
66

Because fault tolerance is important
in justifying our reliance on critical comput-
ing systems, validating fault tolerance is essen-
tial. Historically, certain techniques have
helped designers in this process: axiomatic
methods including formal verification, ana-
lytic evaluation and empirical methods based
on fault injection, including injecting faults
on prototypes, either by forcing voltage levels
on IC pins or perturbating software layers.
(For more information, see the “Background
and related works” sidebar.)

Here, we focus on fault tolerance modeling
and the control of activity flow in fault toler-
ance mechanisms (FTMs). We propose a fault
injection-based testing framework linked to
the design of fault-tolerant systems described
as VHDL models and illustrate the applica-
tion of our strategy with a case study corre-
sponding to a simple embedded real-time
fault-tolerant system. We address four main
issues relevant to the development and vali-
dation of dependable systems:

• Modeling of the main structural features

and interactions of the FTMs using con-
cise diagrams. Such modeling aims at the
high-level characterization of the testing
strategy (for example, the order of the
FTM testing).

• Characterization of the predicates that
specify the outcome of the test sequences.
We use these predicates to discriminate
the observations obtained during the
fault injection experiments.

• Modeling of the dynamic behavior of the
FTMs using detailed behavioral models.
We use these models to derive the test
patterns to be applied. Such a derivation
is based on a statistical analysis of these
detailed models.

• Development of a generic tool to imple-
ment fault injection into VHDL mod-
els; that is, supporting the validation
process accounting both for fault removal
and fault-forecasting objectives.1

Testing framework
Current FTMs are software protocols that

are often complex and specifically developed

Jean Arlat,
Jérome Boué,

and Yves Crouzet
LAAS-CNRS, France

EARLY VALIDATION OF FAULT TOLERANCE IS ESSENTIAL IN DEVELOPING

DEPENDABLE COMPUTER SYSTEMS. THE AUTHORS HAVE DEFINED A

STRATEGY FOR TESTING FAULT TOLERANCE MECHANISMS, INTEGRATED IT

INTO THE DESIGN PROCESS, AND DEVELOPED FAULT INJECTION TECHNIQUES

FOR VHDL MODELS THAT ARE SUPPORTED BY A GENERIC TOOL.

0272-1732/99/$10.00  1999 IEEE

VALIDATION-BASED
DEVELOPMENT OF

DEPENDABLE SYSTEMS

67JULY–AUGUST 1999

The development and early validation of dependable systems encom-
passes two main issues, namely the development of a specific fault injec-
tion-based test strategy targeted to the removal of fault tolerance
deficiences and the conduct of simulation-based fault injection
experiments.

Removal of fault tolerance deficiencies
Due to the very negative impact of deficiencies affecting the design

and/or implementation of FTMs, the early verification of these mecha-
nisms is essential. As for any verification activity, formal methods based
on a mathematical model allow for the level of trust to be significantly
enhanced. However, despite continuous progress of these methods, the
number of uncertainties attached to the characterization of a computer
system’s behavior in the presence of faults, is such that it prevents these
methods from providing alone an answer to this problem.

In this context, the experimental approach is perfectly suited to help
take up this challenge. The fault injection method, in which the obser-
vation of the behavior of the computer system in the presence of faults
is explicitly forced by the deliberate introduction of faults, constitutes a
privileged approach. Indeed, fault injection can be seen as a form of test-
ing the FTMs with respect to a class of specific inputs they were specif-
ically designed to cope with: the faults. In spite of this a priori favorable
environment, in most work emphasis is mainly put on evaluating the effi-
ciency of the FTMs, the issue of removing fault tolerance deficiencies
only comes into play as a subproduct of fault injection experiments. More
focused testing approaches are needed to devise cost-effective testing
strategies. To date, few studies have addressed this topic. Neverthe-
less, two main pioneering investigations are worth pointing out.

The first study2 details a deterministic software test approach involv-
ing fault tolerance protocols. It relies on the insertion of software probes
into the program implementing the target fault tolerance protocol (after
each conditional branching) to provide execution traces for each exper-
iment. Its has been applied to simple redundancy management proto-
cols (for example, of the Triple Modular Redundancy type). The second
study3 combines a formal description and simulation. It relies on the
determination of a formal model (a state table) of the fault tolerance pro-
tocol from which, irrespective of the program implementing the protocol,
a set of assertions characterizing the properties of the service expected
from the program is expressed using a rigorous formalism. It has been
applied on the replica treatment protocol developed within the ESPRIT
Delta-4 Project.

Besides these advances, the problem of systematic testing by fault
injection to remove deficiencies in the FTMs remains widely open.
Recently, an increasing number of studies have been reported that aim
at facilitating the systematic testing of fault tolerance by considering a
wide variety of approaches: error propagation analysis,4 increasing
stress,5 monitoring the activity flow in the fault tolerance mechanisms,6

application-specific safety criteria.7 We based our approach in this arti-
cle on the modeling of fault tolerance and the control of the activity flow
in the FTMs.

Simulation-based fault injection
Simulation-based fault injection is intended to impact as early as pos-

sible the development process. Simulation-based fault injection covers
a wide spectrum of activities ranging from the detailed study of the
effects of specific types of faults to more general objectives by using
more comprehensive supporting tools.8-10

FOCUS7 supports mixed-level simulation (both at electrical and logi-
cal levels). The targets are the electrical nodes where transient current
sources are applied. The effect of the injection is analyzed in details at
the electrical level by considering transistor networks at the vicinity of
the injection point, while the rest of the circuit is simply simulated at
gate level.

The ASPHALT tool9 is aimed at analyzing the faulty behavior and the
error propagation process of complex digital devices. The tool consid-
ers an RTL language description of the target IC. Accordingly, the results
obtained can provide objective error patterns to be applied during fault
injection experiments carried out using the SoftWare Implemented Fault
Injection (SWIFI, for short) technique (see Carreira, Madeira, and Silva11).
The experiments aimed at determining to what extent such an RTL fault
model covers actual hardware faults on the basis of a comparison with
a gate-level simulation. The target system considered was the IBM RISC-
oriented microprocessor.

DEPEND9 is presented as a system-level functional simulation tool.
Using the properties of the object-oriented paradigm, complex objects
are built from elementary objects made available in a library (CPU, com-
munication link, voter, server, and others). To speed up the simulation,
DEPEND supports acceleration techniques, encompassing hierarchical
modeling and variance reduction. Besides the dependability analysis of
the Tandem Integrity S2,10 two other recent applications of the tool con-
cern: the analysis of a complex RAID storage system11 and the study of
a high-speed network system using both simulated injection and SWIFI.13

The previous studies feature dissimilar simulation languages at dif-
ferent phases of the target system’s development. We advocate that the
development of an integrated and coherent design environment for fault-
tolerant systems based on a single language seems to be achievable
when considering the emergence of hardware description languages. In
this respect, VHDL (Very High Speed Integrated Circuits Hardware
Description Language)14 has been identified as a suitable language as it
presents many useful features:

• the ability to describe both the structure and behavior of a system
in a unique syntactical framework;

• widespread use in digital design and inherent hierarchical abstrac-
tion description capabilities;

• recognition as a viable framework (1) for developing high-level
models of digital systems (block diagrams, Petri nets), even before
the decision between hardware or software decomposition of the
functions takes place, and (2) for supporting hybrid (mixed abstrac-
tion levels) simulation models; and

• the capability to support testing activities.

Background and related works

to ensure error processing in fault-tolerant dis-
tributed systems. The underlying idea is to
make fault injection experiments less “blind”
by promoting a “glass box” approach that draws
upon information about the implementation
or relies on abstract models. (This is in contrast
to the frequently used black-box notion that
relies simply on the input-output characteris-
tics of the mechanisms tested.) The main objec-
tive is to facilitate, or even guide, the test of
these mechanisms by identifying testing crite-
ria and ensuring test input generation (that is,
errors combining faults, and functional activi-
ty) that facilitate the coverage of the criterion
retained. Therefore, it appears that these exper-
iments are close to the testing problem and that

of the software testing, in particular.
Our proposal aims at integrating fault tol-

erance testing together with system design.
The goal is to identify and implement rele-
vant testing criteria for activating fault toler-
ance and adequate readouts for observing test
outcomes, so as to guide the specification of
the fault injection experiments. These exper-
iments are then applied to a simulation model
of the target fault-tolerant system to ade-
quately exercise the FTMs. Figure 1 illustrates
the proposed framework for testing fault tol-
erance and its links with the development
process. The framework identifies two main
facets of the proposed strategy: diagnosis of
fault tolerance for specifying verification pred-
icates and modeling of fault tolerance for test
pattern generation. The figure also depicts the
role played by MEFISTO-L (Multilevel
Error/Fault Injection Simulation Tool devel-
oped at LAAS) in supporting the strategy.

Diagnosis for fault tolerance testing
Diagnosis of fault tolerance relies on the

identification of suitable predicates for char-
acterizing the behavior of FTMs, as well as
their potential deficiencies.

Behavioral predicate of an FTM. Figure 2 pro-
vides an abstract view of a fault-tolerant sys-
tem combining functional components and
FTMs. The testing strategy proposed here is
meant to test individually each specific FTM
embedded in the system by injecting faults
into the system. The figure also illustrates the
three predicates whose combinations are used
to identify the situations that may reveal defi-
ciencies in the tested FTMs. These predicates
are defined as follows:

• Finj is true when a fault is injected into
the system (thus, simulating the presence
of an operational fault);

• Hpre is true when the error patterns
observed on the input of the FTM match
the failure mode assumptions against
which its has been designed;

• Hpost is true when the failure mode
assumptions specified for the system are
satisfied by the delivered service.

The injection of a fault into the system leads
to the assertion of Finj. The behavior of the

68

FAULT TOLERANCE

IEEE MICRO

Development
process

VHDL simulator

VHDL target model

VHDL mutated model

Experimental results

Saboteurs and
control probes

MEFISTO-L

Modeling
of fault tolerance

Diagnosis
probes

Diagnosis for fault
tolerance testing

Verification
predicates

Requirements
(functional and
dependability)

Test
patterns

Figure 1. Framework for testing fault tolerance.

Finj Hpre Hpost

Functional
components

Fault tolerance
mechanisms (FTMs)

Fault-tolerant system

Figure 2. The Finj, Hpre and Hpost predicates.

components may verify Hpre on the inputs of
the considered FTM. Only under this condi-
tion is the FTM expected to correctly handle
the fault or its manifestations. The proper
behavior of the FTM is assessed through the
observation of system service (observation of
Hpost). Thus, the combined consideration of
the three predicates, Finj, Hpre, and Hpost, pro-
vides a means of revealing potential fault tol-
erance deficiencies.

Strictly speaking, the verification of fault tol-
erance necessitates only the removal of design
faults affecting FTMs. This corresponds to
checking whether the implementation of the
FTMs matches their specification. The objec-
tive is then to ensure that an FTM activated
by inputs satisfying Hpre delivers a service such
that the outputs of the system satisfy Hpost.

However, the verification of fault tolerance
may lead designers to question the specifica-
tion itself; that is, the representativeness of
faults and errors handled by an FTM (and for-
malized by Hpre) with respect to actual opera-
tional faults. In case of a mismatch, one might
discuss the choice of a particular FTM, for
two reasons. The FTM may make stronger
assumptions than needed on the failure modes
of the components and thus needs to be
enhanced, or the FTM is “overabundant”
(that is, assumes weaker assumptions than
necessary), while a simpler and more cost-
effective mechanism would be sufficient.

Deficiencies of an FTM. Table 1 depicts all the
combinations of the Finj, Hpre, and Hpost

predicates.
According to the definitions of Finj and Hpre,

two out of the eight combinations in Table 1
are impossible. Indeed, a failure mode
assumption includes the correct service of a
component, that is, in the absence of fault.
The six other combination definitions (as rep-
resented by the numbers in Table 1) are

1. Representation of the nominal behavior
of the system in the absence of a fault.

2. When a fault is injected, the components
provide FTM inputs satisfying Hpre, and
the mechanism acts correctly so that the
system delivers a service satisfying Hpost.
This is the expected behavior of the sys-
tem in the presence of fault.

3. The case when a fault is injected and leads
to a violation of the failure mode assump-
tions defining Hpre. The cause may be
found in the specification or the type of
injected fault is sufficiently rare or of lim-
ited consequence to be worth consider-
ing. For our concern here, the expected
behavior of the considered FTM is that
it will not be able to handle such a case.

4. Again, the case when a fault is injected
and leads to a violation of the failure
mode assumptions defining Hpre. How-
ever, the FTM can handle this unfavor-
able case, and the system delivers a service
satisfying Hpost. The FTM thus offers a
bonus coverage for the system. As a sim-
ple example of such a case, consider a par-
ity error detector; although specifically
designed to detect single errors, it also
can detect every odd order error.

5. The case when a fault is injected and the
components provide inputs to the FTM
satisfying Hpre, but the FTM is unable to
act so that the system delivers a service
satisfying Hpost. This reveals a fault toler-
ance deficiency.

6. The case when no fault is injected and the
components provide inputs to the FTM
satisfying Hpre, but the mechanism, only by
its presence, prevents the system from deliv-
ering a service satisfying Hpost. In this case,
the FTM is harmful to the dependability
of the system, because it constitutes an addi-
tional source of possible failures. This case
also reveals a fault tolerance deficiency.

69JULY–AUGUST 1999

Table 1. Characterization of fault tolerance deficiencies.

↓ Finj Hpre — Hpost→ False — False False — True True — True True — False

False Nonsense Nonsense Nominal in 1 Fault tolerance 6

¬Finj ⇒ Hpre ¬Finj ⇒ Hpre absence of fault deficiency

True Expected 3 Bonus 4 Nominal in 2 Fault tolerance 5

behavior presence of fault deficiency

Removal of fault tolerance deficiencies then
consists in identifying experiments corre-
sponding to cases 5 and 6. Their common
characteristics are that the Hpre predicate is
true, while the Hpost predicate is false. The dif-
ference between cases 5 and 6 is that in the
former faults are injected while in the latter
no fault needs to be injected.

Test pattern generation
The modeling of fault tolerance that sup-

ports the generation of the test patterns is car-
ried out in two steps using two models. The
models describe 1) the overall organization of
fault tolerance by means of Diagrams of the
Redundancies and Interactions of Fault Tol-
erance (DRIFTs), 2) and the behavior of the
individual FTMs.16 A formalization of the
proposed testing strategy is also given.

Modeling of fault tolerance using DRIFTs. We
can identify fault tolerance chains that are
composed of several mechanisms in series such
as coding and decoding devices, error detec-
tion and error recovery, and broadcast and
vote. The mechanisms in the chains exchange

data by means of the underlying redundancy
via a producer-consumer relationship or via
specific error detection signals.

A DRIFT gathers within a single graph sev-
eral fault tolerance chains that may share some
mechanisms. The vertices of the graph corre-
spond to FTMs while the arcs show the data
exchanges (the interactions) between the
mechanisms. Two distinguishable main types
of vertices are the redundancy producers and
redundancy consumers (Figure 3a). Also, two
forms of interactions are identified via redun-
dancy or error detection signals (Figure 3b).

As an example, consider the DRIFT repre-
sentation of a compound block of FTMs
including error detection and extraction
mechanisms (Figure 3c). Such a block is often
used to set the system state to a naturally safe
position (for example, the idle state). In that
case, the fail silence property is often desired.
This property is implemented by one mech-
anism whose function is to isolate a failed
module. This mechanism (labeled FTM1)
receives several signals from the error detec-
tion mechanisms (labeled FTM2 to FTM 4)
monitoring the module state.

The role of a DRIFT is triple. It

• represents a synthetic view of fault toler-
ance,

• identifies precisely the FTMs and their
interdependencies, and

• contributes to the organization of the
testing strategy.

Distinguishing between functional com-
ponents and FTMs is not always an easy task.
Nevertheless, the DRIFT formalism offers an
objective support for describing the overall
fault tolerance of a system. The construction
of a DRIFT guides the analysis of the system
specification to extract relevant information
related to fault tolerance. Moreover, this selec-
tive reading of the specification reveals poten-
tial incompleteness, inconsistency, or
inaccuracy. The few details required for this
operation permit a relatively early action. The
general principle of the testing strategy is to
proceed block by block, in an order that fol-
lows the information flow in the DRIFT. As
a consequence, the FTMs are tested accord-
ing to increasing interdependencies between
fault tolerance blocks (detection, recovery,

70

FAULT TOLERANCE

IEEE MICRO

Redundancy Management

Consumer

Producer

Interaction by redundancy (thick arrow)

Interaction by error detection (thin arrow)

Error detection
signals

1

4

3

2

Error detection
mechanisms

Extraction
mechanism

(a)

(c)

(b)

Figure 3. Symbols used in DRIFTs: vertices
(a), interactions (b), and an example (c).

reconfiguration). Such a progression follows
the increased complexity attached to the orga-
nization of the FTMs and of their interactions
within the DRIFT (for example, see the later
Figure 7). In addition, this progression toward
more interactions between blocks also allows
for activating the latter mechanisms while the
former are being tested.

Testing FTM behavioral models. Models describ-
ing the behavior of the individual mechanisms
are needed to complement the overall descrip-
tion provided by DRIFTs. Several suitable for-
malisms have been identified: Petri nets,
finite-state machines, control flow graphs, and
so on. A common type of behavioral model is
a state graph. Its ability to describe simple dig-
ital circuits as well as more complex algorithms
makes it a privileged model. The associated
testing criteria usually considered to guide the
selection of the test patterns include state, tran-
sition, or path coverage.

Furthermore, we rely on statistical testing
to compensate for the imperfect match
between the testing criteria and the fault tol-
erance deficiencies to be uncovered.15 The dif-
ficulty in deciding whether the system output
is correct for each test input (known as the ora-
cle problem) is the drawback generally
opposed to statistical testing. In the framework
of the verification of fault tolerance, this prob-
lem is more easily tractable. Indeed, it consists
mainly in observing predicates on failure mode
assumptions at the FTM inputs and outputs.

We determine the testing profile by trans-
forming the behavioral model of the FTM to
be tested into a probabilistic model. Three
steps are necessary:

1. Identification of the independent variables
of the behavioral model. These indepen-
dent variables constitute the degrees of
freedom on which fault injection testing
takes place.

2. Attribution of distributions to these inde-
pendent variables. For easier tractability,
here, we consider exponential distribu-
tions, thus each variable is labeled by its
transition rate.

3. Selection of the optimum values of these
transition rates. This corresponds to max-
imizing as much as possible the activa-
tion of every element of the model as

defined by the considered testing criteri-
on (state coverage, transition coverage).

For an example, see the “Formalization”
sidebar on the next page.

Fault injection into VHDL models
The interest in developing fault injection

techniques for VHDL models is relatively
recent. Powerful VHDL simulators are avail-
able on the market. However, we still need
automated support to efficiently define and
run fault injection experiments on a complex
VHDL model. This has given rise to work for
developing prototype tools aimed at support-
ing the user in carrying out fault injection test
sequences on a VHDL model.17 MEFISTO,18

ADEPT,19 and VERIFY20 are significant
examples of such efforts.

The development of MEFISTO was initi-
ated in cooperation with Chalmers Universi-
ty of Technology (Gothenburg, Sweden)
within the framework of the ESPRIT project
PDCS. This tool used Synopsys Optium
VHDL simulator commands to inject faults
in variables and signals of the target VHDL
model. Besides ease of implementation, these
techniques strongly depend on the simulator
features, which led to consideration of more
generic injection techniques based on the inte-
gration of injection modules into the VHDL
model. In a later section, we summarize the
main features of this new version of MEFIS-
TO developed at LAAS (MEFISTO-L).
Another improved version, using the same
principles as the initial tool, but featuring par-
allel simulation on a network of workstations,
was developed at Chalmers (MEFISTO-C).21

ADEPT provides an integrated environ-
ment that features both analytical techniques
and VHDL simulation to support perfor-
mance and dependability analysis.19 Fault
injection techniques for VHDL were exten-
sively investigated: the studies encompass the
characterization of techniques for various lev-
els of abstractions of the simulation. The tech-
nique described in DeLong et al.17 defines a
new data type that adds two additional fields
(control and mask) to the usual data
field of a VHDL signal. The control field
indicates whether the signal is read from or
written to, while the mask field specifies the
fault model to be applied.

71JULY–AUGUST 1999

VERIFY relies on an extension of VHDL
that defines a comprehensive fault model
describing not only classical fault model
parameters (for example, fault type and dura-
tion), but also the fault occurrence process
(mean time to fault occurrence). Libraries of
basic components (logic gates) featuring this
comprehensive fault model are defined. This
makes it possible to directly obtain depend-
ability measures such as MTTF (mean time
to failure), in addition to coverage and laten-
cy measures. Besides requiring that the indi-
vidual failure rates be known, the price to pay
for this extra refinement results in significant
simulation time overhead.

Injection techniques
We can identify three classes of techniques

when considering the features of VHDL. It is a

• Simulation language. The supporting sim-
ulation environments allow the state of a
model to be modified during the execu-
tion of the simulation. This leads to the
development of techniques based on the
direct perturbation of the simulation state.

• Hardware description language. The injec-
tion techniques are derived from classi-
cal hardware testing methods, which lead
to the perturbation of VHDL signals.

• Programming language. Considering soft-

72

FAULT TOLERANCE

IEEE MICRO

Consider the case in which the behavioral model
of the FTM is characterized by an asynchronous state
machine. The corresponding probabilistic model is
a continuous time Markov chain, for which transi-
tions are exponentially distributed. We thus assume
the following notation:

• Ω = [ωj] denotes the vector of the rates asso-
ciated to the input variables of the state
machine describing the FTM’s behavior.

• Λ(Ω) = [λ jk] is the transition rate matrix asso-
ciated to the Markov chain derived from the
state machine; these rates are indeed a func-
tion of the elements of the input rate vector.

Let C denote a testing criterion. On a finite-state
machine, the two main criteria of interest are rela-
tive to the transitions’ activation and to the visit of
the states. On an ergodic Markov chain, these cri-
teria can be assessed by the mean frequency of fir-
ing a transition, and the mean visit frequency of a
state, respectively.

Assume that

• Π = [πj] is the vector of the steady-state prob-
abilities of the Markov chain,

• νjk denotes the mean frequency of activation
of transition from state j to state k, and

• νj denotes the mean frequency of visit (either
arrival or departure) of state j,

leads to

νjk = πj × λ jk (1)

and

(2)

In this context, the statistical test corresponding
to a given test quality qT

15 and optimizing the input
distribution for the testing criterion considered is
thus characterized by two theorems.16

Theorem 1. The following relation links the qual-
ity of statistical test qT to the duration of test T

exp (− νmin × T) = 1 − qT with νmin = min(νC)

where νC = fC(Π) are the mean frequencies of the
activation of the elements of criterion C({νC} = {νjk}
or {νj }, as defined by Equations 1 and 2). They are
functions of steady-state probability vector Π, which
solves:

Theorem 2. Solving the nonlinear programming
problem, maximize νmin = min(νC), gives us the opti-
mal profile for an asynchronous finite-state machine
under constraints ωj ≥ 0, where the ωj are the rates
of the input variables.

We illustrate this formalization by an example of
its application to a specific FTM in the Case Study
section.

∏× () = =∑Λ Ω 0 1 and π j
j

ν ν νj j
arr

j
dep

kjk
k j

j jk
k j

j jj

= = = ×

= × = ×

≠

≠

∑

∑

λπ

π λ π λ

Formalization

ware mutation-testing techniques leads
to the alteration of one (or several)
VHDL statements.

Hereafter, we provide a brief description of
these techniques; Boué provides a detailed
comparison of the advantages and draw-
backs.16 The first class of techniques was imple-
mented in the initial MEFISTO tool, while
the current version of MEFISTO-L supports
the second. We plan to investigate the muta-
tion technique in further versions of the tool.

Perturbation of the state of the VHDL simula-
tion. VHDL simulators feature built-in com-
mands that allow access to the state of the
VHDL model being simulated. To a large
extent, the principles used here can be related
to the mechanisms applied by the SWIFI
technique. (See the “Background” box again.)
Some examples of useful capabilities that are
most often offered are

• stopping of the simulation (at a given
time or upon occurrence of a specific
event),

• reading and modifying a VHDL signal
or variable, and

• recording a snapshot of the state of the
simulation (to carry out comparisons of
successive simulation runs or to start the
simulation in a predefined state).

Two main types of modifications of the sys-
tem state can be distinguished:18 signal and
variable manipulation. Signal manipulation
is suited for implementing simple fault mod-
els (permanent or temporary stuck-at faults)
on the structural description of the model.
Variable manipulation offers a simple way to
inject behavioral faults.

Perturbation of a VHDL signal. A VHDL
model is made up of components linked by sig-
nals. Fault injection is based on the addition of
dedicated fault injection components acting as
probes or saboteurs. Both forcing and insertion
techniques that are widely used in physical
injection22 have their equivalent here. Figure 4
identifies the five means for connecting a fault
injection component to a VHDL signal.

Mutation of VHDL statements. We can describe

the behavior of a VHDL component by a series
of software instructions very much similar to
Ada. The possible alterations are as diverse as
the ones encountered in the case of software
mutation testing.23,24 Armstrong, Lam, and
Ward25 identifies eight types of alterations. We
can also consider more sophisticated types of
alterations, in particular, that of the syntactic
tree of the VHDL model.26 Rules are proposed
for the modification of tree branches (for exam-
ple, permutation of the clauses then and
else in an if-then-else construct or
the substitution of an operator by another).

MEFISTO-L
We considered three main guidelines for the

design of MEFISTO-L:

• support both fault forecasting and fault
removal objectives, and thus contribute
objectively to the testing framework
depicted earlier,

• offer portable fault injection capabilities
(independent of the underlying VHDL
simulator), and

• implement rather simple fault models
that are representative of the VHDL
descriptions. This has led to a preference
for the signal perturbation technique
mentioned earlier in this section.

We only focus here on a brief description
of the tool and on issues related to the sup-
port of the testing strategy; refer to Boué,
Pétillon, and Crouzet27 for a more detailed
description of the tool’s features.

73JULY–AUGUST 1999

FI
component

FI
component

FI
component

VHDL
signal

FI
component

FI
component

(a)

(d) (e)

(b) (c)

Figure 4. The five means to connect a fault injection component to a VHDL
signal: passive derivation, a probe (a); active derivation, a saboteur (b); bidi-
rectional derivation (c); simple insertion, and bidirectional insertion (d).
These last three are both probes and saboteurs.

Three distinct functional blocks make up
MEFISTO-L: parsing, injection, and result
extraction (Figure 5).

The parsing block extracts the data needed
for the injection campaign from the VHDL
source code of the target model. The injection
block deals with the whole specification of the
campaign, and the generation of the mutated
model. The tool automatically generates a
mutated model by manipulating the different
parse trees of the source model. All probes and
saboteurs necessary to carry out the injection
experiments defined by the testing strategy are
incorporated into the model; accordingly, only
one compilation is necessary. The fault injec-
tion campaign is then carried out by execut-
ing the mutated model with any standard
VHDL simulator. We are currently using the
Optium simulator from Synopsys. The result
extraction block analyzes the traces obtained
from the simulation of the mutated model to
produce the results of the campaign.

Case study
To assess the usefulness of the proposed test-

ing strategy, in particular when using MEFIS-
TO-L, we developed a VHDL model of a

simple fault-tolerant system.
This target system gathers
several FTMs issued from
actual fault-tolerant systems
for a control process in indus-
trial or embedded real-time
applications (Figure 6).

The architecture features
three channels interconnect-
ed by a network supporting a
time-slice protocol.28 The sys-
tem interfaces with the con-
trolled process via redundant
sensors (one for each channel)
and a single actuator incor-
porating analogical voting.
The behavior of the target
system is organized in cycles
during which sensor sam-
pling, median voting on sen-
sor values, computing of the
regulation function, and out-
put emission are scheduled.

Each channel is designed to
be fail-silent:29 in case of an
error detection, the channel

should extract itself from the network and
wait for repair. More precisely, each channel
implements a dual-node architecture, adapt-
ed from Brière and Traverse.30 Each node con-
tains a processing unit (PU) and two interfaces
(to the controlled process and to the other
channels via the network). Each processing
unit is described both by a behavioral model
(algorithm of the protocol of execution) and
by a structural model (microprocessor, mem-
ory, decoding logic, and interface). The
microprocessor is the DP3231 already consid-
ered in various related studies.18,20 It is acti-
vated by a program describing a low-level
execution protocol written in assembly lan-
guage. Except for their identification number,
all channels are identical. Each channel is con-
nected to an independent sensor, and all are
connected to the actuator. The correspond-
ing VHDL model represents about 2,500
lines of code, divided in 15 entities, 16 archi-
tectures, 8 configurations, and 2 packages
(plus STDand IEEE packages).

We applied the testing strategy to the target
system using 1) DRIFTs to determine the
main interactions between the FTMs, and 2)
behavioral models of each elementary FTMs

74

FAULT TOLERANCE

IEEE MICRO

Channel 1 Channel 2

Inputs
(sensors)

Outputs
(actuator)

Network

Monitoring
node

Control
node

Interface

Interface

Channel 3

Figure 6. The target fault-tolerant distributed system.

Parsing
block

Injection
block

Result
extraction

block

VHDL
source
model

Campaign
results

MEFISTO-L

Predicates

VHDL
simulator

VHDL
mutated
model

Signal
traces

Symbol
tables

Parse
trees

Figure 5. Architecture of MEFISTO-L.

to derive the suited test patterns (fault and
activity). So far, the study of simple error
detection mechanisms (for example, a detec-
tor of loss of a queued message received via
the network—message overwriting) has
shown the pertinence and feasibility in that
context of the application of statistical testing
on state machine graphs. Indeed, the applica-
tion of the strategy helped reveal a deficiency
in the design of the target VHDL model.16

Modeling the fault tolerance in the target system
Figure 7 shows the DRIFT of the target sys-

tem. The FTMs are grouped into four blocks:

• A: error detection and extraction of a
channel;

• B: redundancy of the channels, involving
several broadcasts and associated voting;

• C: master election; and
• D: synchronization of the channels and

group membership protocol.

The decomposition of the fault tolerance
into blocks is a natural step that aims at group-
ing the FTMs performing a common func-
tion or sharing the same redundancy. This
decomposition provides a means for struc-
turing the testing process. The fact that blocks

overlap indicates that unit testing of the indi-
vidual FTMs is not sufficient and must be
complemented by additional verifications car-
ried out on a more global level.

Block A aims at implementing the fail-
silence property. Toward this end, each chan-
nel includes a set of error detection
mechanisms aimed at disconnecting the chan-
nel upon the signaling of an error. The block
is composed of four FTMs (see Figure 7):

• FTM 1 gathers the intrachannel error
detection signals and causes the extrac-
tion of the channel,

• FTM 2 is a comparator for checking the
value calculated by each node and the
output delivered,

• FTM 3 is a detector of loss (overwriting)
of a queued message received via the net-
work, and

• FTM 4 is a detector for illegal address-
ing of the microprocessor peripheral
devices.

Block B refers to the hardware redundancy
of a channel. It is composed of eight mecha-
nisms: two FTMs for activating and inhibit-
ing (extracting) the channel, three in charge
of broadcasting different kinds of data, and

75JULY–AUGUST 1999

Detection of
output discrepancy

Detection of
message

overwriting

Detection of
addressing

errors

Extraction

Broadcast
of results

Broadcast of
sensor values

Broadcast of
synchronization

Synchronization
handling

Master
election

Integration

Channel synchronized
Command of
synchronization
broadcast

Error
detection

Majority vote
on results

Block A

1

Median vote
on sensor

values

Block B

Block C

2

3

4

5

6

7

8

9

10

11

12

Redundancy of channels

i.d. of
selected
sensor

Missing synchronization

Error
detection

Error detection

Block D

Figure 7. DRIFT of the target system.

three associated voting mechanisms for select-
ing the “correct” value among those provided
by the active channels. The extraction mech-
anism was already presented in the previous
paragraph as FTM 1. The other FTMs are

• FTM 8, which supports the integration
of one channel into the group of active
channels; this function is activated at the
beginning of every cycle (that is, a new
group is formed at each cycle);

• FTM 10, which broadcasts the values of
the sensors acquired by each channel;

• FTM 9, which carries out a median vote
on the inputs read from the sensors by
each channel;

• FTM 11, which broadcasts the results
processed by each channel to be delivered
to the actuator;

• FTM 12, which carries out a majority
vote on the outputs to be delivered to the
actuator;

• FTM 5, which provides synchronization
signals; and

• FTM 6, which processes these signals to
provide relevant inputs to the integration
(FTM 8) and master election (FTM 7)
mechanisms.

Block C elects the master channel. C is
composed of three FTMs of which FTM 6
and FTM 9 have already been presented.
FTM 7 elects the master channel for the next
cycle by collecting the data provided by the
median vote (FTM 9) and by the synchro-
nization handling (FTM 6).

Block D is in charge of synchronizing the
channels and of their integration at the begin-
ning of each cycle. D is composed of four
mechanisms that also belong to blocks B or C
(or both).

Overwritten message detection mechanism models
Figure 8 depicts the behavioral and proba-

bilistic models of the FTM aimed at detect-
ing message overwriting.

When idle, the mechanism awaits the arrival
of a message. When a message is received, the
interface warns the processing unit by an inter-
ruption signal, and the mechanism moves to
the receive state. The processing unit then reads
the message received, and the mechanism
returns to the wait state. An error is detected
when a second message is received before the
first has been read by the processing unit (initial
message has been overwritten). The detector
then enters the signal error state that activates
the error detection signal. An initialization of
the channel is necessary for the channel to quit
the error state. An unexpected initialization also
makes the detector return to the wait state.

As message arrival frequency a is under con-
trol of the overall protocol, we identify only
three independent variables for fault injection:

• message-reading frequency β,
• unexpected initialization frequency χ,

and
• expected initialization frequency δ.

The operational profile of the input events
of the overwritten message detector is charac-
terized by the rates shown in the left column
of Table 2. The selected testing profile aims at
maximizing the transition activation. The res-

76

FAULT TOLERANCE

IEEE MICRO

Wait Receive

Signal
error

Message

Read

MessageInitialization

Initialization

Initialization

α

α

β

χ

δ

0 1

2

α Message arrival
Message reading
Unexpected initialization
Expected initialization

β
χ
δ

Λ =
− α α 0

β + χ −(β + χ + α α)

δ −δ0

(a)

(b)

(c)

Figure 8. Behavioral and probabilistic mod-
els of the overwritten message detector.

olution of the optimization
problem (see the “Formaliza-
tion” box) leads to a profile
that reduces the message-read-
ing frequency and increases
the unexpected initialization.
The values obtained appear in
the right column of Table 2.

Placing a saboteur on the
initialization signal of the target channel
ensures the modification of the initialization
rates. This saboteur is synchronized with the
state of the overwritten message detector so as
to exhibit a different behavior in a nominal
case (unexpected initialization) and after error
detection (expected initialization). This is
achieved by placing a probe on the error detec-
tion signal of the overwritten message detector.
The saboteur thus generates pulses exponen-
tially distributed, with a rate of 10 kHz or 1
MHz, according to the value of the error detec-
tion signal.

Placing a saboteur on the interruption sig-
nal of the overwritten message detector indi-
rectly modifies the message reading rate.
Indeed, the direct perturbation of the read
signal could affect more peripheral devices
than the network interface. On the contrary,
filtering the interruption signal affects only
the overwritten message detector. The sabo-
teur is thus in charge of simulating a delay
before a message is actually read by the pro-
cessing unit.

The simulation of the platform with the
operational profile did not exhibit a deficiency,
even with test lengths corresponding to good
test qualities qT. (See “Formalization” box.)
However, the simulation with the testing pro-
file maximizing the activation of the transitions
in the Markov chain describing the target FTM
revealed one fault tolerance deficiency. This
fault is manifested by a crash of the simulation
environment caused by a runtime error of the
VHDL model. The Synopsys Optium simu-
lator issues the following error message:
**Runtime Error: Negative time
in process timeout.

Diagnosis, carried with the aid of debug-
ging facilities of the simulation environment,
showed that bad handling of the processing
unit’s initialization caused this failure. The
VHDL process modeling this unit calls pro-
cedures that are insensitive to an unexpected

initialization. Thus some state and timing
variables could not be updated. Used in a
WAIT instruction, they give a negative time
in the process timeout, which is forbidden in
VHDL. Thus, in summary, the test has
revealed that a transition in the behavioral
model of the overwritten message detector is
absent in the VHDL simulation model.

As illustrated by our case study, the appli-
cation of the proposed testing strategy has

helped reveal a deficiency in the design of the
VHDL model describing the fault-tolerant
architecture used as a target system. Never-
theless, further work is needed. From the con-
ceptual point of view, we believe that the use
of a more formal representation of the FTMs
would help address the high-level and detailed
aspects of the testing strategy at the same time.
On a more practical aspect, we are adding new
fault injection capabilities to MEFISTO-L.
These include the ability of injecting faults in
other VHDL objects than signals. The most
promising target is constituted by the variables
of sequential descriptions in VHDL. MICRO

Acknowledgments
ESPRIT projects 6362 (PDCS: Predictably

Dependable Computing Systems) and 20072
(DeVa: Design for Validation) partially sup-
ported our work. We acknowledge the essen-
tial contributions to the early phases of this
work made by Eric Jenn (now with Techni-
catome, Aix-en-Provence, France), and by our
colleagues at Chalmers University of Tech-
nology, Gothenburg, Sweden: Johan Karls-
son, Joachim Ohlsson (now with SAAB
Ericsson Space, Gothenburg), and Marcus
Rimén (now with Carlstedt Research & Tech-
nology, Gothenburg). Our thanks go also to
Philippe Pétillon (now with Aerospatiale
Matra Airbus, Toulouse, France) and to Jean-
Etienne Doucet at LAAS-CNRS, for their key
role in the development of MEFISTO-L.

77JULY–AUGUST 1999

Table 2. Operational and testing profiles.

Operational profile (nominal) Testing profile

8 messages during each 750-ms-long processing cycle α ≈ 10 kHz α ≈ 10 kHz
1 message reading within 1 ms following its arrival β ≈ 1 MHz β ≈ 10 kHz
0 unexpected initialization χ ≈ 0 Hz χ ≈ 10 kHz
1 expected initialization within 1 ms following an error signaling δ ≈ 1 MHz δ ≈ 1 MHz

References
1. J.-C. Laprie, “Dependable Computing: Con-

cepts, Limits, Challenges,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing (FTCS-25),
Special Issue, IEEE CS Press, 1995, pp. 42-54.

2. K. Echtle and Y. Chen, “Evaluation of Deter-
ministic Fault Injection for Fault-Tolerant Pro-
tocol Testing,” Proc. 21st Int’l Symp.
Fault-Tolerant Computing (FTCS-21), 1991,
IEEE Computer Society Press, Los Alamitos,
Calif., pp. 418-425.

3. D. Avresky et al., “Fault Injection for the For-
mal Testing of Fault Tolerance,” IEEE Trans.
on Reliability, Vol. 45, 1996, pp. 443-455.

4. J. Christmansson and P. Santhaman, “Error
Injection Aimed at Fault Removal in Fault Tol-
erance Mechanisms—Criteria for Error
Selection Using Field Data on Software
Faults,” Proc. Seventh Int’l Symp. Software
Reliability Engineering (ISSRE’96), 1996,
IEEE CS Press, pp. 175-184.

5. T.K. Tsai, R. K. Iyer, and D. Jewitt, “An
Approach Towards Benchmarking of Fault-
Tolerant Commercial Systems,” Proc. 26th
Int’l Symp. on Fault-Tolerant Computing
(FTCS-26), 1996, IEEE CS Press, pp. 314-323.

6. T. Tsai et al., “Path-Based Fault Injection,”
Proc. Third ISSAT Int’l Conf. Reliability and
Quality in Design, 1997, pp. 121-125.

7. K. Echtle, “Safety Testing by Fault Injection,”
Proc. Eighth European Workshop on
Dependable Computing (EWDC-8), Chalmers
Univ., Gothenburg, Sweden, 1997.

8. G.S. Choi and R.K. Iyer, “FOCUS: An Exper-
imental Environment for Fault Sensitivity
Analysis,” IEEE Trans. Computers, Vol. 41,
Dec. 1992, pp. 1515-1526.

9. C.R. Yount and D.P. Siewiorek, “A Method-
ology for the Rapid Injection of Transient
Hardware Errors,” IEEE Trans. Computers,
Vol. 45, Aug. 1996, pp. 881-891.

10. K.K. Goswami, R.K. Iyer and L. Young,
“DEPEND: A Simulation-Based Environment
for System Level Dependability Analysis,”
IEEE Trans. Computers, Vol. 46, Jan.1997,
pp. 60-74.

11. J. Carreira, H. Madeira, and J.G. Silva,
“Xception: A Technique for the Experimen-
tal Evaluation of Dependability in Modern
Computers,” IEEE Trans. Software Engi-
neering, Vol. 24, Feb. 1998pp. 125-136.

12. M. Kaâhniche et al., “A Hierarchical Approach
for Dependability Analysis of a Commercial

Cache-Based RAID Storage Architecture,”
Proc. 28th Int’l Symp. Fault-Tolerant Comput-
ing (FTCS-28), IEEE CS Press, 1998, pp. 6-15.

13. D.T. Stott et al., “Dependability Analysis of
a High-Speed Network Using Software-
Implemented Fault Injection and Simulated
Fault Injection,” IEEE Trans. Computers, Vol.
47 Jan. 1998, pp. 108-119.

14. IEEE Standard VHDL Language Reference
Manual, IEEE Std. 1076-1993, IEEE, Piscat-
away, N.J., 1993.

15. P. Thévenod-Fosse, H. Waeselynck, and Y.
Crouzet, “Software Statistical Testing,” Pre-
dictably Dependable Computing Systems,
B. Randell et al., eds., Springer Berlin, 1995,
pp. 253-272.

16. J. Boué, Fault Tolerance Testing by Means
of Fault Injection in VHDL Simulation Mod-
els, doctoral dissertation, National Polytech-
nic Inst., Toulouse, France, 1997. (Also LAAS
Report 97-503 in French).

17. T.A. DeLong, B.W. Johnson, and J.A. Pro-
feta III, “A Fault Injection Technique for
VHDL Behavioral-Level Models,” IEEE
Design & Test of Computers, Vol. Winter,
1996, pp. 24-33.

18. E. Jenn et al., “Fault Injection into VHDL
Models: The MEFISTO Tool,” Proc. 24th Int.
Symp. Fault-Tolerant Computing (FTCS-24),
IEEE CS Press, 1994, pp. 66-75.

19. A. Ghosh, B.W. Johnson, and J.A. Profeta III,
“System-Level Modeling in the ADEPT Envi-
ronment of a Distributed Computer System
for Real-Time Applications,” Proc. Int’l Com-
puter Performance and Dependability Symp.
(IPDS’95), IEEE CS Press, 1995, pp. 194-203.

20. V. Sieh, O. Tschäche, and F. Balbach, “VERI-
FY: Evaluation of Reliability Using VHDL-Mod-
els with Embedded Fault Descriptions,” Proc.
27th Int’l Symp. Fault-Tolerant Computing
(FTCS-27), IEEE CS Press,1997, pp. 32-36.

21. P. Folkesson, S. Svensson, and J. Karlsson,
“A Comparison of Simulation Based and Scan
Chain Implemented Fault Injection,” Proc.
28th Int’l Symp. on Fault-Tolerant Computing
(FTCS-28), IEEE CS Press, 1998, pp. 284-293.

22. J. Arlat et al., “Fault Injection for Depend-
ability Validation—A Methodology and Some
Applications,” IEEE Trans. Software Engi-
neering, Vol. 16, Feb. 1990, pp. 166-182.

23. R.A. DeMillo, R.J. Lipton, and F. G. Sayward,
“Hints on Test Data Selection: Help for the
Practicing Programmer,” Computer, Apr.

78

FAULT TOLERANCE

IEEE MICRO

1978, pp. 34-41.
24. Y. Crouzet, P. Thévenod-Fosse, and H. Wae-

selynck, “Validation of Software Testing by
Fault Injection: The SESAME Tool,” Proc.
11th Conf. Reliability and Maintainability,
1998, pp. 551-559. (SEE, in French)

25. J.R. Armstrong, F.-S. Lam, and P.C. Ward,
“Test Generation and Fault Simulation for
Behavioral Models,” Performance and Fault
Modelling with VHDL, J.M. Schoen, ed.,
Prentice-Hall, Englewood Cliffs, N.J., 1992,
pp. 240-303.

26. E. Jenn, On the Validation of Fault-Tolerant
Systems: Fault Injection in VHDL Simulation
Models, doctoral dissertation, National Poly-
technic Inst., Toulouse, France, 1994. (Also
LAAS Report 94-361 in French).

27. J. Boué, P. Pétillon, and Y. Crouzet, “MEFIS-
TO-L: A VHDL-Based Fault Injection Tool for
the Experimental Assessment of Fault Tol-
erance,” Proc. 28th Int. Symp. Fault-Toler-
ant Computing (FTCS-28), IEEE CS
Press,1998, pp. 168-173.

28. H. Kopetz, “The Time-Triggered Approach
to Real-Time System Design,” Predictably
Dependable Computing Systems, B. Randell
et al., eds., Springer, Berlin, 1995, pp. 53-66.

29. D. Powell et al., “The Delta-4 Approach to
Dependability in Open Distributed Comput-
ing Systems,” Proc. 18th Int’l Symp. Fault-
Tolerant Computing Systems (FTCS-18),
IEEE CS Press, 1988, pp. 246-251.

30. D. Brière and P. Traverse, “AIRBUS
A320/A330/A340 Electrical Flight Controls—
A Family of Fault-Tolerant Systems,” Proc.
23rd Int’l Symp. Fault-Tolerant Computing
(FTCS-23), IEEE CS Press, 1993, pp. 616-623.

31. P.J. Ashenden, “The VHDL Cookbook,”
tech. report., Univ. of Adelaide, South Aus-
tralia, 1990.

Jean Arlat is a member of the Dependable
Computing and Fault Tolerance (TSF) Group
at LAAS-CNRS, Toulouse, France. He also
leads the Laboratory for Dependability Engi-
neering (LIS), a cooperative laboratory host-
ed by LAAS, for TSF researchers and
representatives from five French industrial
companies. His research interests focus on the
evaluation of hardware-and-software fault-tol-
erant systems including both analytical mod-
eling and experimental fault injection
approaches. Arlat received the Certified Engi-

neer degree from the National Institute of
Applied Sciences of Toulouse, the Doctor in
Engineering and the Docteur ès-Sciences
degrees from the National Polytechnic Insti-
tute of Toulouse. He currently chairs the IFIP
Working Group 10.4 on Dependable Com-
puting and Fault Tolerance. He has cochaired
the Program Committee of the 28th IEEE
Symposium on Fault-Tolerant Computing
held in Munich and chaired the IEEE Com-
puter Society’s Technical Committee on Fault-
Tolerant Computing. He is a member of the
ACM, the IEEE, and the SEE Design and
Validation for Dependability Group.

Jérome Boué works at COFRAMI as a
dependability expert for the aerospace indus-
try and is currently involved in the develop-
ment of critical software for the European
scientific module of the International Space
Station. He joined the Dependable Comput-
ing and Fault-Tolerance (TSF) Group at
LAAS-CNRS to prepare his master’s and Doc-
torate degrees in computer science. His main
research interests during this period were sta-
tistical software testing and its application on
fault tolerance testing by means of fault injec-
tion in VHDL simulation models. Boué
received his Doctorate from the National
Polytechnic Institute of Toulouse.

Yves Crouzet is a member of the Dependable
Computing and Fault-Tolerance (TSF) Group
at LAAS-CNRS. He works on fault tolerance
of human errors and has worked on the design
and realization of self-checking VLSI circuits.
His research interests have concerned the
experimental validation of dependable systems
by fault injection and the experimental vali-
dation of software testing methods by muta-
tion analysis. Crouzet received the Certified
Engineer degree from the Higher National
School of Electronics, Electrical Engineering,
Computer Science and Hydraulics of Toulouse
and the Doctor in Engineering from the
National Polytechnic Institute of Toulouse. He
is a member of SEE Design and Validation for
Dependability Group.

Direct questions concerning this article to
Jean Arlat, LAAS-CNRS, 7 Avenue du
Colonel Roche, 31077 Toulouse Cedex 4,
France; arlat@laas.fr.

79JULY–AUGUST 1999

