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This paper describes a toolkit for building
multiagent autonomic systems. The IBM
Agent Building and Learning Environment
(ABLE) provides a lightweight JavaTM agent
framework, a comprehensive JavaBeansTM

library of intelligent software components, a
set of development and test tools, and an
agent platform. We describe a series of
agents built using ABLE components and
present three case studies of applications
using the ABLE toolkit. The Autotune agent is
a closed-loop controller agent that supports
hierarchical distributed control. The
Subsumption agent defines specific behaviors
or strategies and can be plugged into a
multiagent subsumption infrastructure. The
Autonomic agent architecture features
sensors and effectors for interacting with the
external environment, layers of reflexive,
reactive, and adaptive subsumption agents,
components that dynamically model the
autonomic system itself and its environment,
and components for emotions, planning, and
executive-level decision-making. By using the
ABLE component library to build agents
running on the ABLE distributed agent
platform, we discuss how we can
incrementally add new behaviors and
capabilities to intelligent, autonomic systems.

It has been over 50 years since Alan Turing described
the prototypical test for intelligent machines. In Tur-
ing’s view, a computer could be called intelligent if
it could pass as a human while conversing via a com-

puter terminal. For researchers delving into the mys-
teries of human and machine intelligence, the so-
called Turing Test has been both an inspiration and
a millstone around their necks since that time.

The field of artificial intelligence (AI) started out with
great hopes and fanfare, beginning with the Dart-
mouth conference on AI in 1956. The next decade
saw an exploration of both symbolic and neural net-
work approaches to knowledge representation, rea-
soning, and machine learning. By 1970, all was go-
ing so well that Marvin Minsky declared in a Life
Magazine article, “In from three to eight years we
will have a machine with the general intelligence of
an average human being. I mean a machine that will
be able to read Shakespeare, grease a car, play of-
fice politics, tell a joke, have a fight. At that point
the machine will begin to educate itself with fantas-
tic speed. In a few months it will be at genius level
and a few months after that its powers will be in-
calculable.” Although his vision may still be valid,
his timing was off by several decades. Even though
substantial progress has been made on the pieces of
intelligence—speech recognition, natural language
understanding, knowledge representation, machine
reasoning, machine learning, emotion, and speech
generation—putting the pieces together to create
human-level intelligence has proven to be difficult.
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The artificial intelligence technology pendulum has
swung from whole-hearted devotion to symbol-pro-
cessing techniques, to reactionary forays into neu-
ral networks and other subsymbolic approaches, and
on to biologically inspired genetic algorithms and
fuzzy reasoning. Today, most researchers admit that
a combination of technical approaches must be used
to achieve human-level performance. In The Society
of Mind, Minsky described a set of mechanisms that
he called mental agents that operate in parallel and
that compete and cooperate to yield human intel-
ligence.1 In his subsumption architecture, Brooks de-
scribes an architecture of behavioral layers that pro-
vides robust function and supports reactive behaviors
in mechanical robots.2 More recently, papers by Slo-
man and by Caulfield and Johnson have described
architectures for consciousness or self-aware systems
that rely on layered architectures with emotional
components.3,4

Clearly, a monolithic software architecture using a
single technology will not bring us closer to our goal.
In our work, we are exploring an incremental ap-
proach for developing intelligent autonomic sys-
tems—systems that have self-awareness and can rea-
son about their internal components and state.5

Autonomic systems must adapt to environmental
changes and strive to improve their performance over
time. They must be robust and be able to routinely
overcome internal component failures. Autonomic
systems must interact and communicate with other
systems in a heterogeneous computing infrastructure.
Our approach to building autonomic systems is based
on combining autonomous intelligent agents in a
well-structured way. This approach mirrors the struc-
ture of the human brain wherein there are clearly
defined, function-specific processing centers con-
nected by forward and backward communication
channels and adaptive feedback loops.

In this paper, we briefly describe an architecture that
combines elements of these approaches and melds
them into a coherent, scalable architecture that we
believe will lead to robust deployed autonomic sys-
tems. These systems rely on sensors to obtain input
from the world and effectors to take action and make
changes to the world. There are memory components
providing short-term, long-term, and associative
memory functions. There are reflexive, reactive, and
goal-oriented proactive components. There are com-
ponents for reasoning, planning, and learning new
behaviors from interactions with the world. There
is an emotional component that associates feelings
with internal states and influences decision-making

and learning processes. This architecture reflects
much of what is known about how people think and
process information, including the role emotions play
in our reasoning.6,7

This paper is organized as follows. First, we describe
the Agent Building and Learning Environment
(ABLE), a software architecture and framework, com-
ponent library, development tooling, and agent plat-
form for constructing autonomous intelligent agents
and multiagent systems. We then present two appli-
cation case studies, a system administration appli-
cation using multiple agents, and a diagnostic ap-
plication. Next, we describe several derivative ABLE
agents including the Autotune control agent, a Sub-
sumption agent, and an Autonomic agent that is an
ABLE-based architecture for incrementally building
autonomic systems. We then discuss the current sta-
tus of ABLE and our plans for enhancing the toolkit
and for implementing our autonomic system archi-
tecture.

Agent building and learning environment

The recent surge of interest in software agents has
prompted a corresponding increase in toolkits for
constructing them. Although many projects use a
“roll your own” approach in which each agent is
uniquely hand-coded, there are benefits to using a
component-based approach. The Java** language
has several characteristics that make it an ideal plat-
form for implementing agents: code portability re-
sulting from its use of a standard virtual machine,
support for object-oriented programming tech-
niques, native support for multithreading, and intro-
spection of object properties and methods. In ad-
dition, the JavaBeans** component specification
enables the creation of reusable Java components
with well-defined interfaces and behaviors.

Quite a few agent toolkits and multiagent platforms
are available for both educational and commercial
use. The CIAgent framework developed by one of
the authors is a lightweight agent framework writ-
ten in the Java language and intended for educational
use.8 The Java Agent Template Lite (JatLite), de-
veloped at Stanford University, is focused on com-
munications-related issues of agent systems. The
IBM AGLETS* mobile agent framework, now an open
source project, provides a Java platform for creat-
ing mobile agent applications. AgentBuilder** from
Reticular Systems (a part of IntelliOne Technolo-
gies), is an integrated software development toolkit
for constructing belief-desire-intention (BDI) agents
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in Java. The ZEUS agent-building toolkit developed
by British Telecommunications plc features a Java
component library with a planning and scheduling
system, support for multiple interaction protocols,
and a set of tools for building agents. The Founda-
tion for Intelligent Physical Agents (FIPA), an inter-
national standards body working for interoperabil-
ity between agents and agent platforms, has defined
specifications for agents, agent management services,
and agent communications languages.9 Several
projects implement FIPA compliant agent platforms.
The FIPA Open Source (FIPA-OS), developed by Nor-
tel Networks, is an open source implementation of
the FIPA agent communication language and agent
platform. The Java Agent DEvelopment (JADE)
framework, developed at CSELT S.p.A. (now Tele-
com Italia Lab, or TILab) is another FIPA-compliant
multiagent toolkit. For a more detailed overview of
these agent environments, see Bigus and Bigus.8

The Agent Building and Learning Environment10 is
a Java-based toolkit for developing and deploying
hybrid intelligent agent applications. Hybrid ap-
proaches synergistically draw on the strengths of each
technology while compensating for any weaknesses.
For example, rules have the advantage of explicitly
defined knowledge, but they can be brittle and in-
flexible. Neural networks, in contrast, can adapt or
learn from inputs, but the learned knowledge is of-
ten difficult to make explicit. The value of combin-
ing multiple techniques such as neural network learn-
ing with rule-based inferencing has been demonstrated
by prior work.11

The ABLE toolkit was designed to provide a fast, re-
usable, and scalable architecture for the construc-
tion of intelligent software components and agents.
A fundamental design philosophy of ABLE is that suc-
cessful intelligent agents will require multiple rea-
soning and learning techniques. ABLE builds on the
standard JavaBeans model by defining a lightweight
framework for agent behavior. ABLE has a compo-
nent library of data access, machine learning, ma-
chine reasoning, and optimization algorithms pack-
aged as JavaBeans, known as AbleBeans. ABLE
provides a Java Swing-based GUI (graphical user in-
terface) for creating and configuring AbleBeans, and
for constructing and testing the agents built from
them. ABLE also provides an agent platform for de-
ploying agents across a distributed computing sys-
tem. By building a comprehensive suite of intelligent
JavaBeans and tooling for easily combining and con-
necting those beans, ABLE permits developers to ex-
plore the applications of software agents and their

behaviors in distributed multiagent systems. The
ABLE toolkit has been available for downloading
from the IBM alphaWorks* site since May 2000.12 In
the following sections, we describe the fundamental
design and architectural attributes of ABLE.

ABLE agent framework

The ABLE agent framework is a lightweight software
architecture that allows algorithms to be packaged
as JavaBeans that can be deployed as standard Java
components or as autonomous agents. Figure 1
shows the set of Java interfaces and base classes com-
prising the ABLE framework.

AbleBeans are standard JavaBeans components used
in the ABLE framework. The AbleBean Java inter-
face defines a set of common attributes (name, com-
ment, state, etc.) and behavior (standard processing
methods such as init�, reset�, process�, quit�),
allowing AbleBeans to be connected to form Able-
Agents. AbleBeans are connected using three fun-
damentally different methods: data flow, events, and
properties.

Data-flow or buffer connections are used to wire to-
gether AbleBeans using a data-flow metaphor. Each
AbleBean can have an input buffer and an output
buffer that are implemented as Java Objects. A set
of AbleBeans can be connected by buffer connec-
tions forming a directed, acyclic graph. The set of
AbleBeans is then processed in sequence starting at
the root of the tree. Each AbleBean takes the data
from its input buffer, processes the data, and places
the data in its output buffer. This data-flow mech-
anism is extremely fast and is very useful for appli-
cations such as neural networks that have a natural
data-flow processing paradigm.

Event connections are used to register an object as
a listener on an AbleBean. AbleBeans support syn-
chronous and asynchronous event processing using
AbleEvents, which extend the Java EventObject
class. Each AbleBean has an event queue on which
it receives AbleEvent notifications or action requests
to be processed. Each AbleEvent contains a Bool-
ean flag that indicates whether the event should be
handled synchronously on the caller’s thread or asyn-
chronously by placing it on the receiver’s event queue
and processing it on a separate thread. Every
AbleEvent can be used as either a data event with
an associated eventId (event identifier) and data ob-
ject, or as an action event, with an associated action
string and data object. Data notification events hold
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data and allow AbleBeans to inform one another of
complex state changes. Action events allow method-
invocation with arguments and contain an action field
that maps to a method name on the notified Able-
Bean. The AbleEvent argument object is also passed
to the method on the receiving AbleBean. Thus, any
method can be called on a listening AbleBean
through this mechanism. Although event processing
adds some overhead, it is more flexible than hard-
coded method calls between AbleBeans.

Property connections are used to synchronize two
different properties residing in two different Able-
Beans. Whenever the first property value is changed
via a setter method, the second property on the sec-
ond bean is also changed via its setter method.

AbleBeans use Java serialization for persistence. All
data-flow, event, and property connections are pre-
served during the passivation and activation cycles.
The ABLE run-time environment has a well-defined
set of properties that enable serialized AbleAgents
to be portable.

AbleEvents. Figure 2 shows the data fields in the
AbleEvent class. The AbleEvent class provides the
means to send data between agents, to request ac-
tions to be performed by other agents, or to request
transactions with results returned either to the orig-
inal requesting agent or to some other agent. This
design allows the ABLE event-processing infrastruc-
ture to be used to implement a variety of agent in-
teraction models. For example, a dialog between two
agents can be supported by exchanges of AbleEvents
where the action holds the request and the replyTo
and replyWith fields are used to correlate the re-
sponses. Alternatively, an intermediary agent could
send a request to one agent and have that agent send
its response to a third agent or back to the original
requester. Another scenario is to have an agent
broadcast its response to an event to multiple agents
by specifying a list of agents on the replyTo field.
Or, a single agent can send out requests to multiple
agents, and use the transactionID field to correlate
the responses to the original requests. To summa-
rize, the base ABLE event-processing framework can

com.ibm.able.agents

com.ibm.able

java.io com.ibm.able.beans

com.ibm.able.beans.rules

java.beans

AbleEventListener AbleBean

REMOTE AbleEventQueueProcessor

AbleUserDefinedFunctionManagerSERIALIZABLE

Unicast
Remote
Object

java.rmi

AbleBeanContainer AbleAgent

PROPERTY
CHANGE
LISTENER

Figure 1 ABLE agent framework classes and interfaces

AbleObject

INTERFACE EXTENDS IMPLEMENTSCLASS

String
AbleState
AbleLogger
AbleLogger
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Vector
Object
Object
PropertyChangeSupport

name
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trace
logger
eventQueue
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inputBuffer
outputBuffer
chgSupport

AbleDefaultAgent
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be used to implement almost any agent communi-
cation design pattern.

AbleObject. The AbleObject class provides a base
implementation of the AbleBean interface, defin-
ing the standard behavior for all AbleBeans provided
with the ABLE toolkit. The AbleObject class extends
Java UnicastRemoteObject and implements the
AbleEventListener, AbleBean, and AbleEvent-
QueueProcessor remote interfaces. It contains an
instance of an AbleEventQueue that handles the op-
tional autonomous timer facility as well as asynchro-
nous event-processing functions for the bean. The
timer allows an AbleBean to run autonomously by
periodically going to sleep and then waking up to
see whether anything needs processing.

The AbleEventListener interface defines two main
processing methods: processAbleEvent� and
handleAbleEvent�. The first method takes an
AbleEvent as an argument, examines its syn-
chronous/asynchronous Boolean flag and processes
it accordingly. The second method unconditionally
processes the event in a synchronous manner. De-
fault behavior is provided to interpret the action
string as a method name and to invoke a method
with that name on the bean, passing the argument
object as a parameter.

Figure 3 shows the source code for an example Able-
Bean that extends the AbleObject base class. We im-
port the com.ibm.able package and provide a no-
argument constructor. The major methods that must
be overridden include init�, which performs one-time
initialization; process�, which is the method called to
process the input buffers; and processTimerEvent�,

which is the method invoked when the bean is con-
figured to run as an autonomous agent.

AbleAgent. One of the major decisions when cre-
ating an agent construction environment is the gran-
ularity of the agents. Many projects consider belief-
desire-intention (BDI) agents to be the base line. In
ABLE, we chose a model where the basic building
blocks are functional software components but not
complete agents. By making this choice, we can cre-
ate customized agents with functionality and com-
plexity suitable for their intended use.

The AbleDefaultAgent class provides a default im-
plementation of the AbleAgent interface and defines
the standard behavior for all AbleAgents provided
with the ABLE framework. The AbleDefaultAgent
class extends Java UnicastRemoteObject and
AbleObject and implements both the AbleAgent and
AbleBeanContainer remote interfaces.

AbleAgents are AbleBeans that are also containers
for other AbleBeans. An AbleAgent has its own
thread for processing events asynchronously. Able-
Agents provide a useful abstraction for packaging a
set of AbleBeans wired together to perform a spe-
cific function. This function is then available to other
AbleBeans or AbleAgents through synchronous pro-
cess� calls or through asynchronous event process-
ing.

AbleAgents extend the AbleObject base class and
implement the AbleBeanContainer and AbleUser-
DefinedFunctionManager interfaces. The Able-
BeanContainer allows an AbleAgent to contain other
AbleBeans and even other AbleAgents. This pow-

Figure 2 The AbleEvent class

AbleEvent(
   Object source,   // the source object or sender of the event
   int id,   // type=ACTION, DATACHANGED, EOF, TRANSACTION
   String action,   // name of the action method
   Object arg,   // passed to action method
   boolean async,   // put on queue (true) or run on caller's thread (false)
   Object replyTo,   // null, single bean, list of beans
   String replyAction,   // used as action in reply event
   String transactionId  // used as work identifier (copied to reply)
)
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erful design pattern allows extremely complex agents
to be built from subagents and is exploited in our
component library implementation. The AbleUser-
DefinedFunctionManager allows external software
to be integrated with AbleAgents as sensors and
effectors.

Note that alternate AbleAgent implementations
could be developed with behaviors different from the
AbleDefaultAgent. For example, we provide an
AbleDefaultFIPAAgent that is an AbleAgent that
provides all of the required FIPA agent behaviors,
and the AutotuneAgent that enables hierarchical dis-
tributed control. We discuss the AutotuneAgent and
additional AbleAgents in more detail later in this
paper.

AbleAgents are situated in their environment
through the use of sensors and effectors. In ABLE,
sensors and effectors are AbleUserDefinedFunction
objects that map to method calls on external Java
objects. These methods usually call other applica-
tion programming interfaces (APIs) to either obtain
data (sensors) or take actions (effectors). AbleAgents
are managers for sensors and effectors, and any con-
tained AbleBeans can invoke those sensors and ef-
fectors. Sensors and effectors take arbitrary argument
lists and return Java Objects to the caller.

A common scenario is for an AbleAgent to contain
one or more beans that reference sensors and ef-
fectors. For example, in Figure 4, the AbleAgent con-
tains three AbleBeans, a single sensor, and a single
effector. AbleBean A first calls the sensor and ob-
tains data from Application A. It processes the data
and passes information to AbleBean B either
through a direct method call, an event, or a prop-
erty connection. AbleBean B processes these data
and passes the data on to AbleBean C, which in turn
invokes the effector, resulting in a method call on
Application B.

ABLE component library

A fundamental piece of the ABLE system is the com-
ponent library of AbleBeans. These include data ac-
cess and filtering beans, machine learning algorithms,
machine reasoning and inference engines, and high-
er-level data mining agents comprised of one or more
core beans. In addition, ABLE contains a set of data
type classes, defining Boolean, Categorical, Discrete,
Numeric, and String literals, variables, and fields.
This common data model is used by the beans in the
component library. The set of core AbleBeans pro-
vided with the ABLE framework includes data beans,
learning beans, and rule beans.

Figure 3 Sample AbleBean Java source code

import com.ibm.able.*;
public class SampleAbleBean extends AbleObject implements Serializable { 

 public SampleAbleBean() throws RemoteException { 
  // set processing options, data flow, timer, etc.
  this("SampleBean");  }  

 public void init() throws RemoteException { 
  // need to initialize state of this bean, algorithm vars, etc. -- do ONE TIME initializations
  // initialize asynchronous Timer (if used) and define Event processing behavior  
 } 

 public void process() throws RemoteException { 
  // perform synchronous processing on caller's thread
 }

 public void processTimerEvent() throws RemoteException { 
  // perform autonomous (asynchronous) processing on own thread
 }
}
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Data beans. Data access and transformation beans
are used to manipulate data for training and testing
the learning and reasoning beans. They include:

● Import—reads space-, comma-, or tab-delimited
data from flat text files

● DBImport—reads data from relational databases
using JDBC** (JavaBeans Database Connectivity)

● DataTable—provides a view over an Import data
set, with selected rows and columns

● Filter—filters, transforms, and scales data using
translate template specifications

● TimeSeriesFilter—caches sequential data for use
in time-series prediction

● Export—writes space-, comma-, or tab-delimited
data to flat text files

● DBExport—writes data to relational databases us-
ing JDBC

Learning beans. The learning beans implement sev-
eral different learning algorithms that can be com-
bined with the data beans to provide lightweight data
mining capabilities. They are:

● Back Propagation—implements an enhanced back
propagation algorithm with pattern and batch up-
dates, hidden layer and output layer recurrence

● Self-Organizing Map—supports pattern and batch
updates, and a Gaussian neighborhood function

● Temporal Difference Learning—supports sequence
learning using a reinforcement learning algorithm

● Radial Basis Function—supports regression and
classification using multiple basis functions with
automatic Self-Organizing Map clustering of hid-
den layer weights

● Naive Bayes Classifier—supports incremental
learning of discretized data using a Bayes statis-
tics approach

● Decision Tree—supports tree-based classification
of discretized data using the C4.5 algorithm

Rule beans. The ABLE Rule Language (ARL) defines
a rich set of rule-based knowledge representation for-
mats including scripting using simple assignments,
if-then and if-then-else rules, when-do pattern match
rules, and predicate style rules. ARL supports rule-
blocks that are named groups of rules similar to mac-
ros. ABLE provides a wide range of inference engines
to process the ARL rulesets.

As illustrated in Figure 5, ABLE Rule Language can
be represented in text or Extensible Markup Lan-
guage (XML) formats. The AbleRuleSet class parses
the text or XML source into a set of AbleRuleBlock
and AbleRule objects and instantiates an associated
inference engine based on the inference method
specified in the RuleSet. The ARL supports very tight
integration with Java classes and objects allowing in-
stantiation, access to data members on objects, and
invocation of methods on objects from rules. Pro-
cessors include:

● Boolean forward chaining—processes if-then rules
using forward chaining

● Boolean backward chaining—processes if-then
rules using backward chaining

● Fuzzy forward chaining—processes if-then rules
containing linguistic variables and hedges and sev-
eral types of fuzzy sets, and supports multistep
chaining

Figure 4 Example ABLE agent
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● Pattern Match engine—processes when-do pattern
match rules using forward chaining against a work-
ing memory

● Pattern Match network—processes when-do pattern
match rules using the Reté network forward chain-
ing algorithm against a working memory

● Predicate engine—processes predicate rules using
a backchaining algorithm with backtracking (sim-
ilar to Prolog)

● Scripting engine—processes assignments, if-then,
if-then-else, while-do, and do-while rules in se-
quential order

Having a single ABLE Rule Language with pluggable
inference engines provides many advantages. A sin-
gle rule authoring and debugging environment can
be used for multiple styles of inferencing. The same
knowledge representation can be used for scripting
agent behavior, dynamically constructing and con-
figuring agents, and explicitly representing domain
knowledge. Alternate implementations of the infer-
ence engines can be developed for use in special-
ized environments where memory or processing re-
sources are constrained.

One of the most powerful aspects of the ABLE Rule
Language design is the ability to seamlessly mix sym-
bolic rule-based reasoning with subsymbolic neural
network and other machine learning algorithms. A

common view is that the subconscious processes of
the human brain correlate to neural network ap-
proaches and that conscious thought is similar to
symbol processing. A single ABLE rule set can rea-
son symbolically about the outputs of multiple neu-
ral components. For example, sensory data can be
fed into a neural network for clustering into similar
groups, for classification into categories, or for pre-
diction of trends. Rules can then process the out-
puts of the neural network, assign semantic labels
to those outputs, and reason about the outputs. Rules
could decide to kick off a learning episode in one or
more neural networks or to take overt actions to
change the external environment.

The ability of rules to invoke other AbleRuleSet
beans allows hierarchical configuration and natural
partitioning of knowledge into individual rulesets.
This ability eases the burden on rule authoring and
maintenance. The example AbleRuleSet in Figure
6 shows the Java-like syntax and structure of the ABLE
Rule Language. Arbitrary Java classes can be im-
ported into a ruleset, domain-specific function librar-
ies can be loaded, and a variety of built-in and im-
ported variable types can be defined and instantiated
in the variables section. Data are passed into and
out of the ruleset bean via the input and output state-
ments. Rule methods or ruleblocks can be used to

Figure 5   AbleRuleSet bean and inference engines
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define one-time initialization rules (the init� block).
The main� block allows the user to specify the in-
ference engine that will process the rules. The order
of evaluation is entirely determined by the inference
engine that is selected. When the main� block com-
pletes, the optional idle� block is run.

Function-specific AbleAgents. In addition to the
core AbleBeans, the ABLE component library pro-
vides a set of function-specific AbleAgents. Data and
learning AbleBeans are combined to create neural
classification, neural clustering, and neural predic-
tion agents that can be used for lightweight data min-
ing tasks. The set of standard function-specific agents
provided with the ABLE framework includes:

● Genetic search agent—manipulates a population of
genetic objects that may include AbleBeans

● Neural classifier agent—uses back propagation to
classify data

● Neural clustering agent—uses self-organizing maps
to cluster or segment data

● Neural prediction agent—uses back propagation to
build regression models

● Script agent—uses the ABLE rule language to de-
fine complete agent behavior

● JavaScript** agent—uses JavaScript to define agent
behavior

The NeuralPredictionAgent uses two Import beans
to read training and test data from text files, two Fil-
ters to preprocess and postprocess the data, and a
back propagation neural network to perform the re-
gression function (shown later in Figure 8). The agent
provides high-level functionality through its Custom-
izer as it orchestrates the operation of the five Able-

ruleset AbleScriptExample { 
 import com.ibm.myClass;   // use myClass as data type in ruleset
 library com.ibm.myLibrary; // each public method becomes a function

 variables {
  myClass myTypeVar = new myClass();  // creates an instance 
  myClass myTypeVar2 = new myClass("name", "age", "whatever");  
  Object BeanVar = new Object();
  Object Result = new Object();  
 } 
 inputs { myTypeVar } ; 
 outputs { Result };  

 void init() {
  // one time initialization rules here 
 }

 void main() using Script { 
  A1:  ObjectVar = createInstance("com.ibm.able.beans.rules.AbleBooleanRuleSet");
  A2:  ObjectVar.name =  "myRuleSet";
  A3:  Result = instantiateFrom(ObjectVar, "d:\\joe\\myRuleSet.arl");
  A4:  BeanVar = getBean(parent, "aBeanName");
  A5:  Result = init( parent, "aBeanName");
  A6:  Result = processBean( BeanVar);
 }
} 

void idle() {
 // idle rules run when the main ruleblock quiesces
}

Figure 6 A sample AbleRuleSet 
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Beans it contains. The user only needs to specify the
source data files and corresponding meta-data files.
When initialized, the NeuralPredictionAgent scans
the source data and automatically generates the scal-
ing and transformation templates used by the Fil-
ters to preprocess and postprocess the data passed
through the neural network. Based on the number
of input and output fields and their data represen-
tation, the neural network architecture is automat-
ically configured. Data-flow connections between the
AbleBeans pass data from the Import through the
input Filter, through the neural network, and then
through the output Filter. The user also specifies tar-
get error rates and the maximum number of train-
ing epochs. The asynchronous thread of the Able-
Agent is used to automatically train the prediction
model on a separate background thread and halts
when the user-defined termination conditions are
met.

Once trained, the NeuralPredictionAgent can be
used to process data synchronously. If the model be-
comes stale after it is deployed, the application could
easily force a retraining of the prediction agent, be-
cause the training process is automated.

The NeuralClassifierAgent and NeuralClustering-
Agent are constructed using multiple AbleBeans in
a manner similar to the prediction agent but pro-
vide classification and clustering functions, respec-
tively. The neural learning agents provide basic data
mining functionality for use in other AbleBeans, giv-
ing agents the ability to segment, classify, and make
predictions about their environments.13

Extending ABLE using custom beans

In addition to the core AbleBeans provided in the
ABLE component library, users can easily wrap new
or existing algorithms to create their own beans. Sets
of domain-specific beans can be added to the ABLE
Agent Editor and dynamically loaded from a JAR
(Java ARchive) file. A simple design pattern requires
that the algorithm object be wrapped by an Able-
Bean instance, a BeanInfo file be created to specify
any members to be externalized, and a GUI Custom-
izer class be provided to allow users to set any al-
gorithm unique attributes.

This approach was used to incorporate the Decision-
Tree and NaiveBayes classifier learning components
into ABLE. As shown in Figure 7, the three Java
classes required for ABLE integration are the Able-
Bean class itself, the BeanInfo that defines bean

properties and accessor methods, and the bean Cus-
tomizer that provides the GUI used to set configura-
tion properties on the bean. The AbleBean must con-
tain an instance of the algorithm class, map the init�
and process� methods to call functionally equiva-
lent methods on the algorithm object, and also wrap
any getter and setter methods used by the Custom-
izer. This approach allows the algorithm code to re-
main unmodified while allowing it to be used as part
of any ABLE solution.

ABLE development tools

The ABLE Agent Editor is a Swing-based interactive
development and test environment. It provides a tree
view of the agent with drill down into contained beans
as well as a canvas view of the agent with correspond-
ing data, event, and property connections. Agents
can be loaded, edited, and saved to external files us-
ing Java serialization. ABLE Inspectors provide text
and graphic views of object data using Java intro-
spection. Support is provided for adding custom in-
spector views in addition to standard line, bar, x-y
plot, and pie charts.

The Agent Editor can graphically construct Able-
Agents by using the library of core AbleBeans and
AbleAgents as building blocks. Data-flow, event, and
property connections can be added using the GUI
environment. Agents can also be hand-coded and
then tested in the ABLE Agent Editor. Each Able-
Bean provides a Customizer dialog that is used to
configure it and to set property values. Figure 8 shows
the ABLE Agent Editor with a single NeuralPredic-
tionAgent bean loaded into a default agent. The user

Figure 7 AbleBean wrapper design pattern
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has drilled down into the NeuralPredictionAgent and
is viewing the five AbleBeans it contains. These beans
are displayed in the right-side canvas.

When the Agent Editor is started, it loads AbleBeans
from JAR files. These beans contain properties spec-
ifying the page on the toolbar palette where the bean
should be placed. Thus, users can easily provide their
own custom AbleBeans and AbleAgents for use with
the Agent Editor in combination with the core Able-
Beans.

ABLE Inspector windows use introspection to display
bean data members and state information. Inspec-
tors provide text views as well as graphical views of
the bean data. Views such as bar charts, line plots,
and x-y plots are provided. Users can select one or
more bean properties to be displayed, or one or more
indexed properties such as arrays or vectors of ob-
jects. In addition, Inspectors allow users to select
multiple data items for use in time-series displays.
The Inspector caches the data points at each time
step and displays the desired number of points. This

function is very useful for observing time-series pre-
dictions and agent controller behavior over time.

Figure 9 shows two Inspectors from the MarketAn-
alysis example provided with the ABLE toolkit. The
Inspector on the left shows the clusters of a SelfOr-
ganizingMap neural network with labels and cate-
gories assigned to each cluster. The Inspector on the
right shows a bar chart of the weights of the winning
cluster.

ABLE agent platform

The ABLE agent platform provides a set of services
for AbleAgents that form multiagent systems. The
services include standard agent life-cycle transitions
(e.g., create, suspend, resume, quit) as well as direc-
tory facilitator and agent communication functions.
The ABLE platform is a distributed agent platform
supporting agents on multiple physical systems that
communicate using Java Remote Method Invoca-
tion (RMI). The ABLE agents can communicate with
one another using the mechanisms described ear-

Figure 8 The ABLE Agent Editor
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lier (AbleEvents or direct method calls) or with other
FIPA-compliant agents and agent platforms through
the use of the FIPA agent communication language.

As shown in Figure 10, the ABLE distributed agent
platform corresponds to the FIPA abstract architec-
ture. The current ABLE platform conforms to the
FIPA 97 specifications. Work is in progress to adapt
it to the more recent FIPA abstract architecture and
conform to the Java Agent Services (JAS) being de-
veloped under the Sun Microsystems Java Commu-
nity Process JSR 87. The JAS provides a set of Java
interfaces and a reference implementation of the
platform services required for a distributed agent
platform that complies with the FIPA abstract archi-
tecture. The ABLE platform includes additional func-
tionality covering agent life-cycle management, ser-
vice registration, and agent security. The following
services are provided as part of the standard services
supplied by the ABLE agent platform:

● Booter and Service Root—provides the startup and
root services to agents that want to communicate
with the agent platform services and agents run-
ning on the platform

● Naming Services—provides a unique name for each
agent registered with the platform

● Transport Services—provides a mechanism for
agents to communicate via multiple underlying

communication transports including Java RMI and
HyperText Transfer Protocol (HTTP)

● Directory Services—provides a means for agents to
register descriptions of themselves to allow other
agents to find them and to find other agents

● Life-cycle Services—provides a Factory service
that allows new types of agents to be added to
the platform and for an administrator to
create/start/suspend/resume/stop agents running
on the platform. Support is also provided to move
agents from one system to another on the platform.

The agent Console provides a centralized graphical
user interface for administrators to access the direc-
tory services and life-cycle services on the platform.
Agents can be created, configured, and deployed us-
ing the Console. Additional systems can be added
or removed from the agent platform using the Con-
sole. Directory services can be queried to find the
status of individual agents or of collections of agents
based on service attributes.

ABLE application designs

The ABLE toolkit is quite flexible and can be used
to add intelligence to applications in a variety of ways.
One or more core AbleBean components could be
used in an application to provide specific functions.
Additional domain-specific AbleBeans such as novel

Figure 9 Example ABLE Inspectors
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optimization or data processing techniques can be
developed and mixed with the core AbleBeans. Au-
tonomous agents composed of multiple AbleBeans
could be used to provide function to the application.
As illustrated in Figure 11, AbleAgents can bridge

the gap between the ABLE component world and the
application world by extending the AbleDefault-
Agent and implementing the application-specific in-
terfaces, or by extending a base application class and
implementing the AbleBean interfaces. This ap-
proach allows all of the power of the AbleBean com-
ponent library to be used to add new function to the
application environment and is highly recommended.

In the following subsections, we present two appli-
cation case studies that illustrate how ABLE compo-
nents can be used to quickly develop solutions. The
case studies are used as concrete examples of the
various ways in which the ABLE framework, compo-
nent library, development tools, and agent platform
combine to enable development of multiagent au-
tonomic applications.

Case Study 1: System administration using ABLE.
A basic system administration multiagent system was
developed for the IBM eServer iSeries* system using
ABLE (see Figure 12). The goal was to provide an
overall view of system health using multiple agents

Figure 11 ABLE application design example
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to monitor CPU utilization, the workload as indicated
by the number of jobs running on the server, cur-
rent disk utilization, and the expected disk utiliza-
tion. The monitor agents are autonomous and use
the built-in ABLE timer event processing to monitor
the associated system resources at selected time in-
tervals. When any one of the monitor agents detects
a significant situation, it sends an event that is pro-
cessed by the SysAdmin agent. When the SysAdmin
agent receives the event, it is processed by an inter-
nal AbleRuleSet agent (called SysAdminBrain) that
invokes other agents to gather additional informa-
tion.

The SysAdminBrain AbleRuleSet can invoke one of
the task agents to perform operations such as find-
ing duplicate jobs, finding runaway jobs, finding large
objects or files, and cleanup. The FindLargeObjects
task agent uses the ABLE DBImport bean to perform
a query to find the largest objects or files on the sys-
tem. The Task agents are simply information gath-
erers. They do not take direct actions. The actions
are performed by the SysAdminActions agent that
contains another AbleRuleSet agent that either
prompts the user to approve an action or automat-
ically takes a remedial action such as killing a run-
away job or deleting a system object.

A rudimentary SystemAdmin client GUI, shown in
Figure 12, was developed using Java Swing. It com-
municates with the SysAdmin agent using the RMI
connectivity that is built into the ABLE agent frame-
work. The SysAdmin agent also sends a report of
any actions it has taken to the client for display to
the user. The client can also send these findings to
a list of e-mail addresses so users can keep track of
system management agent actions.

The SysAdmin agents were developed over a period
of two weeks. The developers were new to the Java
language and to the ABLE toolkit. They made use of
the ABLE Agent Editor and AbleRuleSet editors to
develop and test the agents and associated rulesets
defining their behavior. They used the distributed
RMI capability to build an application that runs on
a single client system and can monitor multiple server
systems. This case study demonstrates the produc-
tivity gains made possible through use of a standard-
ized agent toolkit as well as the ingenuity of the de-
velopers.

Case Study 2: A diagnostic application. Another
use of ABLE technology in IBM products is in the area
of server diagnostics. The iSeries electronic support
team is constructing a set of ABLE agents to perform

Figure 12 System administration using ABLE
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data collection, problem determination, and prob-
lem source identification tasks. The scenario is that
a customer call comes into the support center. The
customer support representative asks a series of
questions describing the situation, symptoms, and
other relevant information. One or more ABLE
agents are then dispatched to the customer iSeries
machine to help diagnose the problem.

Several steps are required to automate the diagno-
sis of machine problems. These steps include data
collection, data formatting and preprocessing, data
analysis and problem determination, and finally, ad-
vice or automation of the problem resolution. The
ABLE toolkit provides beans and tooling to aid in all
of these tasks. The ABLE Rule Language enables
agents to call external programs to collect data. The
AbleImports allow an agent to collect data and pass
the data to another for analysis, using an external
database or text file as the storage medium. An Able-
DataTable bean provides a view over the external
data in column major order. This view allows indi-
vidual metrics to be analyzed as a time series and
for groups of metrics to be correlated and analyzed
in a time-series fashion.

Another example of a diagnostic application is an
automotive diagnostic prototype developed in part-
nership with IBM Global Services. In this application,
the ABLE Rule Language was used to perform time-
series analysis over a 40-second time series, looking
at multiple engine sensors to identify misfire con-
ditions. In the production application, we foresee de-
velopment of a comprehensive set of diagnostic
agents, each capable of detecting the presence or ab-
sence of a particular fault or closely related set of
faults. A diagnostic manager agent will coordinate
the activities of the individual diagnostic agents, de-
riving the higher-order diagnosis (for example, three
faults identified by individual agents are related and
point to a single point of failure) and providing a
diagnostic tree to find the root cause of the failure.

There are several advantages to the multiagent ap-
proach. Diagnostic agents can be developed incre-
mentally to resolve the most common (or most dif-
ficult) problems first and, over time, can be combined
to cover more and more of the problem space. The
ABLE Rule Language can be used to define the di-
agnostic reasoning and data analysis tasks, provid-
ing additional flexibility. Agents can be developed
by the support team and deployed at any point in
the release cycle, as opposed to being tied into the
system release schedules. For example, if an unex-

pected problem was found after the release of a new
system, diagnostic agents could be made available
to assist customers and support representatives at
any time. Flexibility is one of the major advantages
of an agent-based solution.

Autotune agent

One of the basic operations required by autonomic
systems is closed-loop control, where the state of a
target system is monitored, compared to some de-
sired goal state, and then adjusted as required to
move toward the goal state.14 As computer operat-
ing systems, middleware, and applications have be-
come more complex; literally hundreds or thousands
of parameters must be configured in order to keep
everything running smoothly. A practical autonomic
system would be composed of many controller
agents, distributed across many computer systems,
and operating at various levels in a hierarchy. Indi-
vidual controller agents would receive high-level
goals from above and, in turn, control resources and
applications at lower levels in the hierarchy.

A generic AutotuneAgent has been developed that
addresses many of these requirements. This agent
extends the AbleDefaultAgent class but completely
overrides the agent behavior. The Autotune agent
contains one or more AutotuneController beans that
provide control strategies and one or more Auto-
tuneAdaptor beans to interface with target systems
or applications.

A set of AutotuneMetric classes is defined to rep-
resent the state of the target system. Configuration-,
Workload-, and Service-level indicators are read-only
metrics that provide state information to the Auto-
tuneAgent. TuningControl metrics can be dynam-
ically set by the agent. The AutotuneAdaptor defines
the set of metrics supported by a target system. These
metrics are managed as a collection by the agent and
can be logged to a historical data repository.

Figure 13 shows the architecture of an Autotune
Agent. Each Controller bean provides its own Cus-
tomizer GUI to allow the user to configure its param-
eters. Each Adaptor bean provides a data panel that
allows the user to see and set target system metric
values. The AutotuneAgent Customizers allow the
user to select which Controller bean is the master
(if there is more than one) and to set polling rate
and other parameters.

The AutotuneAgent supports both distributed and
hierarchical control: distributed by virtue of the agent

BIGUS ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002364



being an AbleBean, hierarchical when the target sys-
tem is another Autotune agent. Autotune agents
have been applied to tuning Lotus Notes* servers,
Apache Web servers, and DB2* (DATABASE 2*) util-
ities.

Case Study 3: An Autotune agent for
Apache Web servers

In this application, a multiagent feedback control sys-
tem based on ABLE Autotune agents was developed
for automatically tuning the Apache Web server pa-
rameters. Typically, the Apache tuning work is done
by the system administrator. The objective is to main-
tain the system CPU and memory utilization at a de-
sired level so as to avoid overload or to reserve cer-
tain resources for other applications. This objective
requires significant effort because the relationships
between the desired CPU and memory utilization lev-
els and the available tuning parameters (namely,
MaxClients and KeepAlive timeout) are not clear.15

Moreover, this tuning work must be done frequently
since these relationships are affected by the work-
load, and the workload can vary over time.

To automate the Apache server tuning process, three
Autotune agents were designed and built for the
three phases in automatic feedback controller de-
sign and deployment (as shown in Figure 14). In or-
der to understand the dynamic behavior of the server,
a modeling agent is first applied to generate time-
varying signals for the tuning parameters MaxCli-
ents and KeepAlive. Sine waves are used with mag-
nitudes and frequencies specified through the
Customizer GUI. The server behaviors (CPU and
memory utilizations) under these exciting signals are
recorded and passed to the controller design agent
through text files and ABLE Imports. The controller
design agent uses system identification techniques
to extract a first-order linear model from the col-
lected data. Based on this model, a linear quadratic
regulation (LQR) controller is designed in order to
meet certain design criteria specified by the user
through the Customizer GUI, such as minimizing the
difference between the desired and measured uti-
lizations and minimizing the changes in the tuning
parameters. The output of the controller design
agent is a set of controller parameters that are passed
to the run-time control agent. The desired utiliza-

Figure 13 Autotune Agent architecture
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tion level is also specified as the control goal from
the system administrator through the Customizer
GUI. On the basis of this information, the feedback
controller interacts with the Apache Web server to
dynamically adjust the MaxClients and KeepAlive
tuning parameters to meet the desired CPU and mem-
ory utilization levels.

Figure 15 shows an example control run. The con-
trol interval is five seconds. Around the twentieth
control interval the workload increases as a group
of heavy users start to access dynamic Web pages
(in contrast to normal users visiting static Web pag-
es). This workload consumes more system resources,
causes large increases in CPU utilization, and slightly
increases memory utilization. In order to maintain
the desired utilization levels (e.g., 0.5 for CPU and
0.6 for memory), the tuning parameters MaxClients
and KeepAlive are automatically adjusted by the
feedback controller. In particular, a larger KeepAlive
value is used to decrease the CPU level, and the Max-
Clients value is adjusted temporarily according to
the dynamics of the server.

Subsumption agent

One of the basic tenets of artificial intelligence over
the years has been the symbol system hypothesis, pos-
ited by Simon in 1969. His assertion is that people
are intelligent because we process symbols and that
only symbol-processing capabilities are required to
produce intelligent machines. But this hypothesis
begs the question of how those symbols become
grounded to sensory inputs and perceptions from the
real world.

In response to this problem, Rodney Brooks, who
was working on robots at the Massachusetts Insti-
tute of Technology, proposed an architecture that
relies on representations that are grounded in the
physical world. Brooks says, “The key observation
is that the world is its own best model.” His subsump-
tion architecture16 was used to build a series of me-
chanical robots. This architecture uses the notion of
layers of behaviors, each built upon the lower-level
competencies and each responding directly to sen-
sory inputs via effectors on the world.

Figure 14 Structure of the multiagent system for the Apache Web server
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The AbleSubsumptionAgent extends the AbleDe-
faultAgent class and introduces the properties and
behavior necessary to define new capabilities in such
a system. There are three types of AbleSubsump-
tionAgent: reflexive, reactive, and adaptive. Reflex-
ive agents are simple and fast. They respond quickly
to changes in sensory input and usually use simple
rules to define their behavior. Reactive agents are
more complex. They take more time to evaluate and
respond to changes in inputs, and often use data-
driven forward inferencing or goal-directed back-
ward inferencing. Adaptive agents learn from expe-
rience and modify their behavior based on past
actions and subsequent feedback. All of these Sub-
sumption agents contain the notion of levels or fixed
priority as defined in the subsumption architecture.
Although subsumption had a strict hierarchy, mul-
tiple AbleSubsumptionAgents can reside at the same
priority level and represent alternative cooperative
or competitive approaches in responding to inputs.

Autonomic agent

In this section, we outline an architecture and meth-
odology for building an autonomic agent capable of
playing a role in a future autonomic computing in-
frastructure. The AbleAutonomicAgent extends the
AbleDefaultAgent and contains multiple autono-
mous or semiautonomous AbleAgents from the
ABLE component library. The internal agents coop-
erate and compete to take control of the intelligent
system and make the appropriate response, much
like Minsky’s The Society of Mind. The base agent
architecture is shown in Figure 16. The architecture
contains a central pool of subsumption agents sim-
ilar to that of Brooks16 with sensors and effectors
providing inputs from and outputs to the external
world. Three defined behavior layers implement the
basic reflexive behaviors, the complex instinctive re-
active behaviors, and the more complex behaviors
learned from interactions with the world. These three

Figure 15     Performance of the Autotune controller for the Apache Web server under dynamic workloads
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levels are implemented by AbleAgents that are con-
tainers for multiple AbleSubsumption behavioral
agents that implement domain- or situation-specific
behaviors.

Our intelligent autonomic agent must build and
maintain a model of the external environment and
of its own components. A top-level executive com-
ponent makes decisions based on the models and its
current emotional state. A planner component is
used to create multiple step scripts or sequences of
actions necessary to achieve the high-level goals be-
ing pursued by the executive. Like the behavior lev-
els, the models, emotions, executive, and planner
components are all implemented as AbleAgents that
in turn may be composed of other AbleAgents and
AbleBeans. The high-level architecture defines the
data and event flows between the components in the
autonomic system. By constructing the base agent
using ABLE self-similar components, intelligent au-
tonomic systems of widely varying complexity could
be built using this architecture. The system retains
all of the advantages of the reactive behavior-based

subsumption architecture while adding internal men-
tal states, including models of the self and world,
emotions, learned behaviors, planning, and meta-
level decision-making.

Our thinking has been influenced by prior work in
this area, most notably Sloman and Minsky. Rie-
cken has implemented the M system that corre-
sponds to Minsky’s architecture with multiple rea-
soning agents, blackboards for communications, rule-
based inferencing, and semantic networks for
representing domain objects.17 Butler et al.18 have
implemented an object-oriented version of Brooks’
subsumption architecture.19 Sloman was one of the
first to discuss computer-generated emotions, and
his three-layered model with reactive, deliberative,
and reflective processing levels is somewhat similar
to this architecture.3 Caulfield and Johnson sketch
an architecture for a “conscious” system whose com-
ponents correspond to the Autonomic agent archi-
tecture.4 Jonker and Treur20 present a multiagent
architecture intended to simulate animal behavior.
Picard21 gives a good overview of the computational

Figure 16 An autonomic agent architecture
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issues related to machine generation and recogni-
tion of emotional states.

The novelty in our approach is the use of an agent
structure with well-defined functional components,
where those components themselves are multiagent
systems. The ABLE framework and agent platform
make constructing systems like this feasible. The ex-
isting ABLE component library provides us with a rich
set of machine learning and reasoning capabilities
on which to base our implementation. Although we
have just started down this road, our experience with
building other higher-level agents, such as the Au-
totune agent, gives us confidence. Our firm belief is
that any truly autonomic system will require one or
more agents of this type as part of the architecture.

Concluding remarks

Our objective in this paper was twofold: to describe
the set of functionality provided in the ABLE toolkit
and to demonstrate its utility via real application case
studies. Although we selected three examples, they
are just a few cases where ABLE has been used. We
have applied the ABLE agents to multiple problems
in systems management, including event processing,
performance monitoring using adaptive thresholds,
system health monitoring using hierarchies of fuzzy
rules, and time-series prediction for service-level
agreement management using neural networks.

ABLE components have been successfully applied to
e-commerce, including computing complex discounts
in a business-to-business environment using IBM
WebSphere* Commerce Suite. The ABLE rule en-
gines have been used in conjunction with the
BRBeans component in the WebSphere Application
Server Enterprise Extensions. The ABLE framework
and component library will be shipped as part of an
upcoming iSeries operating system release. Appli-
cation agents for performing communication traces
and data collection are slated for production use by
the iSeries eSupport organization. Additional sys-
tems management agents are also in development.

We continue to add new algorithm beans to the ABLE
component library. The development of the Able-
SubsumptionAgent and AbleAutonomicAgent will
take place over the next year. We plan to add the
IRIS (information, representation, inferencing, shar-
ing) hypergraph knowledge representation to use as
an integrated method for encoding and reasoning
about domain knowledge.22

We have described a series of agents that could play
the role of intelligent nodes in an autonomic com-
puting system. One could easily imagine networks
of distributed intelligent agents managing storage,
operating systems, network resources, database and
file systems, middleware, and applications while
simultaneously being managed by other agents in the
hierarchy. At various points in the network, we may
require relatively simple agents, dominated by re-
flexive behaviors. At higher levels we may require
complex reactive behaviors, learning, and adaptation.
It is unlikely that we will reach a fully functional au-
tonomic computing system in one giant leap. We will
need to incrementally expand the depth and breadth
of intelligent behaviors available to the individual
agents as well as to the entire distributed autonomic
system.

In the future, we plan to leverage our work on the
ABLE toolkit to further explore the world of auto-
nomic computing. This grand challenge will likely
attract a large number of researchers using a wide
variety of technical approaches. We intend to attack
the autonomic computing problem from an agent-
based perspective. We plan to build on this work by
adding higher levels of abstraction and sophistica-
tion to our agents and our agent platform as we pur-
sue the goal of building truly autonomic computing
systems.
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