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Abstract

The design of very small databases for smart cards and for portable embedded systems is deeply con-
strained by the peculiar features of the physical medium. Privacy concerns are relevant due to the fact that
personal information may be stored on the card (e.g. medical records). We propose a joint approach to the
logical and physical database design phases supporting the required security levels, on the basis that all
information is stored on the Flash-EEPROM storage medium, managed as a file system by the smart card
operating system. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The information management area is currently seeing the growth, in number as well as in size,
of applications that can profit of smart card physical support.

Though smart cards have been recognised among today as most secure portable computing
devices [2,8,12,17], not much attention has been devoted to adapting database techniques to this
highly powerful tool. In [2], the authors make a very thorough examination of the most relevant
issues that arise in this context, by proposing a storage model complete with query cost evalua-
tion, plus transaction techniques for atomicity and durability in this particular environment.
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To our knowledge, this is the most complete attempt to analyse in-depth the problems of DBMS
design w.r.t. microdevices.

The attention of [2] is mostly devoted to DBMS design techniques: it follows the traditional
assumption that data structures and access methods should be designed, once and for all, by the
DBMS manufacturer; the database designer should be mainly in charge of the conceptual and
logical database design, limiting the database physical design phase to the mere choice of fields to
be indexed.

However, owing to the intrinsic limitations of the smart card medium, which pose unique
challenges with respect to traditional DBMS based information systems, we believe that it is very
important that also the database designer be aware of the physical constraints from the very be-
ginning of the design process. There are two main steps where these constraints are to be enforced:

• partitioning data and procedures among the smart card itself and other fixed sites the smart
card might be connected to;

• designing and evaluating on-card data structures and algorithms, and data manipulation poli-
cies (e.g. delete operation management) which optimise performance, power consumption and
card endurance.

Moreover, some applications can involve sensible personal data that require a variable level of
privacy. While privacy by itself is a legal and normative issue, the technical tools to enforce it are
the domain of the system designer, who can choose among several security techniques and op-
tions, down to a major involvement in the design of the physical data structures.

The purpose of our research is to propose a full-fledged database design methodology. It should
guide the database designer from the conceptual design step, carried out in the traditional way by
using one of the well-known conceptual design models [9,14], to the semi-automatic choice of the
most appropriate data structures, access methods and memory allocation/management policies,
based on the evaluation of the physical storage devices currently offered by smart card technology.
To this purpose, we propose a logical–physical data model that should support the design of such
novel database applications for on-card data management.

In this paper, after outlining the steps of the methodology, we will concentrate on the logical/
physical database design phase with respect to the privacy issues and the management of secure
access of different users to the smart card database.

The paper is organised as follows: Section 2 outlines the general privacy issues in information
systems outlining the scenario and the main concerns w.r.t. the database information stored on
the card. With the aid of a running example of a personal information system, Section 3 presents
the reader with the proposed methodology for smart card information systems design and singles
out the specific topic addressed by this paper, i.e. the logical and physical support for imple-
menting a profile management system for accessing the smart card database. Section 4 introduces
the basic aspects related to smart cards, along with the most recent technological issues affecting
the design of the privacy support, which is described in the following sections. Section 5 intro-
duces two possible scenarios for organising owner–guests database accesses, while Section 6 de-
fines the implementation of such organisation for supporting the privacy requirements within the
proposed methodology for designing databases for smart cards. Future developments and re-
search trends are discussed in Section 7, along with the final conclusions.
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2. Privacy in information systems

Information privacy is one of the most debated topics on the social implications of informatics
in the last years. The availability of every kind of information––even the most personal––in
electronic form on some storage medium of some computer (e.g. in banks, supermarkets, medical
authorities, lawyers, etc.) arises in citizens and consumers a great concern about the diffusion
and the use of private data [25]. Regulating authorities in different countries (OECD, Australia,
Canada, Hong Kong, USA) are studying or issuing several behaviour codes and principles [7,11,
13,16,19–21] in order to discipline and control people dataveillance, that is all those mon-
itoring activities performed ‘‘not through people’s actions, but through data trails about them’’
[7].

Issues about privacy were not born with information technologies; they have been a crucial
issue in many social and legal systems as to the amount of privacy an individual can be entitled in
the frame of the more general interests of the society (a noticeable example is that of people
refusing to vaccinate against infective diseases which could be spread among the whole popula-
tion).

We can distinguish among several dimensions of privacy:

• privacy of the person;
• privacy of personal behaviour;
• privacy of personal communications;
• privacy of personal data.

But for the first item of the list, all the other aspects are relevant to information systems de-
signers, since personal behaviours can be monitored and inferred from data and communications.

One of the most referenced documents about information privacy was issued by OECD in 1980
[11]; it sets some general principles for protecting privacy and, in particular:

• limitations on the collection of personal data;
• limitations on the legal use of collected data, for which a personal consent is required;
• safeguards against unauthorised access, use and disclosure of personal data.

As to the interaction between users and data, three levels of privacy can be established:

• identified transactions, which directly or indirectly link data to a particular person;
• anonymous transactions, which preclude any identification of the parties related to transaction

data;
• pseudonymous transactions, in which no direct links exist between the transaction data and the

involved parties, but an association can be established between some of the data and some of
the parties, provided that additional data be accessed and particular procedures be followed.

An easy way to achieve pseudonymity is to tag transactions with aliases, which can be resolved
by means of cross-index tables, maintained by a security manager and subject to technical and
legal protection.
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2.1. The smart card issues

The availability of quite a large amount of storage and of processing power on the smart card
can be both a plus for privacy protection and a threat for it, depending on the architecture of the
systems on which the card is used. In his comprehensive report on the use of smart cards in the
retail financial sector Roger Clarke [7] summarises the pros and cons of the smart card medium
w.r.t. privacy; we briefly discuss some of them in the following.

Enhancement in information privacy is provided by

• storing data only on the card: this feature puts the card holder in full control of personal data
and he/she can control also possible backup copies of data for recovery purposes. However it is
very unlikely that the same data will not be stored also in other locations of an information
system, since in this case the potential benefit can, at least in part, vanish;

• using non-identified cards: this feature is used in prepaid cards for using particular services as
transportation, telephones, etc. instead of using cash transactions. However anonymity can
be violated if the card itself (not its holder) has an identification code which can be tracked
by external log procedures and successive data analysis and comparisons (e.g. data mining
and knowledge discovery procedures). For these reasons, transaction trails are among the most
relevant concerns to privacy for the smart card user, independently of the application;

• segregated zones on the card: this feature amounts to merging a number of separate cards on a
single one by strongly separating, at the storage level, data belonging to different applications.
This entails data duplication and the related well-known consistency problems. A smart card
information system, on the contrary, should strongly benefit of data integration, and privacy
should be obtained through different mechanisms: for instance, views can be used at the con-
ceptual/logical level, bounding address registers at the physical level, cryptography at the stor-
age level;

• support of public key cryptography: smart cards have been proposed as a supporting medium for
digital signature procedures, biometrics measures, and other identification procedures. As such,
they can be used as privacy enforcing procedure support in order to clearly recognise the part-
ners in a transaction.

2.2. Privacy constraints implementation

Implementation of privacy constraints is mainly based on security techniques, in particular
authentication and access control [5,10].

Authentication is the mechanism that checks the user’s identity by means of

• something the user is acquainted with (e.g. a password);
• something the user owns (e.g. a magnetic badge);
• physical characteristics of the user (fingerprints, signature, etc.).

Since authentication often uses cryptography and possibly third parties through complex
communication protocols, the computing power available on the smart card and the ability to
store complex patterns make it an ideal medium for supporting authentication procedures. From
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the point of view of privacy, authentication allows the user to be assured about the identity of the
partner (person or procedure) whom personal data are communicated to.

Once the actual identity of the user has been ascertained, the system must control the user’s
right to access the single pieces of information. There are lots of security mechanisms for granting
access to data, for which we refer the reader to [5,22–24].

In this paper we are mainly interested in mechanisms which work at the conceptual/logical and
at the related physical level without entering into coding and encryption problems at the storage
level.

3. A smart card database design methodology

In order to meet the design requirements mentioned in Section 1, current design methodologies
should be adapted to accommodate physical aspects which are relevant also at the logical design
level; the aim is to provide the designer with guidelines for identifying the structural aspects of the
database elements (index, sorted/unsorted, . . .) and their temporal duration properties. Moreover,
since privacy aspects have a great importance in a uniform storage medium with tightly packed
sensitive information, possibly belonging to different ‘‘owners’’, as in multifunctional smart cards,
their impact should be considered as early as possible in the design phases.

A noticeable feature of smart card databases is that the owner and all his/her information have
a peculiar role in the ER schema; in fact, while the card owner’s data constitute the virtual centre
of the database, they often amount to a unique entry, i.e. a singleton record. This role could be
compared to that of the home page of a Web Site, which is just a singleton entity in the site
schema, or to the fact table of a relational star schema for a Data Warehouse [1].

In order to discuss the proposed methodology for designing smart card database systems, a
running example will be introduced: a personal information manager concerning an individual
within the governmental/medical institutions.

3.1. The personal folder database

An application field in which the use of smart cards seems promising is that of personal por-
table folder information systems (PPFIS). These systems can store all the information pertaining
to an individual such as personal identification documents, health records, driving/flying/sailing
licenses, insurance policies, bank accounts and credit cards. Other similar applications could
manage travelling and shopping information such as supermarket fidelity cards, airlines mileage
points, skipasses, etc.

Although much of this information is already stored in portable magnetic cards or even in
smart cards, one has to carry a dozen plastic cards, one for each information/application domain.
The PPFIS concept allows all the data which could be of immediate need to an individual,
wherever he/she is, to be available on a single smart card using simple terminals which can equip
e.g. patrol police cars or ambulances [4].

In Fig. 1 the conceptual schema of an example PPFIS is shown as an entity-relationship (E-R)
graph. We notice that several ‘‘functional areas’’ can be highlighted whose data are managed by
different owners:

C. Bolchini, F.A. Schreiber / Data & Knowledge Engineering 41 (2002) 159–182 163



Fig. 1. The personal portable folder information system.
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• the municipal registry;
• the health care authority;
• several insurance companies;
• several mobility authorities;
• the judicial registry.

Moreover, the data belonging to an individual can be partitioned into those stored on the smart
card (continuous boxes) and those stored on other media (dotted boxes). The connection of the
smart card to the external data sources can be required to update the ‘‘on-card’’ data or to answer
complex queries that cannot be answered on-card.

The result is a ‘‘star schema’’ distributed database with both horizontally and vertically par-
titioned data items similar to a ROLAP Data Warehouse schema [1]; the peculiarity here is that
the ‘‘fact table’’ constituting the star centre is made of a single record.

The connections between the central entity and the other parts of the schema can be made by

• entity duplication (e.g. driving license, insurance policy);
• entity subsetting by horizontal (e.g. owner) or both horizontal and vertical partitioning (e.g.

medical record);
• distributed relationships (e.g. has son, has spouse, etc.), in which case the table implementing

the relationship must be stored on-card.

We must also notice that some relationships between on-card entities and also between on-card
and external entities have been added to the schema with dotted lines as ‘‘virtual relationships’’.
These virtual relationships violate the pure star schema, by adding some threads, in order to reduce
the number of necessary join operations and speed-up queries which could be frequent or which
could be made through narrowband terminals. However the same effect could be obtained by
choosing a special purpose architecture for the smart card processor which, by itself, can optimise
the particular join operations; this solution also enhances security, as discussed in Section 3.3.

3.2. Privacy issues

As we previously mentioned, privacy is an issue in PPFISs. Actually the identification of dif-
ferent functional areas, which are connected only through the star centre, allows a clear sepa-
ration such as that obtainable by means of the views mechanism. We notice that this example is
different from the segregated zone case of Section 2.1, because information is actually shared
among the different applications through the star centre. Therefore the first step toward infor-
mation isolation is a careful conceptual design of the database, not a physical separation of
storage areas.

However there are several different levels of isolation:

• among different on-card functional areas (e.g. driving licenses, medical records and insurance
information);
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• among different on-card instances of the same functional area (e.g. insurance information from
different companies);

• among the smart card and external ISs.

These isolation levels can only be achieved by applying logical and physical security techniques.

3.3. The methodology

Fig. 2 shows the whole methodology we propose for smart card database design. It is com-
posed of a common track and two branches. The common track, which is borrowed from dis-
tributed/federated database design methodologies [6,18], takes care of the conceptual and
logical aspects; the lower part deals with ‘‘on chip’’ features: the left branch concerns the privacy/
security aspects while the right branch concerns the physical memory data structures and algo-
rithms.

While shortly discussing the whole tree, in the following chapters we shall mainly focus on the
problems related to the lower left branch, the choice of data structures having been dealt with in
[3]. Notice that steps denoted by the people icons are a burden of the designer and an input to the
procedure while those denoted by PC icons can be automated.

1. The relevant information is chosen and modelled. Homogeneous information areas are singled
out and the corresponding views are defined at a conceptual level, regardless of the target stor-
age media. Referring to the PPFIS, this step corresponds to the choice of the five functional
areas listed in Section 3.1, and to their separate representation in a suitable formalism (e.g.
an E-R graph).

2. Views are integrated into a global conceptual schema and possible representation and semantic
conflicts are resolved. With this step the complete schema of Fig. 1 is built.

3. Logical entities are fragmented, possibly both horizontally and vertically, in order to separate
‘‘first need’’ information for a set of applications managed by very different user classes. A
rather close estimate of the fragment cardinalities is to be made at this step. In this step the
continuous and dotted boxes of Fig. 1 are defined, together with some subsetting and duplica-
tion of entities (e.g. medical record, insurance policy, etc.).

4. First need fragments are allocated to the smart card, the other fragments belonging to other
sites of the information system. This step includes the allocation of the tables corresponding
to relationships such as has son, has spouse, etc. At this point a first comparison is to be made
between the fragments and the smart card storage capacity: possibly fragmentation and alloca-
tion criteria shall be reconsidered.

5. (a) The privacy profile, i.e. the access rights for each fragment and each user class, is defined
and the relevant constraints are included in the views definitions: for instance, the first care per-
sonnel of an ambulance should know about the patient’s blood pressure record, but not about
his/her possible insurance policies, while the traffic authorities should only have a read-only ac-
cess to license relevant information of the judicial registry.
(b) The type of access mode (read only, read/write) and the volatility (for example in terms of
update/query ratio) are estimated for each fragment.
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6. (a) Memory protection mechanisms are to be designed in order to prevent unauthorised users
to access sensitive information.
(b) The type of storage is chosen with respect to the volatility features of each fragment
(EEPROM, flash, . . .) and the most convenient data structures are chosen.

7. (a) Possibly an encryption algorithm is chosen for some very sensitive data.
(b) Access methods are chosen for the data structures defined at step 6(b) under the constraints
coming from step 6(a).

Fig. 2. The entire methodology.
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At step 5(b) the information is gathered in order to allocate the same type of information,
in terms of volume and volatility, on the same sets of blocks. In particular, if asymmetric Flash-
EEPROM is considered (see Section 4.2), where four different block sizes are usually used,
very low volume information can be stored in the smallest block while high volume information
can be stored in one or more of the biggest blocks. At steps 6(b) and 7(b) the physical data
structures and the relevant access algorithms are designed. Steps 5(b), 6(b) and 7(b) are discussed
in [3].

4. Smart card technology issues

Smart cards are devices that allow information storage and processing, but they need to interact
with an active device providing the necessary power supply. Different types of smart cards can be
identified considering both the technology adopted for the memory device and the possibility to
elaborate on card information.

The most common and simple type of smart card is the magnetic stripe card that stores a record
of information on a magnetic band. More sophisticated smart cards contain a chip. Memory cards
contain only memory chips that can be preloaded and depleted and the active role is performed by
a terminal, e.g. the telephone.

For our purposes, we are interested in smart cards with autaonomous processing capability:
microprocessor multifunction cards (MMCs) expand the application field of smart cards by
embedding a microprocessor and, often, a cryptographically enhanced co-processor within the
card. The simplest architecture is the processor card that contains a microprocessor, a simple
cryptographic co-processor, and blocks of memory including RAM, ROM, and a non-volatile
memory (NVM) (usually EEPROM or Flash-EEPROM). More sophisticated cards, crypto cards,
are based on the processor card architecture where the simple cryptographic co-processor is re-
placed with an advanced one. The improvement in the crypto cards consists in the possibility to
enable public key encryption, whereas processor cards can only use private key encryption. For
the application environment described in Section 3, the target architecture is the MMC.

4.1. Microprocessor multifunction cards

The microcontroller used in smart card applications contains a central processing unit (CPU)
and blocks of memory, including RAM, ROM, and re-programmable NVM. RAM is used to
store executing programs and data temporarily, while ROM is used to store the operating system
(Card Operating System), fixed data, standard routines, and lookup tables. The re-programmable
NVM is used to store information that has to be retained when power is removed, but that must
also be alterable to accommodate data specific to individual cards or any possible changes over
their lifetimes. More specifically, the smart card NVM constitutes the data storage for the
database. Based on this consideration, technology issues have a significant impact on the overall
system performance.

An example of today’s smart card controller includes an 8-bit CPU, 128–780 bytes of RAM,
4–20 KB of ROM, 1–16 KB of EEPROM and, optionally, an on-chip hardware encryption
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module. We will use such architecture as our reference model (see Fig. 3). However, there are
several plans to improve the architectural characteristics of the microcontroller; as an example,
there is a plan from Hitachi and Infineon (a semiconductor spin-off of Siemens AG) to produce a
new 0.25 lm device that combines an increased Flash-EEPROM memory with a 16/32 bit RISC
processor.

A preliminary analysis concerns a comparison of the features and performance of the two most
common NVM architectures, in order to focus our analysis on a specific memory type. In fact,
although classical EEPROM and Flash-EEPROM are functionally equivalent (both are electri-
cally erasable re-programmable NVM) they differ in terms of performance, integration density,
cost, read/program/erase methods. The comparison that follows seems to the advantage of Flash
memories as more promising for future MMC.

In classical EEPROMs (from now on called simply EEPROMs), the contents may be erased
and programmed at byte or word level. The erase operation is contained in the program cycle and
transparent to the user; read time is approximately 35 ns, program time is 1 ms/byte while erase
time is not applicable.

In Flash-EEPROM (form now on called simply Flash) write data operations are programming
operations that can only be performed if the target location has either never been written before,
or has been previously erased. Further complication and space/performance cost arise from the
fact that the erase operation works only on blocks of data one at a time. Flash memories are
divided into blocks and each block can be erased separately; read and program operations work
independently of the blocks, any byte (word) can be read or programmed separately.

Thus, in Flash the minimum erase element is larger than the minimum read/program element;
the erase element is a page, sector or the entire device, while the read/program element is a byte or
word. Table 1 compares the main features of EEPROMS and Flash memories.

Summarising, although Flash memories are more interesting than EEPROMs in terms of read/
write time and integration density, they present a disadvantage concerning the erase operation
that is particularly expensive w.r.t. time and power consumption. However, these drawbacks can
be strongly reduced if a correct erase policy is applied. For example, if a block is erased only when
its entire content has to be modified, an EEPROMmemory is approximately 50 times slower than a

Fig. 3. A schematic representation of a smart card microcontroller.
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Flash one in writing 64 KB in the same single block for n times. Although this example represents
a special case, an appropriate set of policies can make Flash memories much more interesting than
EEPROMs. As a consequence, also considering the technological trend we will focus on an ar-
chitectural solution based on Flash memories.

4.2. Flash memories: dimension, power and timing issues

Flash memories can be classified into two categories: uniform block type and asymmetrical
block type (Fig. 4). In the uniform block architecture, all blocks have the same size (16, 64 and

Table 1

EEPROM and Flash-EEPROM technical characteristics

EEPROM Flash-EEPROM

Read (ns) 20–150 20–150

Program (ls/byte) 1000 2–7

Erase (s/block) NA 0.7/0.8

Cell size (lm2–0.6 lm tech) 30 6.4

Cost per bit Medium Low

Endurance (program, erase) 100,000 100,000

Fig. 4. Flash memory organisations.
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128 KB) and the number of blocks ranges from 8 to 64. Asymmetrical block memories usually
contain four different sizes of blocks; more precisely, there are typically one boot block, two
parameters blocks, one small main block and several normal main blocks; in a 512 KB Flash
memory, the block dimension is 16, 8, 32 and 64 KB (seven blocks), respectively. It is worth
noting that, even if this type of architecture is designed to store the boot code of the system (boot
block), the system parameters (parameter block) and, finally, code and/or data (main block), this
architecture results particularly significant if data properties (volume and volatility) are correlated
with block dimension.

Power requirements, in terms of current needs, vary depending on the operation that has to be
performed. A read operation requires an average of about 10 mA whereas program and erase
operations require an average of about 20 mA.

As introduced in Section 4.1, access time depends on both the operations and the mode: as far
as read access is concerned, random read requires about 35 ns whereas read page mode and read
burst mode (when supported by the memory) requires about 150 ns to access the first page or data
and 20 ns for subsequent reads (in a page mode for access within the page). Concerning pro-
gramming time, each program operation takes approximately an average of 5 ls per byte or word.
Erase time depends on block dimension: typically a 64 KB block takes about 0.7 s. Another
consideration concerns the endurance of a Flash: in fact, a Flash memory works for a 100,000
program/erase cycles. These data are all reported in Table 1.

It is worth noting that the time to erase a block is approximately 10 times the time to program a
block that, in turn, is 100 times the time to read a block; as a consequence, our effort is thus to
reduce the number of erase operations in order to achieve good performance, reduce energy
consumption and to extend the life of the device. These aspects have been taken into account
when proposing the implementation of the mechanism for supporting privacy management dis-
cussed in Section 5.

4.3. The file system

Data management on the smart card EEPROM is a task of the file system as part of the op-
erating system; most modern smart card operating systems allow files to be created, enlarged,
erased and locked, as well as allowing other file management functions, all within limits imposed
by specific security conditions [15]. The file system, which manages data in the EEPROM, is often
hierarchically structured in three basic elements (Fig. 5a):

Fig. 5. (a) Classification of smart card file structures according to standard ISO/IEC 7816-4 and (b) a generic smart

card file system architecture.
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• a master file (MF) component,
• a dedicated file (DF) component, and
• an elementary file (EF) component.

The MF is the root of the file hierarchy; there is only one MF on a smart card; it is implicitly
selected when the smart card is reset. Equivalently to a DOS/UNIX system, the root contains all
other directories and files. It is a special type of DF and represents the entire extent of the smart
card memory that is available for the file region. The DF is a container for other DFs and/or EFs;
a DF may contain from zero to many EFs and/or DFs. The hierarchical structure of the smart
card file system is shown in Fig. 5b.

An EF is a file that contains data. There are two variants of EFs: an internal EF, which is to
be used by applications on the card, such as, for example, the materialisation of a view, and a
working EF, which is used to store information used by an off-card application.

The standard (specified in the ISO/IEC 7816-4 standard document) defines four types of
working EFs:

• transparent;
• linear, fixed-length record;
• linear, variable-length record;
• cyclic, fixed-length record;

The transparent and linear, fixed or variable, file organisations are similar to those present in
the disk based file system. In particular, a transparent file is organised as a sequence of bytes while
fixed- or variable-length record files are organised in records. The main difference between fixed
and variable-length record architecture consists of the overhead of the variable-length record
organisation, both as to the read/write access time and to the management of the file system.

A cyclic file, on the contrary, is significantly different from the file we find in the typical disk
based file systems. A cyclic file is organised as a ring of records where each successive write takes
effect on the next free physical record in the ring while any read operation is performed on the last
written physical record. This type of management aims at spreading the erase and write opera-
tions across a set of EEPROM memory locations positively affecting the endurance of the card’s
NVM. Furthermore, this cyclic structure is managed for supporting the circular data logical
organisation proposed in [3] where the authors provide a mechanism for maintaining a constant
window of valid records, taking into account the technological environment. In fact, when a
record needs to be erased, the entire block containing it must be erased and re-written. As a result,
if the ring of records does not have any spare record, once the ring is full, each time a new record
needs to be stored, the entire structure has to be saved in RAM, erased and copied back to the
EEPROM except for the last record, to be substituted by the new one. The data structure pro-
posed in [3] uses dummy records to avoid the costly process (in terms of time, power consumption
and device endurance) introducing an area overhead. As a result, the standard physical cyclic
structure can be used efficiently to keep track of the single last record added to the file, whereas the
data structure model we proposed in [3] (the circular list relation) is aimed at maintaining the last
n records added to the relation. This latter model acts on the relation and is meant to be inde-
pendent of the physical file management, even though the two entities may be the same one.
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To manipulate the smart card file system, the application level protocol defines a collection of
functions for selecting, reading, and writing files. Some of these functions are discussed, briefly
and qualitatively, in the following.

4.3.1. The select file command
The select file command is used to activate a logical connection to a specific file in the smart

card’s file system. Once a file is selected, any subsequent file manipulation commands will operate
on the selected file. It is worth noting that any access to the smart card’s file system is referred to a
single file; however, it is possible to have simultaneous multiple logical connection (channels)
between the reader-side application and the card and commands to access different files are
multiplexed by the reader-side application, allowing different files on the card to be in various
states of access by the reader-side application at the same time.

4.3.2. The read (write) binary command
The read (write) binary command is used by a reader-side application to retrieve (to put) some

information from (to) a segment of an EF on the card. The EF must be a transparent file. If a read
(write) binary command is issued on a record-oriented EF, the command will abort and an error
indicator is returned to the reader-side application. As far as the write command is concerned, the
performed operation can either set or clear a set of consecutive bytes, depending on the attributes
passed from the application to the card.

4.3.3. The erase (update) binary command
The erase (update) binary command is used by an application to erase and write a contiguous

sequence of bytes in a segment of a transparent EF on the card. The command is aborted, re-
turning an error indication, if the command is applied to a record-oriented file.

4.3.4. The read, write, append, update record command
These commands have the same behaviour as the binary commands briefly discussed in Sec-

tions 4.3.2 and 4.3.3, and the difference is the fact that they work on a record-oriented EF,
whereas in the present case the basic element id a record in an EF. As indicated for binary
commands, the application to an incorrect file type will abort the command returning an error
indicator.

4.3.5. The get (put) data command
The get (put) data command is a command sent by an application to read the contents of (to

put information into) a data object stored within the file system on the card. This command tends
to be very card specific, i.e. the definition of what constitutes a data object varies widely from card
to card.

5. Privacy management: the logical model

The methodology we propose for supporting privacy management for the smart card database
consists of two aspects: a logical design of the database access profiles and the underlying physical
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mechanism for enforcing the protection of data from undesired tampering and accesses. The
logical support we define consists in the design of an access definition environment, where the
database designer will specify read and write permissions for each possible user of the smart card
database, completing the design with the indication of the logical views for allowing a customised
access to the data. With this in mind, we analyse the possible situations following a preliminary
successful authentication of the user. It is possible to identify three kinds of roles when accessing
the smart card database:

• the data owner,
• the guest, and
• the card holder.

A data owner, in general an authority or institution, has full permissions to access its own data,
in read and write mode; a guest is any other institution or generic user accessing the card data with
read-only permissions on part or all of the stored data. Altogether, an institution is the owner of
its own data and a guest for other institutions’ data; there are also institutions accessing the card
as guest, not owning any data on the card. The third role is the card holder: although carrying the
card, he/she is not the owner of the information it bears, but only a guest for all the data issued by
public/private institutions. The main characteristic of the holder’s guest role is that he/she has an
unrestricted access to all data, with read-only permission, whereas other guests will only be en-
titled to read specific portions of the data. Furthermore, if the card holds also the holder’s per-
sonal data that he/she manages, then the holder will also be the owner of part of the data, having a
full access to them.

Having identified these three roles, a further characterisation is required for the guest definition
and identification, with respect to the possible scenarios represented by the database stored on the
smart card.

Consider the PPFIS example of Section 3.1: each institution provides its own data that is
sometimes related to data of other institutions, e.g. traffic control authority and judicial register.
Each institution writes, reads and updates its own data on the card and makes all or part of its
data available to other users of the card, considering them as guests. More precisely, from the
logical point of view, the institution has direct access to its relations and provides views for others
to access data.

Therefore, referring to Fig. 1 as an example, we can define three views on the part of the schema
related to the driving licence: Fig. 6a shows the data owner view of the traffic control authority;
Fig. 6b shows the data owner view of the judicial authority; both of them have full write rights on
their view. Fig. 6c shows the guest view of the judicial authority having been granted only read
rights by the data owners.

This logical organisation of data is on top of a system of integrated encryption at a lower level,
where access is allowed only after a positive authentication. Therefore we will not deal with the
security aspects related to data encryption, thoroughly studied in [15]; rather we concentrate on
the mechanism for providing different privacy profiles to the users of the smart card and its
database.

The PPFIS database actually provides a complex example of interacting owners and guests,
each of them needing a customised access to data. On the other hand, it is also possible to have a
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more simplified situation, where each owner has a full access to its data and provides a generalised
read-only access to a subset of them, to the other users of the card. In this case, the views will
provide all the non-protected data and each user is seen simply as a generic guest, who will select
the interesting subset of information from the available views.

As a result, two logical schemas have been envisioned for privacy management, based on the
owner–guest relationship: a customised owner–multiguest schema and a generalised owner–guest
schema. The former is appropriate when data have relevant sensitivity and each user of the card
database needs to be characterised in terms of read accesses to other users’ data, as in the PPFIS
example. The latter schema is appropriate when the stored data have privacy requirements but

Fig. 6. Data owner view for the (a) traffic control authority and (b) judicial authority. (c) Guest view for the judicial

authority.

C. Bolchini, F.A. Schreiber / Data & Knowledge Engineering 41 (2002) 159–182 175



either all (or part of) the data can be accessed by a guest or not. An example of a personal
database with data with a limited level of privacy, appropriate for a generalised owner–guest
schema, is represented by an on/off university campus student card. The card holds all infor-
mation concerning the student along with his/her exam records (from the university), informa-
tion for lodging (from a housing association), library accesses, reservations, purchases, etc. In this
example there are different owners for the data, and each owner will either allow or prohibit
access to its data, independently of the guest accessing them, since no distinction among guests
applies.

As a first step in our methodology, thus, the database designer will select one of the two
schemas, to support the privacy requirements, according to the access profiles specified by the
data owners.

Let us consider first the customised owner–multiguest schema; each authority or institution may
be one or more of the following figures:

• an owner of the stored data, with full access permissions,
• a guest accessing specific data in a read-only fashion.

It is quite burdensome and sometimes impossible to define a priori a set of views to be made
available to possibly different users, identifying, for instance, groups of users (i.e. medical insti-
tutions users) and associating the necessary access permissions. In fact, this solution is charac-
terised by the following costs:

• definition of views,
• identification of groups of users,
• customisation of access permissions for users within groups.

This hierarchical organisation is typical of standard database systems [1], and leads to the
definition of access permissions for all the possible users of the card database, also adding an
unlisted guest with read-only access permission restricted to data with no privacy requirements.
This schema is rather complex when considering the users’ permissions definition phase, yet it
provides the necessary mechanisms to manage highly private data. The design of the group and
user access permissions needs to be carried out at database design time; later modification to the
database in terms of new institutions sharing data or accessing other’s data may imply quite an
overhead. In fact, data structures and physical organisation are selected on the characteristics of
the database tables and relationships (as provided by the rest of the proposed methodology [3]).
The introduction of new tables and views could require the reorganisation of the existing data in
order to achieve acceptable performance in accessing data. Given the technological issues related
to the Flash-EEPROM memories, data reorganisation causes time and performance costs. The
unlisted guest aims at dealing, at least for a transient period, with the subsequent introductions of
new institutions or authorities that should be able to access data on the card; this user will though
still be entitled to read data but only with low privacy requirements. When the database structure
is significantly out-of-date and too many users need to be managed via the unlisted guest, a
database maintenance phase is required, to upgrade the unlisted guests, updating the database
and its permissions’ system.
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In the database design phase each of the data owners will specify:

• its relations (which will be fully accessible, read, write, delete, update permissions),
• a set of views on its relations, and for each view,
• a list of guests with read permissions.

The list of guests is created on the basis of the other owners of data in the database and with
respect to other guests (institutions accessing the data).

The generalised owner–guest schema is appropriate when a simpler access control is required,
where each user is seen as a uniform, unvarying guest to others’ data. Each institution thus will
provide a set of views to its data, to share all the visible information, independently of who will
access it. This approach has a limited cost, only constituted by the definition of the views of the
relations, allowing read-only access.

In the generalised schema, during the database design phase each data owner will specify:

• the owned relations (which will be fully accessible, read, write, delete, update permissions);
• a set of views on the owned relations.

The resulting design task is simplified still guaranteeing the desired level of data privacy for the
part of information that can be accessed by others. It is worth remembering that underneath this
logical masking of data, information is encrypted and before accessing the database a successful
authentication of the user is required. The simplified environment of the generalised owner–guest
schema only refers to the organisation of the database access permissions; in fact, while user
authentication aims at guaranteeing that the user be entitled to access the database, views define
which part of the database data can be accessed by the user.

6. Implementation of the privacy support

The definition of user access profiles according to one of the selected schemas as described in
the previous section acts at a logical level of the database design to enforce data privacy. Nev-
ertheless, underneath the logical protection, a physical approach is also proposed, to prevent a
breach in the database security. This protection is pursued by means of providing a selective view
of the file system, according to the user, so that if the logical database protection is bypassed, data
can still be kept unavailable.

The standard ISO/IEC 7816-7 also defines a subset of SQL for smart cards (smart card query
language, SCQL) acting on a suitable file structure for managing the database information; the
layout of this structure is not standardised [15]. Yet, in order to manage databases, a common
format system table is maintained by the card and contains information necessary to manage the
database structure and access. There are three basic system tables:

• the object description table,
• the user description table,
• the privilege description table.
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The object description table contains information about the tables and the views stored in the
database. The user description table contains basic information about the user(s), and their access
to the database(s). The privilege description table contains information about the privileges to the
database tables and views for each user. Privileges describe which tables and views can be accessed
by which users and which actions can be accordingly performed.

To access the information contained in the system tables, views on these tables can be created.
A view on a system table is called an SCQL dictionary. The only action a user can perform on a
dictionary is reading.

We propose to provide different SCQL dictionaries for the different users accessing the card,
making the masking task transparent to the upper logical levels of the application. In order to
implement such a view system for a database, we base our approach on the standard smart card
file system infrastructure (discussed in Section 4.2), by providing each physical user with a cus-
tomised view of the file system, depending on his/her access permissions.

Let us consider a generic file system constituting the physical layer of the smart card database:
for each standard file there is an owner having full access permissions; eventually there are also
guest permissions for read mode (Fig. 7a). The same file system, viewed from the point of view of
a specific institution, consists of a set of files owned by the institution and, possibly, some files
with a read-only permission (see Fig. 7b).

Each owner provides the views for the guests to be accessed by specifying their definition. The
view definition is stored as an EF in a DF. The view is not materialised due to the limited memory
size, also considering that Flash-EEPROMs are characterised by low read access times, and hence
the dynamic view materialisation can achieve satisfactory performance. As a result, when an
authorised guest accesses the view (selects an EF) he/she actually accesses the information on the
data matching the stored conditions, which are then dynamically retrieved and sent to the re-

Fig. 7. The smart card file system: (a) its entire content and (b) the partial view offered to one of the institutions issuing

the card.
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questing application. Owner data will then be organised at the physical level by creating a DF and
one or more EFs for storing the entire table data; the owner has full access to these data. The
views defined for the guests are stored in separate EFs in a different DF, so that the identification
of access privileges are managed in terms of directory/file accesses. In the customised owner–
multiguest scenario, user groups are used to manage directory accesses leading to a complex
directories’ tree for specifying the views for different users (Fig. 8a). In the generalised owner–
guest scenario, instead, there is only one directory for storing the views since no further distinction
is required (Fig. 8b).

We also envisage the adoption of a mechanism for providing different system tables and
consequently different underlying file systems, by storing several SCQL dictionaries reflecting the
user/privilege schemas designed at a logical level. Following a successful authentication, an SCQL
dictionary is selected and loaded for providing the desired scenario according to the present user.
To simplify data accessibility and privileges, without incurring in data redundancy on the card
(especially considering the limited available memory, besides performance and maintenance
issues), the physical organisation of the database data in directories and files reflects the generic
guest and multiguest scenarios, so that privileges are directly applied to directories and files rather
than to a subset of a table records. This is consistent with the traditional management of smart
card data; in fact, according to a de facto convention, all files containing useful data for a par-
ticular application (the EFs for that application) are always grouped together in a single DF. This
produces a clear and easily understood structure, and extensible in that it is easy to enter a new
application into a smart card by creating the appropriate DF.

The relationship between an owner (and guest) in either one of the two discussed scenarios, and
the associated SCQL dictionary, is maintained by means of a table with a sorted organisation
given the expected limited number of records in the table and the fact that data will be stored at
production time and accessed only in retrieval (as discussed in [3]). This approach has an addi-
tional advantage with respect to security: each time a memory access to the application occurs,

Fig. 8. Implementation of tables and views in the (a) owner–multiguest scenario and (b) generalised owner–guest

scenario.
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once the selected SCQL dictionary is loaded, the operating system can check whether it lies
outside the boundaries of the memory allocated to the relevant application DFs. If so, it may
prohibit the access. This differentiation of system tables to define different file systems on the basis
of the active user allows achieving a transparent profile management for the higher-level appli-
cations that can then access the portion of the database.

A stable and static profile definition is required to guarantee security and cope with the tech-
nological constraints of the limited memory size and its technological characteristics. When new
users need to be added or privileges modified, a maintenance session is required, and data can be
modified and re-sorted off-line, so that the Flash-EEPROM life endurance degradation is limited.

7. Conclusion and future work

We presented a methodology for smart card database design using Flash-EEPROM storage.
Unlike traditional database design, this process is technology driven since a very careful design of
the logical and physical data structures is needed to meet the technological constraints the smart
card architecture introduces, and to provide satisfactory performance.

Our analysis identifies two possible scenarios related to privacy requirements with respect to a
multifunction environment on a smart card database, both requiring the definition of owner–guest
user profiles and access permissions. We examined a logical–physical model for guaranteeing a
protected access to the database information which provides a customised view of the smart card
system tables (and consequently file system) in order to hide the part of data that cannot be
accessed by a user.

The provided mechanism is well suited for the smart card architecture since it acts at the op-
erating system level, providing a differentiated and personalized view of the physical data to the
file system level and to the upper application levels.

Further research will focus on ad hoc architectural enhancements of the smart card with
particular attention to the processor, to the possibility of implementing different storage tech-
nologies on the same card in order to benefit from their peculiarities, and to the analysis of other
policies for data management to improve performance.
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