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Abstract: 
 
Space-time processing and multiuser detection are two promising techniques for combating multipath 

distortion and multiple-access interference in CDMA systems. To overcome the computational burden 

that rises very quickly with increasing numbers of users and receive antennas in applying such techniques, 

iterative implementations of several space-time multiuser detection algorithms are considered here. These 

algorithms include iterative linear space-time multiuser detection, Cholesky iterative decorrelating 

decision-feedback space-time multiuser detection, multistage interference cancelling space-time multiuser 

detection, and EM-based iterative space-time multiuser detection. A new space-time multiuser receiver 

structure that allows for efficient implementation of iterative processing is also introduced. Fully 

exploiting various types of diversity through joint space-time processing and multiuser detection brings 

substantial gain over single-receiver-antenna or single-user based methods. It is shown that iterative 

implementation of linear and nonlinear space-time multiuser detection schemes discussed in this paper 

realizes this substantial gain and approaches the optimum performance with reasonable complexity. 

Among the iterative space-time multiuser receivers considered in this paper, the EM-based (SAGE) 

iterative space-time multiuser receiver introduced here achieves the best performance with excellent 

convergence properties.  
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I. Introduction 
 

The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a 

major impediment to reliable high-data-rate CDMA communications in multipath channels. These 

phenomena present challenges as well as opportunities for receiver designers: through multiuser detection 

(MUD) [23] and space-time (ST) processing [16], the inherent code, spatial, temporal and spectral 

diversities of multipath multi-antenna CDMA channels can be exploited to achieve substantial gain. 

 

Advanced signal processing typically improves system performance at the cost of computational 

complexity.  It is well known that the optimal maximum likelihood (ML) multiuser detector has 

prohibitive computational requirements for most current applications. A variety of linear and nonlinear 

multiuser detectors have been proposed to ease this computational burden while maintaining satisfactory 

performance [23]. However, in asynchronous multipath CDMA channels with receive antenna arrays and 

large data frame lengths, direct implementation of these suboptimal techniques still proves to be very 

complex. Techniques for efficient space-time multiuser detection fall largely into two categories. One 

includes batch iterative methods, which assume knowledge of all signals and channels and is suitable, for 

example, for base station processing in cellular systems. The other includes sample-by-sample adaptive 

methods, which require knowledge only of the signal and (possibly) channel of a desired user and is 

specifically suitable for mobile-end processing. Sample-by-sample processing is also useful for base 

station processing due to the time varying nature of mobile communications. In the current paper, we will 

focus on techniques in the first of these two categories – namely, batch iterative space-time multiuser 

detectors. Sample-by-sample adaptive methods have been addressed in [4] and the references therein. 

 

There has been considerable research in space-time processing (e.g., [13], [16]), most of which considers 

single-user-based methods. Combined multiuser detection and array processing has been addressed 

recently (e.g. [14], [25]). In this paper, we consider iterative implementation of linear and nonlinear 
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space-time multiuser detectors (ST MUD) in multipath CDMA channels with receiver antenna arrays. In 

particular, we develop several such algorithms, and compare them on the basis of performance and 

complexity. Ultimately, we conclude that an algorithm based on the expectation-maximization (EM) 

algorithm offers an attractive tradeoff in this context. 

 

This paper is organized as follows. In Section II a space-time multiuser signal model is presented. 

Iterative implementation of linear ST MUD is discussed in Section III while that of nonlinear ST MUD, 

decision-feedback MUD and multistage interference cancellation, is dealt with in Section IV. In Section 

V, EM-based iterative ST MUD is discussed, and a new ST MUD receiver structure is proposed. Section 

VI contains simulation results, and Section VII concludes the paper. 

  

II. Space-time Signal Model 
 

Consider a direct-sequence CDMA communication system with K users employing normalized spreading 

waveforms Kss ,,1
�  given by 
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where N  is the processing gain, }10;)({ −≤≤ Njjck  is a signature sequence of 1± ’ s assigned to the 

kth user, and )(⋅ψ is a normalized chip waveform of duration cT T N=  with T  the symbol interval. User 

k (for Kk ≤≤1 ) transmits a frame of M independent equiprobable BPSK symbols }1,1{)( −+∈ibk , 

10 −≤≤ Mi ; and the symbol sequences from different users are assumed to be mutually independent. 

The transmitted baseband signal due to the kth user is thus given by  
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where kA  is the amplitude associated with user k’ s transmission. The transmitted signal of each user 

passes through a multipath channel before it is received by a uniform linear antenna array (ULA) of P 
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elements with inter-element spacing d. Then the single-input multiple-output (SIMO) vector impulse 

response between the kth user and the receiving array can be modeled as  

                                                                 ∑ −=
=
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)()( τδah , (3) 

where L is the maximum number of resolvable paths between each user and the receiver array (for 

simplicity we assume L is the same for each user), klg  and klτ  are respectively the complex gain and 

delay of the lth path of the kth user, and  
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is the ULA response corresponding to the signal of the lth path of the kth user with direction of arrival 

(DOA) klθ  and carrier wavelength λ . ( )tδ  denotes the Dirac delta function. The received signal at the 

antenna array is the superposition of the channel-distorted signals from the K users together with additive 

Gaussian noise, which is assumed to be spatially and temporally white. This leads to the vector received 

signal model 
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where ⊗  denotes convolution, and 2σ  is the spectral height of the ambient Gaussian noise at each 

antenna element. 

 

A sufficient statistic for demodulating the multiuser symbols from the space-time signal (5) is given by 

[25] 

                                T
KK MyMyyyy )]1(,),1(,),1(),0(,),0([ 111 −−= ���y , (6) 

where the elements )}({ iyk are defined as follows: 
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To produce this sufficient statistic, the received signal vector )(tr  is first match-filtered for each path of 

each user to form the vector observables { ( )}klz i , after which beams are formed on each path of each 

user via the dot products with the array responses { }kla , and then all the paths of each user are combined 

with a RAKE receiver. This process produces one observable for each symbol of each user. Since the 

system is in general asynchronous and the users are not orthogonal, we need to collect the statistic for all 

users over the entire data frame. The observable )(iy k  corresponds to the output of a conventional space-

time matched filter, matched to the ith symbol of user k. Therefore, a general space-time multiuser 

receiver is (as shown in Fig. 1) a space-time matched filter bank, followed by a decision algorithm. In the 

following, we will present various ST MUD receivers based on this space-time matched filter output. In 

Section V, however, a new ST MUD receiver structure will be introduced, in which chip-level 

observables are exploited. 

 

The sufficient statistic (6) can be written as (see [23]) 

                                                           ,vHAby +=  (8) 

where H is a KMKM ×  matrix capturing the cross-correlations between different symbols and different 

users, A is the KMKM ×  diagonal matrix whose iKk +  diagonal elements are equal to kA , 

T
KK MbMbbbb )]1(,),1(,),1(),0(,),0([ 111 −−= ���b , and ),0(~ Hv �  (i.e., v is Gaussian with zero 

mean and covariance matrix H). An optimal ML space-time multiuser detector will maximize the 

following log-likelihood function [23], [25] 

                                              ˆ max ( ) 2Re{ }T T= Ω = −
b

b b b Ay b AHAb . (9) 

The multiuser signal and channel parameters (signature waveforms, multipath delay and amplitude, array 

response) come into play through the KMKM ×  block Toeplitz system matrix H, which can be written as 
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H , (10) 

where ∆  denotes the multipath delay spread, and Hii HH )( ][][ =− . The n, mth element of H is the cross-

correlation between the composite received signatures (after beamforming and RAKE combining) of the 

nth and mth elements of b. The reader is referred to [25] for further details of H. Dynamic programming 

can be applied to compute the ML estimates of b. Due to the binary nature of b, the complexity of this 

computation is on the order of ( 1)(2 / )KO K∆+  per user per symbol. 

 

III. Iterative Linear Space-Time Multiuser Detection 
 

In this section, we consider the application of iterative processing to the implementation of various linear 

space-time multiuser detectors in algebraic form. After the introduction to the general form of linear ST 

MUD, we go on to discuss two general approaches to iteratively solving large systems of linear equations. 

We reinterpret the results of [25] for the first approach, linear interference cancellation methods, 

including Jacobi and Gauss-Seidel iteration. Then we extend the idea of [8], [12] to the space-time 

domain for another approach, gradient based methods. Subsequent sections will treat nonlinear iterative 

methods.  

 

 Linear multiuser detectors in the framework of (8) are of the form  

                                                        })sgn(Re{ˆ Wyb = , (11) 

where W is a KMKM × matrix. For the linear decorrelating (zero-forcing) detector, this matrix is given 

by 

                                                              1−= HWd , (12) 
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while for the linear minimum-mean-square-error (MMSE) detector, we have 

                                                              122 )( −−+= AHW σm . (13) 

Direct inversion of the matrices in (12) and (13) (after exploiting the block Toeplitz structure) is of 

complexity )( 2 ∆MKO per user per symbol [11], [25]. 

 

The linear multiuser detection estimates of (11) can be seen as the solution of a linear equation 

                                                              yCx =  (14) 

with HC =  for the decorrelating detector and 22 −+= AHC σ  for the MMSE detector. Jacobi and Gauss-

Seidel iteration are two common low-complexity iterative schemes for solving linear equations such as 

(14) [11]. If we decompose the matrix C as UL CDCC ++=  where LC  denotes the lower triangular 

part, D  denotes the diagonal part, and UC  denotes the upper triangular part, then Jacobi iteration can be 

written as 

                                                           yDxCCDx 1
1

1 )( −
−

− ++−= mULm , (15) 

and Gauss-Seidel iteration is represented as      

                                                          yCDxCCDx 1
1

1 )()( −
−

− +++−= LmULm . (16) 

From (15), Jacobi iteration can be seen to be a form of linear parallel interference cancellation [18], [23], 

the convergence of which is not guaranteed in general. One of the sufficient conditions for the 

convergence of Jacobi iteration is that )( UL CCD +−  be positive definite [11]. In contrast, Gauss-Seidel 

iteration, which (16) reveals to be a form of linear serial interference cancellation, converges to the 

solution of the linear equation from any initial value, under the mild conditions that C is symmetric and 

positive definite [11], which is always true for the MMSE detector. 

 

Another approach to solving the linear equation (14) involves gradient methods, among which are 

steepest descent and conjugate gradient iteration [11]. The reader is referred to [4], [17] for sample-by-
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sample adaptive space-time processing methods, which apply gradient methods in a different setting. 

Note that solving (14) is equivalent to minimizing the cost function 

                                                         yxCxxx HH −=Φ
2

1
)( . (17) 

The idea of gradient methods is the successive minimization of this cost function along a set of directions 

}{ mp  via 

                                                            mmmm pxx α+= −1 , (18) 

with 

                                                           1
H H

m m m m mα −= p q p Cp , (19) 

and 

                                                           mm m
Cxyxq xx −=Φ−∇= =)( . (20) 

Different choices of the set }{ mp  in (18) ~ (20) give different algorithms. If we choose the search 

directions mp  to be the negative gradient of the cost function 1−mq  directly, this algorithm is the steepest 

descent method, global convergence of which is guaranteed [11]. The convergence rate may be 

prohibitively slow, however, due to the linear dependence of the search directions, resulting in redundant 

minimization. If we choose the search direction to be C-conjugate as follows 

                                                            1argmin
1

−
Λ∈

−=
⊥

−

mm
m

qpp
p

, (21) 

where { }mm CpCp ,...,span 1=Λ , then we have the conjugate gradient method, whose convergence is 

guaranteed and performs well when C is near the identity either in the sense of a low rank perturbation or 

in the sense of norm [11]. The computational complexity of Gauss-Seidel and conjugate gradient iteration 

are similar, which is on the order of )( mKO ∆  per user per symbol, where m  is the number of iterations. 

The number of iterations required by the Gauss-Seidel and conjugate gradient methods to achieve a stable 

solution to the associated large system equations has been found on the same order in our simulations.  
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IV. Iterative Nonlinear Space-Time Multiuser Detection 
 

Nonlinear multiuser detectors are often based on bootstrapping techniques, which are iterative in nature. 

In this section, we will consider the iterative implementation of decision-feedback and multistage 

interference cancelling multiuser detection [23] in the space-time domain. We extend the Cholesky 

iterative detector in [3] to the space-time multipath asynchronous case, and further address the issue of 

Cholesky factorization of the system matrix H, which is nontrivial for large numbers of antennas and 

large numbers of users. We also discuss briefly the implementation of multistage interference cancelling 

ST MUD, which serves as a reference point for introducing a new EM-based iterative ST MUD, to be 

discussed in the next section.  

A. Cholesky Iterative Decorrelating Decision-Feedback ST MUD 
 

Decorrelating decision feedback multiuser detection (DDF MUD) [7], [22], [23] exploits the Cholesky 

decomposition FFH H= , where F is a lower triangular matrix, to determine the feedforward and 

feedback matrix for detection via the algorithm 

                                      ))ˆ))diag((sgn(ˆ bAFFyFb −−= −H , (22) 

which should be understood to detect the bits sequentially from that of the first user to the last user, with 

b̂  a vector containing the detected bits for all users over the whole data frame. The reader is referred to 

[23] for the implementation of MMSE decision feedback multiuser detection. It is interesting to note that 

decision feedback multiuser detection has been used in the Bell Labs BLAST techniques for joint 

detection of data streams of multi-input multi-output (MIMO) systems [10].  

 

Suppose the user of interest is user k (each bit of each user can be treated as a “new” user for 

asynchronous systems), the purpose of the feedforward matrix H−F  is to whiten the noise and decorrelate 
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against the “ future users”  1{ , , }k KMs s+ 
 ; while the purpose of the feedback matrix ))diag(( FF − is to 

cancel out the interference from “previous users”  },,{ 11 −kss � . Note that the performance of DDF MUD 

is not uniform. While the first user is demodulated by its decorrelating detector, the last detected user will 

essentially achieve its single-user lower bound providing the previous decisions are correct. There is 

another form of Cholesky decomposition, in which the feedforward matrix F is upper triangular. If we 

were to use this form instead in (22), then the multiuser detection would be in the reverse order, as would 

be the performances. The idea of Cholesky iterative DDF ST MUD is to employ these two forms of 

Cholesky decomposition alternatively as follows. For lower triangular Cholesky decomposition 1F , first 

feedforward filtering is applied as 

                                                                             yFy H−= 11 , (23) 

where it is readily shown that 
1

1, 1, 1, 1,
1

i

i ii i i ij j j i
j

y Ab A b n
−

=
= + +∑F F  , KMi ,,1 �= , with 1,in ,  KMi ,,1 
= , 

the independent and identically distributed (i. i. d.) Gaussian noise components with zero mean and 

variance 2σ . We can see that the influence of the “ future users”  is wiped out and the noise component is 

whitened. Then we employ the feedback filtering to take out the interference from “previous users”  as 

                                                            b))Adiag(F(Fyu ˆ
1111 −−= ,  (24) 

where it is easily seen that 
1

1, 1, 1, 1, 1,
1

ˆi

i i ij j j ii i i i
j

u y A b Ab n
−

=
= − ≈ +∑ F F , KMi ,,1 �= . Similarly, for upper 

triangular Cholesky decomposition 2F , we have  

                                                                           yFy H−= 22 , (25) 

where 2, 2, 2, 2,
1

KM

i ii i i ij j j i
j i

y Ab A b n
= +

= + +∑F F  , 1,, �KMi = , and  

                                                          b))Adiag(F(Fyu ˆ
2222 −−= , (26) 

 where 2, 2, 2, 2, 2,
1

ˆKM

i i ij j j ii i i i
j i

u y A b Ab n
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= − ≈ +∑ F F , 1,, �KMi = .  
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After the above operations are (alternately) executed, the following log-likelihood ratio is calculated,  

                                                                  2
,2/1

*
,2/1 /)Re(2 σiiiii uAL F= , (27) 

where 1/ 2F  and 1/ 2u  are used to give a shorthand representation for both alternatives. Then the log-

likelihood ratio is compared with the last stored value, which is replaced by the new value if the new one 

is more reliable, i.e., 

                                                                
î
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Finally we make soft decisions )2/tanh(ˆ
ii Lb =  at an intermediate iteration, which has been shown to 

offer better performance than making hard intermediate decisions, and make hard decisions )sgn(ˆ
ii Lb =  

at the last iteration. Three or four iterations are usually enough for the system to achieve an improved 

steady state without significant oscillation. The structure of Cholesky iterative decorrelating decision-

feedback ST MUD is illustrated in Fig. 2.  

 

The Cholesky factorization of the block Toeplitz matrix H (see (10)) can be done recursively, as in [26] 

for 1=∆  
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where the element matrices are obtained recursively as follows. 

                                                                              
]0[HV M = ,  (30) 

and, for 1,,1, �−= MMi , we do the Cholesky decomposition for the reduced-rank matrix iV  to get 

)0(iF  

                                                                             )0()0( i
H

ii FFV  = , (31) 
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while )1(iF  is obtained as  

                                                                           
]1[1))0(()1( −−= HFF H

ii . (32) 

Finally we have   

                                                                          
]1[1]1[]0[

1
−−

− −= HVHHV ii  (33) 

for use in the next iteration. The extension of this algorithm to 1>∆  is straightforward and is omitted 

here. 

B. Multistage Interference Cancelling ST MUD 
 

Multistage interference cancellation (IC) [21], [23] is similar to Jacobi iteration except that hard decisions 

are made at the end of each stage in place of the linear terms that are fed back in (15). Thus we have  

                                             ( ) ( )11
ˆ)(sgnˆ)(sgnˆ

−− −−=+−= mmULm bDHybCCyb . (34) 

The underlying rationale of this method is that the estimator-subtracter structure exploits the discrete-

alphabet property of the transmitted data streams. This nonlinear hard-decision operation typically results 

in more accurate estimates, especially in high SNR situations. Although the optimal decisions are a fixed 

point of the nonlinear transformation (34), there are problems with the multistage IC such as a possible 

lack of convergence and oscillatory behavior. In the following section we consider some improvements 

on space-time multistage IC MUD. 

 

Except for the Cholesky factorization, the computational complexity for Cholesky iterative DDF ST 

MUD is the same as multistage IC ST MUD, which is essentially the same as that of linear interference 

cancellation, i.e., )( mKO ∆  per user per symbol.  
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V. EM-based Iterative Space-Time Multiuser Detection with a New 
Structure 

 

In this section, EM-based multiuser detection is introduced to avoid the convergence and stability 

problem of the multistage IC MUD. After the introduction of EM and space-alternating generalized EM 

(SAGE) algorithms, we follow the approach of [15] to apply the SAGE algorithm to the space-time 

multipath asynchronous CDMA systems. To address the problems caused by long spreading codes, 

namely, the large computational burden to obtain the cross-correlation matrix H, a new space-time 

multiuser receiver structure is also introduced. The SAGE algorithm is then applied nontrivially to group 

spatial-domain multiuser detection based on different directions of arrival for different paths of different 

users. The SAGE iterative ST MUD with this new structure retains its excellent performance but with 

greater adaptability; it is easily adjusted for use in time-varying environments and for non-CDMA space-

time processing. 

A. EM and SAGE Algorithm with Application to ST MUD 
 

The EM algorithm [5] provides an iterative solution of maximum likelihood estimation problems such as 

                                                    ˆ( ) argmax log ( ; )f
∈

=
� �

, (35) 

where ∈ Λ  are the parameters to be estimated, and )(⋅f  is the parameterized probability density 

function of the observable Y. The idea of the EM algorithm is to consider a judiciously chosen set of  

“missing data”  Z to form the complete data },{ ZYX =  as an aid to the parameter estimation, and then to 

iteratively maximize the following new objective function 

                                                 ( ; ) { log ( , ; ) ; }Q E f= =
� � � �

, (36) 

where  are the parameters in the likelihood function, which are to be estimated, while  represent a 

priori estimates of the parameters from the previous iteration. Together with the observations, these 

previous estimates are used to calculate the expected value of the log-likelihood function with respect to 
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the complete data },{ ZYX = . To be specific, given an initial estimate 0 , the EM algorithm alternates 

between the following two steps:   

1) E-step, where the complete-data sufficient statistic ( ; )iQ  is computed; 

2) M-step, where the estimates are refined by 1 argmax ( ; )i iQ+

∈ Λ
= . 

It has been shown that EM estimates monotonically increase the likelihood, and converge stably to an ML 

solution under certain conditions [5].  

 

An issue in using the EM algorithm is the tradeoff between ease of implementation and convergence rate. 

One would like to add more “missing data”  to make the complete data space more informative so that the 

implementation of the EM algorithm is simpler than the original setting (35). However, the convergence 

rate of the algorithm is inversely proportional to the Fisher information contained in the complete data 

space [9]. Thus, convergence of the EM algorithm is notoriously slow, especially for multidimensional 

parameter estimation, due to the simultaneous updating nature of the M-step of the EM algorithm. The 

SAGE algorithm has been proposed in [9] to improve the convergence rate for multidimensional 

parameter estimation. The idea is to divide the parameters into several groups (subspaces), with only one 

group being updated at each iteration. Thus, we can associate multiple less-informative “missing data” 

sets to improve the convergence rate while maintaining overall tractability of optimization problems. For 

each iteration, a subset of parameters 
iS  and the corresponding missing data iSZ  are chosen, which is 

called the definition step. Then similarly to the EM algorithm, in the E-step we calculate  

                                              )};;,({log);( ~,
ii

SS
Si

S
S

ii

i

i

i fEQ yYZY == , (37) 

where 
iS

~  denotes the complement of 
iS  in the whole parameter set; in the M-step, the chosen 

parameters are updated while the others remain unchanged as 
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where 
iSΛ  denotes the restriction of the entire parameter space to those dimensions indexed by iS . Like 

the traditional EM estimates, the SAGE estimates also monotonically increase the likelihood and 

converge stably to an ML solution under appropriate conditions [9].  

 

The EM algorithm is applied to space-time multipath asynchronous CDMA multiuser detection as 

follows. For ease of illustration, we reindex the vectors and matrices in the system model (8) as 

                                              1 1 ( 1) 1[ , , , , , , , ]T
K K K M KMy y y y y+ − +=y � � � , 

                                              1 1 ( 1) 1[ , , , , , , , ]T
K K K M KMb b b b b+ − +=b � � � , 

and 

                                              1 1 ( 1) 1diag[ , , , , , , , ]T
K K K M KMa a a a a+ − +=A � � � . 

Suppose we would like to detect a bit kb , {1,2, , }k KM∈ � , while the interfering users’  bits 

kjjk
b ≠= }{~b are treated as the missing data. The complete-data sufficient statistic is given by ( kmH  is the 

element of matrix H at the kth row and mth column) 

                                        
2

2
2( ; ) 2 ( )

2
i k k

k k k k km m m
m kk

a b
Q b b b y a b

aσ ≠

 
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with  

                                    
2
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a
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σ
= = = = −Y y H

�
, (40) 

which forms the E-step of the EM algorithm. The M-step is given by 

                           1

sgn( ) { 1}

argmax ( ; ) 1
( )k

k km m m
m k

i i
k k k

b
k km m m

m kk

y a b

b Q b b
y a b

a

≠
+

∈ Λ

≠

 − Λ = ±∑


= = 
− Λ = ℜ∑

î

H

H

�

� , (41) 

where ℜ=Λ  (the set of real numbers) means a soft decision is needed, e.g., in an intermediate stage. 

Note that in the E-step (40), interference from users kj ≠  is not taken into account, since these are 

treated as “missing data” . This shortcoming is overcome by the application of the SAGE algorithm, where 
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the bit vector of all users 1{ } KM
j jb ==b is treated as the parameter to be estimated and no missing data is 

needed. The algorithm is described as follows: for 0,1, ,i = �  

1) Definition step: 1 ( mod )iS i KM= +  

2) M-step:

1

1

sgn( )i i
k k km m m i

m k

i i
m m i

b y a b k S

b b m S

+

≠
+

 = − ∈∑


= ∉î

H
. (42) 

Note that there is no E-step since there is no missing data, and interference from all other users are 

recreated from previous estimates and subtracted. The resulting receiver is similar to the multistage 

interference cancelling multiuser receiver (see (34)), except that the bit estimates are made sequentially 

rather than in parallel. However, with this simple concept of sequential interference cancellation, the 

resulting multiuser receiver is convergent, guaranteed by the SAGE algorithm. The multistage 

interference cancelling multiuser receiver discussed in IV-B, on the other hand, does not always 

converge. The computational complexity of this SAGE iterative ST MUD is also )( mKO ∆  per user per 

symbol. 

B. SAGE Iterative ST MUD with a New Structure 
 

So far when we discuss computational complexity, we have ignored the computational burden for 

calculating the matrix H. In a CDMA system exploiting short spreading codes as we have assumed, the 

system matrix will exhibit the block-Toeplitz structure as shown in (10). The computation of [ ]jH , 

1 j≤ ≤ ∆ , though involved (see  [25]) for details), would become insignificant when M is large. This is 

not the case, however, when a long spreading code is employed so that spreading sequences vary from 

symbol to symbol (e.g. in IS-95). In this situation, the sub-matrices [ ]jH , 1 j≤ ≤ ∆ , have to be 

calculated for each symbol, which results in an additional complexity of 3 3( )O K L ∆  per user per symbol. 

To circumvent this problem, a new space-time processing structure is introduced, where we separate the 

spatial and temporal processing, and apply the SAGE algorithm to spatial-domain multiuser detection 
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based on different directions of arrival for different paths of different users, as shown in Fig. 3. From (5), 

we can write 

                                                )()()()(
1

0 1 1
tiTtsgibAt

M

i

K

k

L

l
klkklklkk nar στ +∑ ∑ ∑ −−=

−

= = =
. (43) 

After chip-matched filtering and chip-rate sampling, the model can be represented in discrete time as 

                     dtnTttn c
Tn

nT
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)()()( min

)1( min

min
τψτ

τ −−∫= ++
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cT

MNn minmax10
ττ

, (44) 

where minτ  and maxτ  denote the minimum and maximum value, respectively, of the delay spreads for all 

users. For simplicity, we assume the delays are integer numbers of chip intervals. (The results can 

straightforwardly be extended to the fractional delay case by oversampling.) On denoting  

                                  ∫ ∑ −−−−= ++
+

−

=

min

min

)1( 1

0
min )()()( τ

τ τψτc

c

Tn

nT

M

i
cklkkl dtnTtiTtsns , (45) 

we have 
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                                                                                                                                                      LKj ×≤≤1 , (46) 

where for the last equality we reformulate the system model so that chips received from different paths of 

each user are treated as different users in a synchronous system, according to the following translation  

                                          klkj gAA ↔~
, klj aa ↔~ , and klkj sbd ↔ ,  (47) 

through ,*)1( lLkj +−= Kk ≤≤1 , Ll ≤≤1 . Here )(ne  denotes i.i.d. background noise with zero mean 

and unit variance.  The parameters to be estimated are KLT
LK ndnd }1{)](,),([ 1 ±∈== × d  which 

correspond to the chips from all paths of all users. The index sets cycle through KL,,1 ! , with L chips (of 

a user) being updated at a time. The algorithm is implemented without any missing data so there is no 

need for the E-step. Each iteration thus comprises the following steps: 

1) Definition step: [1, , ] ( mod )iS L i K L= + ×" ; 
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2) M-step: 
1

1

( )

,

i H i
j j m m m i

m j

i i
m m i

d g A d j S

d d m S

+
Λ

≠

+

  = − ∈∑   
 = ∉î

a z a
# ## #

. (48) 

Since the spatial processing is one of the components of our proposed space-time receiver, whose outputs 

are provided to the next stage for temporal processing, we choose to use the linear function xxg =Λ )(  in 

the above M-step to produce soft outputs )(
~

nd j , ij S∈ , which is better for overall performance than the 

hard-decision function )sgn()( xxg =Λ .  

 

After the spatial processing described above, the chips from the different paths of one user are combined 

through a RAKE combiner to get a chip estimate for that user ( ( mod )k i K= ), 

                                         * *

1

ˆ ( ) ( / )
L

k kl kl kl kl c
l

d n A g d n Tτ
=

= +∑
$

, max min0 1
c

n MN
T

τ τ −≤ ≤ − +  
 

,  (49) 

where the index conversion is made through the translation of (47). Finally, the spreading code is 

employed to get the bit estimate 

                                                




 


 ∑ +=

=

N

n
kkk ncniTdib

1

* )()(ˆResgn)(ˆ , 10 −≤≤ Mi .  (50) 

The obtained bit estimates are then respread and remodulated as (46) and (47) to get 1i
jd + , ij S∈  for 

spatial domain interference cancellation (48) for the next iteration. 

 

Our proposed space-time multiuser receiver structure in Fig. 3 has several advantages. As we mentioned 

earlier, the multiuser signals and multipath channel parameters come into play through the system matrix 

H. For a CDMA system employing long spreading codes, H must be calculated for each symbol interval, 

which is quite cumbersome. More generally, for any time-varying communication system, H has to be 

updated on the order of the coherence time. Furthermore, any part of the algorithm that is related to this 

system matrix, e.g., the Cholesky factorization for Cholesky iterative DDF ST MUD, should also be 
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calculated for each symbol. This problem is circumvented by our structure, which effectively distributes 

the operations combined in the system matrix H into the different stages of spatial IC, beamforming, 

temporal RAKE combining, and despreading. Further, since the front end processing is at the chip level, 

these “users”  are synchronous. Therefore, the algorithm can be implemented chip-by-chip or symbol-by-

symbol in a pipelined version. This structure also has the benefit that it can be applied in non-CDMA (e.g. 

space-division multiple-access (SDMA)) cellular networks to exploit the spatial and temporal knowledge 

to suppress interference and improve system capacity. All we need in such cases is to omit the 

despreading stage. 

 

The computational complexity of this new-structure-based SAGE iterative ST MUD is )( 2mKNLO  per 

user per symbol, which can easily be implemented with ( )O KLm  or even less time complexity per user 

per symbol with modern VLSI techniques. The basic idea would be to build multiple parallel hardware 

processing units, which can be done due to the synchronous chip-level processing nature of the new 

structure. The multistage IC ST MUD can also be implemented with this structure in a straightforward 

way. The performance of these ST MUD receivers with this new structure is the same as that 

implemented with the conventional structure of Fig. 1, which will be discussed further in the next section. 

 

VI. Simulation Results 
 
 
In this section, the performance of the above described space-time multiuser detectors is examined 

through computer simulations. We assume a K = 8-user CDMA system with spreading gain N = 16. Each 

user travels through L = 3 paths before it reaches a ULA with P =3 elements and half-wavelength spacing. 

The maximum delay spread is set to be 1=∆ . The complex gains and delays of the multipath and the 

directions of arrival are randomly generated and kept fixed for the whole data frame. This corresponds to 

a slow fading situation. The spreading codes of all users are randomly generated and kept fixed for all the 
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simulations. We assume KAA == %1  for simplicity, but the received signal powers of different users are 

unequal due to the effects of multipath. 

 

First we compare the performance of various space-time multiuser receivers and some single-user space-

time receivers in Fig. 4. Five receivers are considered: the single-user matched filter (Matched-Filter), the 

single-user MMSE receiver (SU MMSE), the multiuser MMSE receiver (MU MMSE) implemented in 

Gauss-Seidel or conjugate gradient iteration method (the performance is the same for both), the Cholesky 

iterative decorrelating decision-feedback multiuser receiver (Cholesky Iterative MU DF), and the 

multistage interference cancelling multiuser receiver (MU Multistage IC). All these receivers are 

implemented on the conventional space-time multiuser receiver structure shown in Fig. 1. (The reader is 

referred to [25] for derivations of the single-user based receivers.) The performance is evaluated after the 

iterative algorithms converge. Due to the bad convergence behavior of the multistage IC MUD, we 

measure its performance after three stages. The single-user lower bound is also depicted for reference. We 

can see that the multiuser approach greatly outperforms the single-user based methods; nonlinear MUD 

offers further gain over the linear MUD; and the multistage IC seems to approach the optimal 

performance (not always though, as is seen in Fig. 4(c)), when it has good convergence behavior. Note 

that due to the introduction of spatial (receive antenna) and spectral (RAKE combining) diversity, the 

SNR for the same BER is substantially lower than that required by normal receivers without these. 

 

Figure 5 shows the performance of Cholesky iterative decorrelating decision-feedback ST MUD for two 

users, which is also typical for other users. Note that we use a different parameter set for this simulation, 

so there is no correspondence between Figs. 4 and 5. We find that the Cholesky iterative method offers 

uniform gain over its noniterative counterpart. This gain may be substantial for some users and negligible 

for others due to the individual characteristics of signals and channels.  
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In Section V-B, a new space-time multiuser receiver structure was introduced to reduce complexity and 

enhance adaptability of the algorithms while keeping the same performance. In this new structure, 

different paths of each user are treated as separate users in a synchronous system, while in the original 

structure, different paths are combined prior to interference cancellation. One may be concerned that the 

new structure is more susceptible to saturation (“dimensional crowding”) than the traditional structure by 

a factor of L. We implemented the SAGE ST MUD with both structures for a fully loaded 16K N= =  

system. The results shown in Fig. 6 are measured after three iterations. It is seen that the performance is 

almost identical for these two structures. We believe that this should be always the case as long as the 

number of paths L is no larger than the number of antenna elements P.   

 

Finally, we show the advantage of our new EM-based (SAGE) iterative method over the multistage IC 

method with regard to the convergence of the algorithms. These receivers are implemented on the new 

space-time multiuser receiver structure shown in Fig. 3, and long random spreading codes are employed. 

We assume again a K = 8-user CDMA system with spreading gain N = 16. From Fig. 7 we find that, 

while the multistage interference cancelling ST MUD converges slowly and exhibits oscillatory behavior, 

the SAGE ST MUD converges quickly and outperforms the multistage IC method. The oscillation of the 

performance of the multistage IC corresponds to a performance degradation as no statistically best 

iteration number can be chosen. 

 

VII. Conclusions 
 

In this paper, we have considered several iterative space-time multiuser detection schemes for multipath 

CDMA channels with multiple receive antennas. Fully exploiting diversities through space-time 

processing and multiuser detection offers substantial improvement over alternative processing methods. It 

is shown that iterative implementation of these linear and nonlinear multiuser receivers realizes this 

substantial gain and approaches the optimum performance with reasonable complexity. Among these 
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iterative implementations the SAGE space-time multiuser receiver outperforms the others. The 

complexity of the new SAGE detector with the traditional structure is no higher than the existing methods 

but with better performance and smoother convergence. The SAGE detector with the new structure 

retains its excellent performance but with greater adaptability, and its complexity is comparable to the 

existing methods. Furthermore, with the long (pseudo-random) spreading codes (e.g. IS-95 and its 3G 

version) or in the rapidly time-varying environments, the SAGE detector with the new structure exhibits 

some advantage as it circumvents the system matrix update problem.  The reader is referred to [4] for the 

issue of sample-by-sample adaptive methods in this latter structure. 
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Decision Algorithm

 

 

Fig. 1 A conventional space-time multiuser receiver  
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Fig. 2 Cholesky iterative decorrelating decision-feedback ST MUD 
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Fig. 3 A new space-time multiuser receiver structure 
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Fig. 4 Performance comparison of BER versus SNR for five space-time multiuser receivers 
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Fig. 5 Performance comparison of decision-feedback ST MUD and Cholesky iterative ST MUD 
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Fig. 6 Performance comparison of SAGE ST MUD with traditional and new ST structure 
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Fig. 7 Performance comparison of convergence behavior of multistage interference cancelling ST MUD and EM-
based iterative ST MUD 


