
380 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

Fig. 13. Experimental tracking outputs and errors of the fuzzy control system
with linear plant and output backlashd = 1 (solid line),d = 1:5 (dashed line),
andm = 1.

C. Experiment for the Amplifier-Motor System With Output Backlash

The parameters for the amplifier-motor system are

ra = 2
 (armature-winding resistance)

kb = 6:5 � 10�2 V � s (back emf constant)

ki = 1:3 � 10�3 lb � ft=amp (torque constant)

J = 6:3 � 10�5 lb � ft � s2 (inertia)

B = 5:2 � 10�5 lb � ft � s (friction coefficient)

N = 1 (gear ratio): (21)

Also, the inertia of the gear train is negligible compared to the inertia of
the motor. For the amplifier-motor system with an output backlash, the
parameterskd andki are determined to bekd = :28, ki = :0008, by
using Algorithms 1 and 2. The parameters for the fuzzy rule base of the
fuzzy controller simply take the same values as used in the controllers
for simulations. The satisfactory tracking performance of the amplifier-
motor system with an output backlash is illustrated in Fig. 13 to point
out the efficacy of the proposed fuzzy controller.

VIII. C ONCLUSIONS

In this correspondence, a new fuzzy controller is designed for sys-
tems with uncertain output backlashes. The properties including the
stability and the steady-state error for unit step input are analyzed. The
proposed fuzzy controller is shown to be insensitive to the variations
of the backlash parameters. Moreover, the fuzzy control system is in-
dicated to be also flexible to the variations of the plant model. Further,
a fuzzy controller is designed for a TITO linear plant with an output
backlash. The effectiveness of the fuzzy controller constructed is illus-
trated by the simulation and experimental results.

REFERENCES

[1] D. Drainkov, H. Hellendoorn, and M. Reinfrank,An Introduction to
Fuzzy Control. New York: Springer-Verlag, 1994.

[2] M. Grundelius and D. Angeli, “Adaptive control of systems with back-
lash acting on the input,” inProc. 35th Conf. Decision and Control, Dec.
1996, pp. 4689–4694.

[3] B. Kosko,Neturak Network and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[4] C. C. Lee, “Fuzzy logic in control system: Fuzzy logic controller—Part
I,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404–418, Apr. 1990.

[5] C. F. Lin, T. J. Yu, and X. Feng, “Fuzzy Control of a nonlinear pointing
testbed with backlash and friction,” inProc. 35th Conf. Decision and
Control, Dec. 1996, pp. 4363–4368.

[6] K. Ogata,Modern Control Engineering. Englewood Cliffs, NJ: Pren-
tice-Hall, 1970.

[7] J. E. Slotine and W. Li,Applied Nonlinear Control. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

[8] G. Tao and P. Kokotovic, “Adaptive control of system with backlash,”
IEEE Trans. Automat. Contr., vol. 40, no. 2, pp. 326–330, 1995.

[9] , “Adaptive control of system with unknown output backlash,”Au-
tomatica, vol. 29, no. 2, pp. 330–335, 1995.

[10] J. S. Taur and C. W. Tao, “Design and analysis of region-wish linear
fuzzy controllers,” IEEE Trans. Syst., Man, Cybern., vol. 27, pp.
523–532, June 1994.

[11] K. T. Woo, L. X. Wang, F. L. Lewis, and Z. X. Li, “A fuzzy system
compensator for backlash,” inProc. IEEE Int. Conf. Robotics and Au-
tomation, May 1998, pp. 181–186.

[12] L. A. Zadeh, “Fuzzy Sets,”Inf. Control., vol. 8, pp. 338–353, June 1995.

Dynamic Page Based Crossover in Linear Genetic
Programming

M. I. Heywood and A. N. Zincir-Heywood

Abstract—Page-based linear genetic programming (GP) is proposed in
which individuals are described in terms of a number of pages. Pages are
expressed in terms of a fixed number of instructions,which is constant for
all individuals in the population. Pairwise crossover results in the swap-
ping of single pages, and thus, individuals are of a fixed number of instruc-
tions. Head-to-head comparison with Tree-structured GP and block-based
linear GP indicates that the page-based approach evolves succinct solutions
without penalizing generalization ability.

Index Terms—Benchmarking, genetic programming, homologous
crossover, linear structures.

I. INTRODUCTION

A Darwinist perspective on natural selection implies that a set of in-
dividuals compete for a finite set of resources, with individuals sur-
viving more frequently when they demonstrate traits that provide a
competitive advantage over those without similar traits. This represents
a general methodology used as the principle behind a set of search and
optimization techniques often referred to as evolutionary computation.
Examples include, but are not limited to, genetic algorithms [1], evo-
lution strategies [2] and genetic programming (GP) [3]. Each share the
same basic principles of operation as motivated by Darwin’s concept of
natural selection. Moreover, variations in features supported often dis-
tinguish between different forms of the same technique. Hence, various
selection strategies differentiate between different forms of evolution
strategy and different structures often differentiate between variants of
GP [3], [4].

In the case of GP, an individual takes the form of executable code;
hence “running” the program determines an individuals’ fitness. In
order to apply GP, it is necessary to define the “instructions” from
which programs are composed; this is often referred to as the functional
set. The principle constraint on such a set being that it should provide
syntactic closure and require one or more arguments [3], [4]. In addi-
tion, a terminal set is provided, consisting of zero argument instruc-
tions, typically representing inputs from the environment or constants.

Manuscript received January 22, 2001; revised December 27, 2001. This
work was supported by NSERC Research Grants. This paper was recommended
by Associate Editor L. O. Hall

The authors are with the Faculty of Computer Science, University of Dal-
housie, Halifax, NS B3H 1W5, Canada (e-mail: mheywood@cs.dal.ca).

Publisher Item Identifier S 1083-4419(02)03007-8.

1083–4419/02$17.00 © 2002 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002 381

Typically, two search operators are employed for 1) exploring new so-
lutions (mutation) and 2) exploiting current solutions (crossover) [3],
[4].

This work will investigate linearly structured GP, as opposed to the
more widely used tree structured individuals [3] and the effect of dif-
ferent forms of crossover operator. A linearly structured GP, or L-GP,
implies that instead of representing an individual in terms of a tree, in-
dividuals take the form of a “linear” list of instructions [5]–[9]. Execu-
tion of an individual, therefore, mimics the process of program execu-
tion normally associated with a simple register machine, as opposed
to traversing a tree structure (leaves representing an input, the root
node the output). Each instruction is defined in terms of an opcode and
operand and modifies the contents of internal registers, memory, and
program counter.

The second component of interest is the crossover operator. Biologi-
cally, crossover is not “blind,” and chromosomes exist as distinct pairs,
each with a matchinghomologouspartner [10]. Thus, only when chro-
mosome sequences are aligned may crossover take place; the entire
process is referred to as meiosis [10]. Until recently, however, crossover
as applied in GP has been blind. Typically, the stochastic nature of
crossover results in individuals whose instruction count continues to
increase with generation without a corresponding improvement in per-
formance. This is often referred to as code bloat. Some of this effect has
been attributed to an individual attempting to protect instructions actu-
ally contributing positively to an individual’s fitness, with instructions
that make no contribution. Redundant instructions effectively reduce
the likelihood that a crossover operation will decrease the fitness of an
individual [11].

In order to address the negative effects of crossover in tree-struc-
tured GP, modifications such as “size fair” and homologous crossover
have been proposed [11]. Nordinet al. also proposed a homologous
crossover operator for linearly structured GP (L-GP) [12], hereafter
referred to as block-based L-GP. In the work proposed here, an indi-
vidual is described in terms of a number ofpages, where each page has
thesamenumber ofinstructions[13], [14]. Crossover is limited to the
exchange ofsinglepages between two parents; hence, unlike homol-
ogous crossover, the location of pages for crossover is unconstrained,
but the number ofinstructionsin an individual never changes. For the
remainder of this paper, this method is referred to as page-based L-GP.

The purpose of the following study is, first, to identify whether the
page-based crossover operator, or fixed-length format, produces any
obvious limits to the performance of the algorithm. In doing so, a com-
parison is made against results for both tree-based GP and block-based
L-GP on benchmark problems, where no such comparison between lin-
early and tree-structured GP presently exists. In the case of this study,
page-based L-GP is not fixed to a specific instruction set but interpreted
in a high-level language for the purposes of comparing the properties
of the crossover operator. (Motivations from a hardware perspective are
discussed in [13].)

In the following text, Section II details the page-based crossover op-
erator. Section III evaluates the performance of tree-based GP, block-
based L-GP and page-based L-GP on a set of benchmark problems. Fi-
nally, the results are discussed, and future directions indicated in Sec-
tion IV.

II. L INEARLY STRUCTUREDGP

Interest in L-GP extends back to the late 1950s, when Friedberg con-
ducted various experiments using what would today be considered lin-
early structured individuals [7]. In 1985, Cramer directly addressed the
problem of defining turing equivalent languages that are capable of
maintaining syntactic correctness and following modification by ge-
netic operators [8]. The first working examples of linearly structured

GPs, however, had to wait until the mid 1990s. Nordin and Banzhof em-
phasize the highly efficient implementation of GP using a linear struc-
ture [5], [6]. Moreover, the very efficient kernel and memory footprint
have enabled the demonstration of mobile applications, in which indi-
viduals are evolved on line as opposed to under simulation [6]. Huels-
bergen has taken a different emphasis and concentrated instead on the
evolution of program iteration without explicit instruction support for
this in the functional set (i.e., “for,” “do-until,” and “while” loop in-
structions are not provided) [9].

Before defining page-based linearly structured GP, the following
definitions are necessary. First, “classical” crossover for L-GP is de-
fined as that in which arbitrary numbers of instructions, unconstrained
by the number of bytes or their location within an individual, are
swapped to create children. Second, homologous crossover for L-GP
follows the definition used by Nordin, in which crossover is performed
betweenalignedequal length “blocks” containing a variable number
of instructions but of a fixed equal number of bytes per block [12].

Sections II-A and II-B define the page-based crossover, and Sec-
tion II-C summarizes the mutation operators, all of which form the
proposed page-based L-GP reviewed in Section IV. Section II-D sum-
marizes the instruction format.

A. Page-Based Crossover Operator

The crossover operator for “page-based” L-GP results in individuals
defined in terms of a number of program pages (which does not change
after initialization) and a page size, as measured in terms of instruc-
tions per page (which are fixed for all members of the population).
The crossover operator merely selects those pages that are swapped
between two parents, where it is only possible to swap single pages.
This means that following the initial definition of the population, the
length of an individualneverchanges (length measured in terms of the
number of pages and instructions per page). The number of pages each
individual may contain is selected at initialization using a uniform dis-
tribution over the interval [1, max program length]. This is different
from classical L-GP as 1) the concept of pages does not exist, and 2)
the number of instructions crossed over in classical L-GP is not con-
strained to be equal, resulting in changes to the number of instructions
per individual.

As indicated by the work of Nordin, however, when GP is imple-
mented on CSIC architectures at the machine code level, instructions
are not of uniform length, hence, the motivation for a “block-based” ap-
proach to crossover in L-GP [12]. Block-based crossover swaps equally
“sized” blocks of code, which may contain different numbers of in-
structions as long as thetotal bytesper block is thesame. In addition, a
homologous crossover operator results if the two blocks happen to be
in the same position in each individual. An instructionblock is there-
fore defined in terms of an equal number ofbytesrather than an equal
number ofinstructions. The principle motivation for the “blocks” con-
cept is to enable efficient crossover in variable-length instruction for-
mats, as typically seen in CISC architectures [12]. The blocks of such
a homologous crossover operator, therefore, need sufficient space for
worst-case instruction bit length combinations with empty words being
padded out with NOP instructions. Describing crossover in this manner
means that the process of addressing code for transfer between indi-
viduals during crossover is now regular (each block always contain the
same number of bytes) [12]. This is important when implementing GP
at the machine level but not when using a high-level language imple-
mentation, as in the case of the results reported in Section III.

B. Dynamic Page-Based Crossover Operator

Given that the page-based approach fixes the number of instruc-
tions per page, where this is undoubtedly problem dependent, it would
be useful if manipulation of the number of instructions per page was

382 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

possible without changing the overall number of instructions per indi-
vidual. To do so, ana priori maximumnumber of instructions per page
size are specified, where this is the same across all individuals. The se-
lection of different page sizes is then related to the overall fitness of the
population. For example, amaximumpage size of 8 also permits page
sizes of 4, 2, and 1 while retaining page alignment (as measured in in-
structions not bytes). Now, assuming that it is best to start with small
pages, hence, encouraging the identification of building blocks of small
code sequences, the page-based L-GP begins with a page size that is
equivalent to the smallest divisor of themaximumpage size, which is
always a single instruction. Let this be the currentworkingpage size.
When the fitness of the population reaches a “plateau,” theworking
page size is increased to the next divisor, which, in this case, is a page
size of two instructions, and the process is repeated until themaximum
page size is reached. A further plateau in the fitness function causes the
cycle to restart at the smallest page size. For example, given amaximum
page size of 8, the following sequence ofworkingpage size would be
expected:1 ! 2 ! 4 ! 8 ! 1 ! 2 !, etc.

An efficient definition for a plateau in the fitness function is now
required. For this purpose, a nonoverlapping window is used, in which
the best-case fitness is accumulated over the length of the window. The
result is compared with that of the previous window. If they are the
same, then the fitness is assumed to have reached a plateau, and the
workingcrossover page size is changed. In all the following work, the
window size remains fixed at ten tournaments.

Naturally, the concept of a plateau used in the above definition is a
heuristic. That is to say, it can be argued that changing the page size
based on such a definition is just as likely to increase search time as
reduce it. The empirical observations in Section III demonstrate that in
practice, the above process is significantly more efficient than retaining
a fixed page size.

In summary, a page-based crossover operator has been defined for
L-GP. Such a definition avoids the need to estimate additional metrics
to ensure minimal code bloat, as in homologous crossover operators
defined for tree-structured GPs [12], and does not need to combine the
classical crossover operator with a homologous operator, as in block-
based linear GP [12]. The payoff for this, however, is that individuals
are now of fixed, as opposed to variable, length.

C. Mutation Operators

In the case of this work, two types of mutation operators are em-
ployed. The first type of mutation operator is used to manipulate the
contents in individual instructions. To do so, an instruction is randomly
selected, and then, anX-OR operation is performed with a second ran-
domly generated integer to create the new instruction. This is later re-
ferred to as aninstruction-widemutation operator. A second version is
also considered in which only a field of the instruction is selected for
mutation [6]. This is referred to asfield specificmutation.

The second type of mutation operator was introduced to enable vari-
ation in theorder of instructions in an individual [13]. In this case, an
arbitrary pairwise swap is performed between two instructions in the
sameindividual. The motivation here is that the sequence, in which in-
structions are executed within a program, has a significant effect on the
solution. Thus, a program may have the correct composition of instruc-
tions but specified in the wrong order.

D. Page-Based Linear GP Instruction Format

A two-address format is employed in which provision is made for
up to 16 internal registers, up to 16 inputs (terminal set), seven op-
codes (functional set)—the eighth is retained for a reserved word de-
noting end of program—and an 8-bit integer field representing con-
stants (0–255). Two mode bits toggle between one of three instruction
types:

TABLE I
BENCHMARK PROBLEMS

1) opcode with internal register reference;
2) opcode with reference to input;
3) target register with integer constant.

Extension to include further inputs or internal registers merely
increases the size of the associated instruction field. The output is
taken from the internal register providing best performance on training
data. That is to say, the fitness function is estimated across all internal
registers and the single register with smallest error on training data
taken as the output for that GP individual.Thereafter, on validation
and test data sets, this represents the output register for that individual
[14]. The principle reason for this is that initialization of the population
and ensuing application of search operators does not guarantee that
all instructions contribute to producing a result in ana priori defined
register (unlike tree-structured GP, in which all instructions contribute
to the root node).

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002 383

TABLE II
SEARCH OPERATORSELECTION

TABLE III
MAX PROGRAM LIMITS AT INITIALIZATION

III. EVALUATION

The purpose of the following study is to demonstrate the signifi-
cance of the above modifications and place the results within the con-
text of tree-structured GP (T-GP), as implemented using the lilgp ver-
sion 1.1 [15] and the block-based L-GP [12] using a free download
of Discipulus version 2.0 [16]. The authors are not aware of any such
comparative results for linearly structured GP on the discussed bench-
mark problems; see Table I. The first problem—two boxes—has found
widespread recognition as a benchmark, exercising the ability of GP
to sample multiple inputs (six) while also being simple to evaluate and
nonlinear [3], [17]. The next three problems are all examples of the bi-
nary even parity problem, which, again, is a widely used benchmark
problem [3], [17], [18]. The final set of problems is taken from a set of
widely used real-world classification problems [19].

In the case of both block-based and page-based L-GP, steady-state
tournament selection is held between four individuals selected ran-
domly from the population with replacement and a maximum of 50 000
generations (tournaments) performed. This is equivalent to 50 gener-
ations of a population of 4 000 individuals when using a generational
selection criterion, as in the work of Koza [3], [18]. Data is collected
for 50 different initializations of the population in each experiment.
Section III-A details the nature of the experiments performed, and Sec-
tion III-B presents the results of these experiments.

Over the course of the following experiments, performance is evalu-
ated in terms of the number of instructions (nodes) in the best-case solu-
tion, convergence count, and Koza’s metric for computational effort [3],
[18]. In the latter case, this corresponds to the following expression:

E = T � i�
log(1� z)

log(1� C(T; i))

where
T tournament size;
i generation at which convergence of an individual oc-

curred;

TABLE IV
VERSIONS OF THEPAGE-BASED L-GP

TABLE V
PARAMETER SETTING FORTWO BOXES PROBLEM

z(= 0:99) probability of success;
C(t; i) cumulative probability of seeing a converging indi-

vidual in the experiment.
By convention, the instance minimizing the above relation over the con-
verging trials is quoted (opt). In order to reduce the significance of any
one result, average computational efficiency (avg) will also be used.

A. Learning Parameters

Parameter selection is generally a thorny subject in learning algo-
rithms as a whole, and GP is no different. By way of example, page-

384 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

TABLE VI
PAGE-BASED L-GP ON TWO BOXES BENCHMARK PROBLEM

based L-GP uses crossover, an instruction-specific mutation operator,
and a second mutation operator to swap instructions within the same
individual. Block-based L-GP usestwocrossover operators. One is the
homologous operator (used in 95% of the crossover operations), and
the second provides for the arbitrary interchange of blocks (which is
not aligned and allows swapping between unequal numbers of blocks).
Three mutation operators are

TABLE VI (Continued)
PAGE-BASED L-GP ON TWO BOXES

BENCHMARK PROBLEM

Fig. 1. Two boxes problem. Computational effort (�1000). “Pg” denotes
page-based L-GP. “Blk” denotes block-based L-GP. “Tree” denotes T-GP.
“n-c” denotes none converged.

• defined-field specific;
• instruction specific,
• block wide [16].

T-GP only requires a single crossover and mutation operator, although
there are different probabilities for differentiating between terminal and
internal nodes of the tree. All this means that selecting “equivalent” pa-
rameter combinations is very difficult, if not impossible. The approach
used here was, therefore, to fix major parameters such as population
size, node (instruction) limits, and register counts across an experiment,
but to experiment with crossover and mutation probabilities to achieve
a good fit across all experiments on a particular GP architecture. This
resulted in using the crossover and mutation probabilities of Table II
across all experiments.

Initialization of each architecture also differs. T-GP uses the ramped
half-half approach [18] with specific limits to the maximum size of ini-
tial individuals being selected as a function of the node limit for that
experiment. Page-based L-GP and block-based L-GP share the same
general process [6], [13], except that the page-based approach will ini-
tialize individuals against the overall maximum instruction limit on ac-
count of the fixed length methodology. The block-based approach, on
the other hand, begins with much shorter individuals (number of in-
structions) and evolves up to the maximum instruction limit, as does
T-GP. Table III summarizes the respective initialization processes.

In all experiments, a data set is used to describe the problem, where
this is the same for all architectures. Experiments themselves are con-
ducted across the aforementioned three problem types—a total of seven

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002 385

Fig. 2. Two boxes problem. Average solution length. “n-c” denotes none
converged. With respect to page and block-based L-GP. “2 Reg.” denotes two
registers. “4 Reg.” denotes four registers. “8 Reg.” denotes eight registers.

TABLE VII
PARAMETER SETTING FOREVEN PARTY PROBLEMS

unique problems—for various different population and maximum node
(instruction) limits; see Tables V, VII, and IX. Historically, GP is ap-
plied with a large population and low level of mutation, with the hy-
pothesis that the code for the correct solution exists in the population
and that crossover is the principle search operator. In this work, we are
interested in a relatively small population and, therefore, use higher
levels of mutation. In addition, several experiments are conducted using
different maximum node (instruction) limits. We are therefore asking
if solutions can be evolved that are robust to population and max-
imum instruction limits, where the latter is particularly important in
the case of fixed-length individuals. Finally, we are also interested in

TABLE VIII
PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS

identifying the significance of the different search operators detailed
for page-based L-GP (see Section II-C), where there are four possible
variants; see Table IV.

B. Simulation Study

1) Two Boxes Problem:Table V summarizes parameter selection
for the volume difference problem. Experiments are conducted using
two, four, and eight internal registers, a maximum of 128 instructions

386 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

TABLE VIII (Continued)
PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS

and two different population limits (500 and 125). Table VI summarizes
performance of the proposed page-based L-GP.

For page-based L-GP, thedyn algorithm provides the most robust
performance with the highest number of converging cases and most
consistent computational effort under all register conditions Table VI.
This is particularly apparent for the experiments using a smaller pop-
ulation size, where cases not using dynamic page sizing either did not
converge or produced a very high computational effort.

In comparison to block-based L-GP and T-GP (see Fig. 1),dynpage-
based L-GP yields the most consistent computational effort and sig-
nificantly shorter solutions (four-register solutions best for block and
page-based L-GP). T-GP was only able to converge when using the
larger population of 500; see Fig. 2.

2) Parity Problems: Table VII summarizes parameter selections
for the three even parity problems. Experiments are conducted using

Fig. 3. Five-bit even parity problem. Computational effort (�1000). “Tree”
denotes T-GP and “Pg” page-based L-GP. “Pop. N” denotes a population of
size “N .”

Fig. 4. Four-bit even parity problem. Computational effort (�1000). “Tree”
denotes T-GP, and “Pg” page-based L-GP. “Pop. N” denotes a population of
size “N .”

Fig. 5. Even parity problem. Average solution length. No T-GP cases converge
on six-parity; 500, 125, and 75 denote population sizes.

eight internal registers, a maximum of 512 instructions, and three
different population limits (500, 125, and 75). Given the length of the
individuals, a (maximum) page size of eight instructions is employed
in the page-based L-GP. Table VIII summarizes the performance of
the proposed page-based L-GP.

Thedynalgorithm again provides the most consistent computational
effort and percentage of converging solutions. Moreover, the next best
algorithm ismulti, indicating that the most significant parameter in this
problem is dynamic paging.

Block-based L-GP did not provide a functional set with logical
operators; hence, the following comparesdyn page-based L-GP and

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002 387

TABLE IX
PARAMETER SETTING FORCLASSIFICATION PROBLEMS

T-GP alone; see Figs. 3–5. Here, T-GP did not converge at all for the
six-parity problem. Computational effort of T-GP on the five-parity
problem was high or biased by a single good converging case (cf.
population of 125), whereas the page-based L-GP case was biased
toward the smaller population sizes. On the four-parity problem,
this characteristic was emphasized further, with T-GP favoring a
larger population and page-based L-GP a smaller population (this
effect possibly being emphasized by the different selection methods;
generational versus steady state).

The average length of the converging cases (see Fig. 5) emphasizes
a general tendency to use longer solutions on the more difficult tasks,
with T-GP being more biased by the different sized populations.

3) Classification Problems:As indicated in Table I, all three GP
architectures are evaluated on three classification benchmarks as an ex-
ample of operation on real-world data sets. In addition, the C5.0 algo-
rithm is used to establish base-line classification accuracy for the par-
ticular partition of training and test data used here. Specifically, 25%
of the data is used for test, and 75% is used for training. In the case of
page-based L-GP, thedynalgorithm is used in all cases.

Table IX summarizes parameter selections for the three classification
problems. Experiments are conducted using four internal registers; a
maximum of 64, 128, and 256 instructions; and a population of 125.
C5.0 base-line test classification accuracy is summarized in Table X.

TABLE X
C5.0 TEST SET CLASSIFICATION ERROR

Fig. 6. Test classification accuracy. Liver data set. “Pg” denotes page-based
L-GP, “Blk” block-based L-GP, and “Tree” T-GP. “N Max. Instr.” denotes a
maximum instruction (node) limit of “N .”

Fig. 7. Test classification accuracy. C-heart data set. “Pg” denotes page-based
L-GP, “Blk” block-based L-GP, and “Tree” T-GP. “N Max. Instr.” denotes a
maximum instruction (node) limit of “N .”

Figs. 6–8 summarize test set accuracy for the three problems using GP.
All GP architectures produce best-case classification in excess of the
C5.0 base line.

The Liver problem (see Fig. 6) represented the most difficult problem
for all architectures. Page-based L-GP consistently produces the best
peak-case (best) and average classification (avg.) accuracies indepen-
dent of maximum instruction counts. Neither block-based L-GP nor
T-GP consistently out performed each other on this data set. On the
C-heart problem (see Fig. 7), a similar pattern is followed with the ex-
ception of block-based L-GP at the 64-instruction limit, for which the
best-case performance on this data set is produced. T-GP was consis-
tently the worst performing architecture on this problem. The Breast
cancer data (see Fig. 8) resulted in all methods returning equally good

388 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

Fig. 8. Test classification accuracy. Breast data set. “Pg” denotes page-based
L-GP,” “Blk” block-based L-GP, and “Tree” T-GP. “N Max. Instr.” denotes a
maximum instruction (node) limit of “N .”

Fig. 9. Classification problems. Average solution length. “Page” denotes
page-based L-GP, “Block” block-based L-GP, and “Tree” T-GP; 64, 128, and
256 denote maximum instruction (node) limits.

peak performance. However, a lot of variation is seen in the average
classification counts for block-based L-GP and T-GP.

Fig. 9 summarizes the average number of instructions employed per
solution over each trial. In all but one case, page-based L-GP returns
solutions using a lower number of instructions, with no general trend
apparent for the block-based L-GP and T-GP cases.

IV. DISCUSSION ANDCONCLUSION

In this work, page-based L-GP is defined in terms of individuals that
are expressed in a fixed number of pages, where each page consists
of an equal number of instructions. Crossover always results in the in-
terchange of single pages between two parents. The implication is that
the number of instructions (and pages) per individual remains constant.
Comparison against block-based L-GP and T-GP indicates that despite
the similarity in the definition of pages and blocks, the solutions, as
characterized by computational effort, number of converging individ-
uals, and length of evolved code are distinct. Specifically, page-based
L-GP is capable of providing concise solutions and does not appear to
be sensitive to the maximum number of instructions. Hence, we do not
need extensive fine tuning of this parameter, as might be anticipated in
a fixed length individual. The empirical evaluation also indicated that

in the case of page-based L-GP in the two-register address instruction
format investigated, field-specific mutation operators do not provide
any advantage over instruction specific mutation.

Future work will address support for dynamically changing the
number of registers, where this is used as a partial solution to evolving
variable length individuals. That is to say, the smaller (greater) the
number of registers, the higher (lower) the effective length of an indi-
vidual, and the more (less) brittle an individual’s code is to incorrect
instruction sequences. Finally, the authors are also interested in the
use of the page-based concept to introduce program structure into the
process of evolution, for example, in terms of loop and conditional
constructs.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of M. Tamersoy of
the TEBA Computing Group for the provision of computing resources
and many interesting discussions.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial
Systems. Cambridge, MA: MIT Press, 1998.

[2] I. Rechenberg, “Cybernetic solution path of an experimental problem,”
Royal Aircraft Establishment, Farnborough, U.K., Library Translation
1122, 1965.

[3] J. R. Koza,Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[4] P. J. Angeline,Advances in Genetic Programming, P. J. Angeline and K.
E. Kinnear Jr., Eds. Cambridge, MA: MIT Press, 1996, vol. 2, ch. 1,
pp. 1–20.

[5] J. P. Nordin,Advances in Genetic Programming, K. E. Kinnear Jr.,
Ed. Cambridge, MA: MIT Press, 1994, vol. 1, ch. Chapter 14, pp.
311–331.

[6] , Evolutionary Program Induction of Binary Machine Code and its
Applications. Munster, Germany: Krehl Verlag, 1999.

[7] R. M. Friedberg, “A learning machine: Part I,”IBM J. Res. Develop.,
vol. 2, no. 1, pp. 2–13, 1958.

[8] N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” inProc. Int. Conf. Genetic Algor. Their Appl.,
1985, pp. 183–187.

[9] L. Huelsbergen, “Toward simulated evolution of machine-language iter-
ation,” in Proc. Conf. Genetic Programm., 1996, pp. 315–320.

[10] C. Tudge,The Engineer in the Garden—Genetics: From the Idea of
Heredity to the Creation of Life. London, U.K.: Pimlico, 1993.

[11] W. B. Langdon, “Size fair and homologous tree crossovers for tree ge-
netic programming,”Genetic Programm. Evolv. Mach., vol. 1, no. 1/2,
pp. 95–120, 2000.

[12] J. P. Nordin, W. Banzhaf, and F. D. Francone,Advances in Genetic Pro-
gramming, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. An-
geline, Eds. Cambridge, MA: MIT Press, 1999, vol. 3, ch. 12, pp.
275–299.

[13] M. I. Heywood and A. N. Zincir-Heywood, “Register based genetic pro-
gramming on FPGA based custom computing platforms,” inThird Eur.
Conf. Genetic Programm., vol. 1802, Berlin, Germany, 2000, pp. 44–59.

[14] , “Page-based linear genetic programming,” inProc. IEEE Int.
Conf. Syst., Man, Cybern., Oct. 2000, pp. 3823–3828.

[15] D. Zongker and B. Punch. Lil-gp 1.0 User’s Manual. Genetic Algor. Res.
Appl. Group., Michigan State Univ., East Lansing, MI

[16] Discipulus 2.0. AIMLearning™ Technology. [Online]. Available:
http://www.aimlearning.com/Prod-Discipulus.htm

[17] K. Chellapilla, “Evolving computer programs without subtree
crossover,”IEEE Trans. Evol. Comput., vol. 1, pp. 209–216, July 1997.

[18] J. R. Koza,Genetic Programming: Automatic Discovery of Reusable
Programmes. Cambridge, MA: MIT Press, 1994.

[19] Machine Learning Data Sets. Universal Problem Solvers Inc.. [Online].
Available: http://www.upso.net/tdl_frames.html

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

