming (GP) [3]. Each share the
stability and the steady-state error for unit step input are analyzed. Tda@ne basic principles of operation as motivated by Darwin’s concept of
proposed fuzzy controller is shown to be insensitive to the variationatural selection. Moreover, variations in features supported often dis-
of the backlash parameters. Moreover, the fuzzy control system is ifnguish between different forms of the same technique. Hence, various
dicated to be also flexible to the variations of the plant model. Furtheklection strategies differentiate between different forms of evolution
a fuzzy controller is designed for a TITO linear plant with an outputrategy and different structures often differentiate between variants of
backlash. The effectiveness of the fuzzy controller constructed is illusP [3], [4].

VIIl. CONCLUSIONS
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Typically, two search operators are employed for 1) exploring new s@Ps, however, had to wait until the mid 1990s. Nordin and Banzhof em-
lutions (mutation) and 2) exploiting current solutions (crossover) [3hhasize the highly efficient implementation of GP using a linear struc-
[4]. ture [5], [6]. Moreover, the very efficient kernel and memory footprint
This work will investigate linearly structured GP, as opposed to tHeve enabled the demonstration of mobile applications, in which indi-
more widely used tree structured individuals [3] and the effect of dif4duals are evolved on line as opposed to under simulation [6]. Huels-
ferent forms of crossover operator. A linearly structured GP, or L-GBergen has taken a different emphasis and concentrated instead on the
implies that instead of representing an individual in terms of a tree, iavolution of program iteration without explicit instruction support for
dividuals take the form of a “linear” list of instructions [5]—[9]. Execu-this in the functional set (i.e., “for,” “do-until,” and “while” loop in-
tion of an individual, therefore, mimics the process of program execstructions are not provided) [9].
tion normally associated with a simple register machine, as opposedBefore defining page-based linearly structured GP, the following
to traversing a tree structure (leaves representing an input, the rdefinitions are necessary. First, “classical” crossover for L-GP is de-
node the output). Each instruction is defined in terms of an opcode ditkd as that in which arbitrary numbers of instructions, unconstrained
operand and modifies the contents of internal registers, memory, dnydthe number of bytes or their location within an individual, are
program counter. swapped to create children. Second, homologous crossover for L-GP
The second component of interest is the crossover operator. BioldgiHows the definition used by Nordin, in which crossover is performed
cally, crossover is not “blind,” and chromosomes exist as distinct paitstweenalignedequal length “blocks” containing a variable number
each with a matchingomologouspartner [10]. Thus, only when chro- of instructions but of a fixed equal number of bytes per block [12].
mosome sequences are aligned may crossover take place; the entiections II-A and II-B define the page-based crossover, and Sec-
process is referred to as meiosis [10]. Until recently, however, crossotien 11-C summarizes the mutation operators, all of which form the
as applied in GP has been blind. Typically, the stochastic nature mbposed page-based L-GP reviewed in Section IV. Section 1I-D sum-
crossover results in individuals whose instruction count continues nearizes the instruction format.
increase with generation without a corresponding improvement in per-
formance. This is often referred to as code bloat. Some of this effect HasPage-Based Crossover Operator

been attributed to an individual attempting to protect instructions actu-The crossover operator for “page-based” L-GP results in individuals
ally contributing positively to an individual's fitness, with instructionsdefined in terms of a number of program pages (which does not change
that make no contribution. Redundant instructions effectively redugger initialization) and a page size, as measured in terms of instruc-
the likelihood that a crossover operation will decrease the fitness of @ghs per page (which are fixed for all members of the population).
individual [11]. The crossover operator merely selects those pages that are swapped

In order to address the negative effects of crossover in tree-strgetween two parents, where it is only possible to swap single pages.
tured GP, modifications such as “size fair” and homologous crossovHiis means that following the initial definition of the population, the
have been proposed [11]. Nordét al. also proposed a homologousiength of an individuaheverchanges (length measured in terms of the
crossover operator for linearly structured GP (L-GP) [12], hereaftaumber of pages and instructions per page). The number of pages each
referred to as block-based L-GP. In the work proposed here, an ingidividual may contain is selected at initialization using a uniform dis-
vidual is described in terms of a numbermefges where each page hastribution over the interval [1, max program length]. This is different
thesamenumber ofinstructions[13], [14]. Crossover is limited to the from classical L-GP as 1) the concept of pages does not exist, and 2)
exchange otingle pages between two parents; hence, unlike homahe number of instructions crossed over in classical L-GP is not con-
ogous crossover, the location of pages for crossover is unconstraingghined to be equal, resulting in changes to the number of instructions
but the number oinstructionsin an individual never changes. For theper individual.
remainder of this paper, this method is referred to as page-based L-GRs indicated by the work of Nordin, however, when GP is imple-

The purpose of the following study is, first, to identify whether thenented on CSIC architectures at the machine code level, instructions
page-based crossover operator, or fixed-length format, produces arynot of uniform length, hence, the motivation for a “block-based” ap-
obvious limits to the performance of the algorithm. In doing so, a comroach to crossover in L-GP [12]. Block-based crossover swaps equally
parison is made against results for both tree-based GP and block-basg®d” blocks of code, which may contain different numbers of in-
L-GP on benchmark problems, where no such comparison between §tructions as long as tlietal bytesper block is thesame In addition, a
early and tree-structured GP presently exists. In the case of this stusinologous crossover operator results if the two blocks happen to be
page-based L-GP is not fixed to a specific instruction set but interprefi@dthe same position in each individual. An instructioiockis there-
in a high-level language for the purposes of comparing the propertiese defined in terms of an equal numberhytesrather than an equal
of the crossover operator. (Motivations from a hardware perspective at@mber ofinstructions The principle motivation for the “blocks” con-
discussed in [13].) cept is to enable efficient crossover in variable-length instruction for-

In the following text, Section Il details the page-based crossover oats, as typically seen in CISC architectures [12]. The blocks of such
erator. Section Il evaluates the performance of tree-based GP, blogkhomologous crossover operator, therefore, need sufficient space for
based L-GP and page-based L-GP on a set of benchmark problemswioirst-case instruction bit length combinations with empty words being
nally, the results are discussed, and future directions indicated in Spadded out with NOP instructions. Describing crossover in this manner
tion IV. means that the process of addressing code for transfer between indi-
viduals during crossover is now regular (each block always contain the
same number of bytes) [12]. This is important when implementing GP
at the machine level but not when using a high-level language imple-

Interestin L-GP extends back to the late 1950s, when Friedberg c8fentation, as in the case of the results reported in Section Ill.
ducted various experiments using what would today be considered lin-
early structured individuals [7]. In 1985, Cramer directly addressed the
problem of defining turing equivalent languages that are capable ofGiven that the page-based approach fixes the number of instruc-
maintaining syntactic correctness and following modification by geions per page, where this is undoubtedly problem dependent, it would
netic operators [8]. The first working examples of linearly structurelde useful if manipulation of the number of instructions per page was

Il. LINEARLY STRUCTUREDGP

Dynamic Page-Based Crossover Operator
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possible without changing the overall number of instructions per indi- TABLE |
vidual. To do so, am priori maximurmumber of instructions per page BENCHMARK PROBLEMS
size are specified, where this is the same across all individuals. The s

lection of different page sizes is then related to the overall fitness of th Regression Problems

population. For example, maximurnpage size of 8 also permits page
sizes of 4, 2, and 1 while retaining page alignment (as measured in ir
structions not bytes). Now, assuming that it is best to start with smal
pages, hence, encouraging the identification of building blocks of smal
code sequences, the page-based L-GP begins with a page size tha
equivalent to the smallest divisor of theaximumpage size, which is
always a single instruction. Let this be the curremtrking page size. Two Xo X1 X2 10 [L10] | {xo x1 x2,
When the fitness of the population reaches a “plateau,wbeking
page size is increased to the next divisor, which, in this case, is a pag Boxes — X3 Xe Xs X3 X4 Xs}
size of two instructions, and the process is repeated untihdeeémum
page size is reached. A further plateau in the fithess function causes tl
cycle to restart at the smallest page size. For example, givexanum Binary Problems
page size of 8, the following sequencevadrking page size would be
expectedl = 2 4 = 8 = 1 = 2 =, efc. . 4Paiity | Do®D;® | 16 | (0.1} | (dodyd,

An efficient definition for a plateau in the fitness function is now
required. For this purpose, a nonoverlapping window is used, in whict ®D d;)
the best-case fitness is accumulated over the length of the window. Tt 3
result is compared with that of the previous window. If they are the
same, then the fitness is assumed to have reached a plateau, and 5 Parity D,®D;® 32 (0,1} | {dpd) ds,
workingcrossover page size is changed. In all the following work, the
window size remains fixed at ten tournaments. ...®D, d;, d,}

Naturally, the concept of a plateau used in the above definition is «
heuristic. That is to say, it can be argued that changing the page si:
based on such a definition is just as likely to increase search time ¢ 6 Parity | D,® D, ® 64 {0,1} | {dod) ds,
reduce it. The empirical observations in Section Ill demonstrate that it
practice, the above process is significantly more efficient than retainin ...®D;s ds, dy, ds}
a fixed page size.

In summary, a page-based crossover operator has been defined - ] ]
L-GP. Such a definition avoids the need to estimate additional metric Classification Problems
to ensure minimal code bloat, as in homologous crossover operato

Problem Relation Num. Input Terminal

Exemplar | range set

defined for tree-structured GPs [12], and does not need to combine tt problem | Num.input | Num. Patterns Num. Class

classical crossover operator with a homologous operator, as in blocl

based linear GP [12]. The payoff for this, however, is that individuals features ) Instances {0 (1)}

are now of fixed, as opposed to variable, length. Train (Test)

C. Mutation Operators Liver 6(1) 259(86) 200(145)
In the case of this work, two types of mutation operators are em

ployed. The first type of mutation operator is used to manipulate th¢ _peart 13(1) 227(76) 164(139)

contents in individual instructions. To do so, an instruction is randomly

selected, and then, aroR operation is performed with a second ran-

domly generated integer to create the new instruction. This is later re Breast 9(1) 524 (175) 458 (241)

ferred to as amstruction-widemutation operator. A second version is

also considered in which only a field of the instruction is selected for
mutation [6]. This is referred to d&ld specificmutation.

The second type of mutation operator was introduced to enable vari-1) opcode with internal register reference;
ation in theorder of instructions in an individual [13]. In this case, an 2) opcode with reference to input;
arbitrary pairwise swap is performed between two instructions in the 3) target register with integer constant.
sameindividual. The motivation here is that the sequence, in which in- . . . . .
structions are executed within a program, has a significant effect On%ﬁgensmn to |n_clude further |n_puts or |nte_rnal _reglsters merely_

. I, . Increases the size of the associated instruction field. The output is
solution. Thus, a program may have the correct composition oflnstrL{ck f the int | reqist iding best perf traini
tions but specified in the wrong order. aken from the internal register providing best performance on training

data. That is to say, the fitness function is estimated across all internal
registers and the single register with smallest error on training data
taken as the output for that GP individud@hereafter on validation

A two-address format is employed in which provision is made fand test data sets, this represents the output register for that individual
up to 16 internal registers, up to 16 inputs (terminal set), seven dp4]. The principle reason for this is that initialization of the population
codes (functional set)—the eighth is retained for a reserved word @exd ensuing application of search operators does not guarantee that
noting end of program—and an 8-bit integer field representing coal instructions contribute to producing a result inapriori defined
stants (0—255). Two mode bits toggle between one of three instructi@gister (unlike tree-structured GP, in which all instructions contribute
types: to the root node).

D. Page-Based Linear GP Instruction Format
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TABLE 1l TABLE IV
SEARCH OPERATOR SELECTION VERSIONS OF THEPAGE-BASED L-GP
Architecture Parameters Pneumonic Description
Page-based L-GP | P(Xover) 0.9; P(Mutate) 0.5; P(Swap) 0.9 Sud Fixed page size crossover; instruction wide
mutation operator.
Block-based L-GP P(Xover) 0.5; P(Mutate) 0.95
Bitmut Fixed page size crossover; field specific
T-GP P(Xover) 0.9; P(Mutate) 0.5
mutation operator.
TABLE I
MAX PROGRAM LIMITS AT INITIALIZATION Dyn Dynamic page size crossover; instruction wide
. L. mutation operator.
GP type Instruction (node) limit
Multi Dynamic page size crossover; field specific
64 128 256 512
mutation operator.
Page 16 pages 32 pages 64 pages 64 pages
4instr./pg | 4instr./pg | 4instr./pg | 8instr./pg TABLE V
PARAMETER SETTING FOR TWO BOXES PROBLEM
Block 32 80 80 N/a
Objective Fit curve to x; x; X3 — X4 X5 Xg
Tree 2-4 2-4 2-5 2-6
Terminal Set X1y X325 X3, X4y X5, Xg
I1l. EVALUATION
Functional Set +,-,% %

The purpose of the following study is to demonstrate the signifi
cance of the above modifications and place the results within the co
text of tree-structured GP (T-GP), as implemented using the lilgp ve
sion 1.1 [15] and the block-based L-GP [12] using a free downloa
of Discipulus version 2.0 [16]. The authors are not aware of any suc

Fitness Cases

50 random values selected over interval [0, 1]

. X ; Fitness Sum Square Error

comparative results for linearly structured GP on the discussed benc
mark problems; see Table I. The first problem—two boxes—has four
widespread recognition as a benchmark, exercising the ability of G Hits Number of cases with absolute error < 0.01
to sample multiple inputs (six) while also being simple to evaluate an
nonlinear [3], [17]. The next three problems are all examples of the b Node Limit 128
nary even parity problem, which, again, is a widely used benchma
problem [3], [17], [18]. The final set of problems is taken from a set o
widely used real-world classification problems [19]. Pop. Size 500, 125

In the case of both block-based and page-based L-GP, steady-si
tournament selection i.s hel'd between four individual's selected ra Termination Hits of 50 (success) or 200,000 evaluations
domly from the population with replacement and a maximum of 50 00
generations (tournaments) performed. This is equivalent to 50 gen (fail)
ations of a population of 4 000 individuals when using a generation
selection criterion, as in the work of Koza [3], [18]. Data is collectec . .
for 50 different initializations of the population in each experiment EXperiments 50 independent runs

Section IlI-A details the nature of the experiments performed, and Se
tion 111-B presents the results of these experiments.

Over the course of the following experiments, performance is evalu-
ated in terms of the number of instructions (nodes) in the best-case soluz

(=0.99) probability of success;

'(t, 1) cumulative probability of seeing a converging indi-
vidual in the experiment.

By convention, the instance minimizing the above relation over the con-

verging trials is quotedot). In order to reduce the significance of any

tion, convergence count, and Koza’s metric for computational effort [3],
[18]. In the latter case, this corresponds to the following expression:

log(1l — 2)

E=Txix ————— ) - .
log(1 — C(T,14)) one result, average computational efficiency (avg) will also be used.
where .
T tournament size: A. Learning Parameters
i generation at which convergence of an individual oc- Parameter selection is generally a thorny subject in learning algo-

curred; rithms as a whole, and GP is no different. By way of example, page-



384

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

TABLE VI
PAGE-BASED L-GP ON TwWO BOXES BENCHMARK PROBLEM
Num. | % Computational Effort
Algorithm | Int. Solutions (x 1000)
Reg. (50 trials) opt Avg
Population 500
2 4 8,188 9,013
std 4 8 3,769 6,347
8 12 3,101 4,071
2 None converged
bitmus 4 6 5,971 6,602
8 14 2,009 2,947
2 8 6,511 8,139
dyn 4 14 4,202 6,202
8 46 421 847
2 None converged
multi 4 6 5,033 5,778
8 4 4,091 5,528
Population 125
2 None Converged
std 4 4 17,192 19,594
8 4 3,306 3,990
2 None
bitmut 4 Converged
8 2 6,017 6,017

TABLE VI (Continued)
PAGE-BASED L-GP ON Two BOXES
BENCHMARK PROBLEM

2 6 2,030 3,055
dyn 4 10 1,480 3,988
8 10 539 1,255
2 None Converged
multi 4 2 14,173 14,173
8 2 3,994 3,994
3,500 -
Pop.500 Pop. 125
3,000 P P
2,500
2,000 mopt
1,500 — Oavg
1,000
500 - = — <
o
0 - ]
Pg Bik Tree Pg Blk Tree

Fig. 1. Two boxes problem. Computational effost 1000). “Pg” denotes
page-based L-GP. “Blk” denotes block-based L-GP. “Tree” denotes T-GP.
“n-c” denotes none converged.

« defined-field specific;

* instruction specific,

* block wide [16].
T-GP only requires a single crossover and mutation operator, although
there are different probabilities for differentiating between terminal and
internal nodes of the tree. All this means that selecting “equivalent” pa-
rameter combinations is very difficult, if not impossible. The approach
used here was, therefore, to fix major parameters such as population
size, node (instruction) limits, and register counts across an experiment,
but to experiment with crossover and mutation probabilities to achieve
a good fit across all experiments on a particular GP architecture. This
resulted in using the crossover and mutation probabilities of Table I
across all experiments.

Initialization of each architecture also differs. T-GP uses the ramped
half-half approach [18] with specific limits to the maximum size of ini-
tial individuals being selected as a function of the node limit for that
experiment. Page-based L-GP and block-based L-GP share the same
general process [6], [13], except that the page-based approach will ini-
tialize individuals against the overall maximum instruction limit on ac-

based L-GP uses crossover, an instruction-specific mutation operatont of the fixed length methodology. The block-based approach, on
and a second mutation operator to swap instructions within the sathe other hand, begins with much shorter individuals (number of in-
individual. Block-based L-GP uséso crossover operators. One is thestructions) and evolves up to the maximum instruction limit, as does
homologous operator (used in 95% of the crossover operations), drG&P. Table 1ll summarizes the respective initialization processes.

the second provides for the arbitrary interchange of blocks (which isIn all experiments, a data set is used to describe the problem, where
not aligned and allows swapping between unequal numbers of blockhjs is the same for all architectures. Experiments themselves are con-
Three mutation operators are

ducted across the aforementioned three problem types—a total of seven
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120 4 TABLE VIII
Block H Page PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS
100 M
80 4 bit even parity
60 4 Hpop 500 ;
Opop 125 % Solutioas Comp. Eff.
40 A
Algorithm Pop size (50 trials) (opt) x1000
20 A =
?
o/ M° 75 58 711
Tree 2Reg. 4Reg. 8Reg. 2Reg. 4Reg. 8Reg.
std 125 56 1,007
Fig. 2. Two boxes problem. Average solution length-¢" denotes none
converged. With respect to page and block-based L-GP. “2 Reg.” denotes two
registers. “4 Reg.” denotes four registers. “8 Reg.” denotes eight registers. 500 32 2,241
75 66 630
TABLE VII
PARAMETER SETTING FOREVEN PARTY PROBLEMS
bitmut 125 54 1,175
Objective Find a Boolean function matching that of the 4
500 54 993
(5), {6}-bit even parity problem(s)
75 90 372
Terminal Set dy, d;, dy, ds, {(dy), ds }
dyn 125 82 480
Functional Set | AND, OR, NAND, NOR
500 72 553
. 4 155\ (6 -
Fitness Cases | All 2" (2°) {2°} combinations of the Boolean 75 74 535
arguments
multi 125 74 447
Fit Number of matching fitness cases
itness umber of matching fitn 500 % 439
Hits As per ‘Fitness’ 5 bit even parity
Node Limit 512 75 16 4,625
Pop. Size 500, 125, 75 Std 125 22 3,604
o . . . 500 14 6,011
Termination Hits matching the number of Fitness Cases
(success) or 200,000 evaluations (fail) 75 20 2,578
Experiments 50 independent runs Bitmut 125 12 3,584
500 10 8,031
unique problems—for various different population and maximum node 75 30 2,314
(instruction) limits; see Tables V, VII, and IX. Historically, GP is ap-

plied with a large population and low level of mutation, with the hy-
pothesis that the code for the correct solution exists in the populati'fr?
and that crossover is the principle search operator. In this work, we 7
interested in a relatively small population and, therefore, use hig
levels of mutation. In addition, several experiments are conducted using .

different maximum node (instruction) limits. We are therefore asking: >imulation Study

if solutions can be evolved that are robust to population and max-1) Two Boxes ProblemTable V summarizes parameter selection
imum instruction limits, where the latter is particularly important irfor the volume difference problem. Experiments are conducted using
the case of fixed-length individuals. Finally, we are also interested two, four, and eight internal registers, a maximum of 128 instructions

ntifying the significance of the different search operators detailed
page-based L-GP (see Section II-C), where there are four possible
hvﬁal,riants; see Table IV.
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TABLE VIII (Continued) 14,000 -
PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS 12,000 ﬁ_ 500 Pop. 125 |E p. 75
Dyn 125 22 3,117 10,000 -
8,000 -
500 2 3,684 Wopt
6,000 Davg
75 32 2,004 4,000 | |
multi 125 14 3,929 2,000 1 B
0 4
500 24 3,239 Tree Pg Tree Pg Tree Pg
6 bit even parity Fig. 3. Five-bit even parity problem. Computational effoxt1000). “Tree”
denotes T-GP and “Pg” page-based L-GP. “Pop. N” denotes a population of
size “N."
75 0 Non
1,600 -
std converge 1,400 Pop. 500 Pop. 125 Pop. 75
125 2 17,915 1,200
— .
1,000
500 Non converge 800 Wopt
Davg
75 3 11,560 600
400 A = =
bitmut 125 6 12,854 200 - - -
0 v
500 2 30,032 Tree Pg Tree Pg Tree Pg
75 12 5.896 Fig. 4. Four-bit even parity problem. Computational effortl000). “Tree”
’ denotes T-GP, and “Pg” page-based L-GP. “Pop. N” denotes a population of
size “N."
dyn 125 20 3,760
480
6 parity —  Sparity _ 4 parity
500 2 40,447 460
440 -
75 6 11,587 420 |
multi 125 0 Non 4001 | OTree
380 - a WPy
converge 360 |
500 6 14,418 840 7 1
320 H
300 - H

500 125 75 500 125 75 500 125 75
and two different population limits (500 and 125). Table VI summarizes

performance of the proposed page-based L-GP. Fig.5. Even parity problem. Average solution length. No T-GP cases converge
For page-based L-GP, thiyn algorithm provides the most robust©On six-parity; 500, 125, and 75 denote population sizes.
performance with the highest number of converging cases and most
consistent computational effort under all register conditions Table \dight internal registers, a maximum of 512 instructions, and three
This is particularly apparent for the experiments using a smaller pagifferent population limits (500, 125, and 75). Given the length of the
ulation size, where cases not using dynamic page sizing either did matividuals, a (maximum) page size of eight instructions is employed
converge or produced a very high computational effort. in the page-based L-GP. Table VIIIl summarizes the performance of
In comparison to block-based L-GP and T-GP (see Figlyi)page- the proposed page-based L-GP.
based L-GP yields the most consistent computational effort and sig-Thedynalgorithm again provides the most consistent computational
nificantly shorter solutions (four-register solutions best for block areffort and percentage of converging solutions. Moreover, the next best
page-based L-GP). T-GP was only able to converge when using #igorithm ismulti, indicating that the most significant parameter in this
larger population of 500; see Fig. 2. problem is dynamic paging.
2) Parity Problems: Table VII summarizes parameter selections Block-based L-GP did not provide a functional set with logical
for the three even parity problems. Experiments are conducted usoperators; hence, the following companhs page-based L-GP and
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TABLE IX TABLE X
PARAMETER SETTING FOR CLASSIFICATION PROBLEMS C5.0 TEST SET CLASSIFICATION ERROR
Objective Find a function correctly classifying the data Problem Test Set Classification
set Liver 65.1%
Terminal Set dy,...,d, where k is the problem specific set of Breast 95.4%
features (table II). C-heart 75%
Constants as per table IV.
256 Max. Instr. 128 Max. Instr. 64 Max. Instr.
Functional Set | +, —, *, %, cos, sin, arg? — 1 74 7 ] ] M-
Fitness Cases See table IT 72 T A A it 1r—ir
" . 70 -— 1 |mave.
Fitness Number of matching fitness cases vag
est
68 +— —
Hits As per ‘Fitness’
66 - — H = - — 1}
Node Limit 64, 128, 256 I i l
64 4 ‘Vj—‘—l — —r—-— —
Pg Bk Tree Pg Bk Tree Pg Blk Tree
Pop. Size 125
Fig. 6. Test classification accuracy. Liver data set. “Pg” denotes page-based
L-GP, “BIk” block-based L-GP, and “Tree” T-GP. “N Max. Instr.” denotes a
Wrapper IF arg < 0.5 THEN class 0; ELSE class 1 maximum instruction (node) limit of ¥.”
Termination Hits matching the number of Fitness Cases 90 - 64 Max. Instr.
256 Max. Instr. 128 Max. Instr.
(success) or 200,000 evaluations (fail)
85
Experiments 50 independent runs 80 | l_ |_
Havg.
Obest
75
T-GP alone; see Figs. 3-5. Here, T-GP did not converge at all for t
six-parity problem. Computational effort of T-GP on the five-parity 70 7
problem was high or biased by a single good converging case (
population of 125), whereas the page-based L-GP case was biz g5 -

toward the smaller population sizes. On the four-parity probler Pg Bk Tree Pg Bk Tree Pg Blk Tree
this characteristic was emphasized further, with T-GP favoring a assificat Coheartd ¢ Pa deno based
larger popL.JIatlon'and page-pased L-GP a smaller populatlon (tﬁi%g’-“Brlgféﬁ)iifg;aégtgg’u;Cél.“Tre:?th_ (;t:éfﬁ 'Mag. Inesrtll?”edse?\?)%ees gse
effect ppssmly being emphasized by the different selection metho ximum instruction (node) limit ofX7.”
generational versus steady state).
The average length of the converging cases (see Fig. 5) emphasizes
a general tendency to use longer solutions on the more difficult taskégs. 6-8 summarize test set accuracy for the three problems using GP.
with T-GP being more biased by the different sized populations.  All GP architectures produce best-case classification in excess of the
3) Classification Problems:As indicated in Table I, all three GP C5.0 base line.
architectures are evaluated on three classification benchmarks as an eXhe Liver problem (see Fig. 6) represented the most difficult problem
ample of operation on real-world data sets. In addition, the C5.0 algor all architectures. Page-based L-GP consistently produces the best
rithm is used to establish base-line classification accuracy for the ppeak-case (best) and average classification (avg.) accuracies indepen-
ticular partition of training and test data used here. Specifically, 258@nt of maximum instruction counts. Neither block-based L-GP nor
of the data is used for test, and 75% is used for training. In the caseTeGP consistently out performed each other on this data set. On the
page-based L-GP, ttdynalgorithm is used in all cases. C-heart problem (see Fig. 7), a similar pattern is followed with the ex-
Table IX summarizes parameter selections for the three classificatimeption of block-based L-GP at the 64-instruction limit, for which the
problems. Experiments are conducted using four internal registerdyest-case performance on this data set is produced. T-GP was consis-
maximum of 64, 128, and 256 instructions; and a population of 12&ntly the worst performing architecture on this problem. The Breast
C5.0 base-line test classification accuracy is summarized in Tablec@ancer data (see Fig. 8) resulted in all methods returning equally good
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995, 256Max.Instr. , 128 Max.Instr. , 64 Max. Instr. in the case of page-based L-GP in the two-register address instruction

format investigated, field-specific mutation operators do not provide
99 4 — 1 1 [ — any advantage over instruction specific mutation.

Future work will address support for dynamically changing the

98.5 1 - — I number of registers, where this is used as a partial solution to evolving
mavg. variable length individuals. That is to say, the smaller (greater) the
98 1 [ EEEEEE | | I7 |Obest| Number of registers, the higher (lower) the effective length of an indi-
vidual, and the more (less) brittle an individual’s code is to incorrect

97.5 1 H IRk | instruction sequences. Finally, the authors are also interested in the

97 | | L] i | use of the page-based concept to introduce program structure into the

process of evolution, for example, in terms of loop and conditional
| B L constructs.
Pg Blk Tree Pg Bk Tree Pg Bk  Tree

96.5 -
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