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Abstract 

Peer-to-peer (P2P) overlays are appealing, since they can aggre-
gate resources of end systems without relying on sophisticated 
infrastructures. Services can thus be rapidly deployed over such 
overlays. Primitive P2P overlays only support searches with sin-
gle keywords. For queries with multiple keywords, presently only 
unstructured P2P systems can support by extensively employing 
message flooding. 

In this study, we propose a similarity information retrieval sys-
tem called Meteorograph for structured P2P overlays without 
relying on message flooding. Meteorograph is fault-resilient, 
scalable, responsive and self-administrative, which is particularly 
suitable for an environment with an explosion of information and 
a large number of dynamic entities. An information item stored in 
Meteorograph is represented as a vector. A small angle between 
two vectors means that the corresponding items are characterized 
by some identical keywords. Meteorograph further stores similar 
items at nearby locations in the P2P overlay. To retrieve similar 
items, only nodes in nearby locations are located and consulted. 
Meteorograph is evaluated with simulation. The results show that 
Meteorograph can effectively distribute loads to the nodes. Dis-
covering a single item and a set (in size k) of similar items takes 

( )NO log  and ( )NOc
k log)( ⋅  messages and hops respectively, 

where N is the number of nodes in the overlay and c is the storage 
capacity of a node. 

1. Introduction 
Peer-to-peer (P2P) overlays have recently attracted much at-
tention due to features such as self-administration, reliability 
and responsiveness. They can efficiently aggregate resources 
across the Internet without sophisticated management. Each 
node in a P2P system contributes some resources (storage 
space or processor cycles, for example) to the system. Func-
tionally, the nodes are identical—they can act as a client, a 
server or a router. Participating nodes from various administra-
tive domains may dynamically join and depart the system. Ex-
ample P2P systems include CAN [14], Chord [16], Freenet [3], 
Gnutella [9], Pastry [15], Tapestry [19] and Tornado [11]. 

P2P overlays can be classified as unstructured and struc-
tured. Unstructured P2P overlays such as Gnutella and Freenet 
do not embed a logical and deterministic structure to organize 
the peer nodes. Consequently, they need a certain kind of mes-
sage flooding to search for interested items stored in the over-
lay. For example, Gnutella adopts a breath-first approach to 
flood the requests, while Freenet uses a depth-first approach. 
To prevent the high cost of flooding the entire network, both 

systems use a time-to-live (TTL) value to limit the scope of a 
search. 

In contrast, structured P2P overlays such as CAN, Chord, 
Pastry, Tapestry and Tornado manage the peer nodes with an 
implicit logical and deterministic structure. CAN is based on a 
multi-dimensional coordinate space, and the others are based 
on an m-way tree. These systems provide powerful lookup 
services by managing hash key and value pairs. A hash key is 
generated by applying a uniform hash function to the searched 
keyword. Given a hash key, a lookup request can be resolved 
by a node whose hash key is the closest to the requested key. 

Structured P2P overlays offer several desirable features. 
First, they do not rely on the flooding mechanism and, there-
fore, do not generate large network traffic. A lookup request in 
most proposed overlays takes )(log NO  hops and messages. 
Second, a lookup request can be resolved with a high probabil-
ity and the associated cost is predictable. On the other hand, 
unstructured overlays cannot discover a requested item if this 
item is out of the search scope. Even if requested items can be 
discovered, the cost is unpredictable. Third, results of a search 
are deterministic in structured overlays. In unstructured over-
lays, different peers may receive different results when issuing 
the same search request. 

A serious problem with structured overlays is that they can 
only support searches with a single keyword. For example, 
they can search for and return all papers with the keyword 
“distributed processing”. This is done by first obtaining the 
hash key of “distributed processing”, and then storing all such 
papers in a peer node whose node ID is the closest to the hash 
key. This creates several problems. First, if there are many 
papers on “distributed processing”, then the hosting peer node 
will be overloaded. Second, if a paper on “distributed process-
ing” can also be characterized as “computer architecture”, then 
we have to decide which keyword to use to publish the paper. 
This then precludes the use of the other keyword to find the 
paper, unless we duplicate the paper to both sites. Third, we 
cannot issue a search with multiple keywords, such as <“dis-
tributed processing”, “computer architecture”>, and find all 
papers that exactly match this query. It is even difficult to find 
papers characterized by <“distributed processing”, “computer 
architecture”, “something else”>.  

One solution is to build multiple sub-overlays on top of the 
structured overlay. Each sub-overlay handles items that are 
characterized by the same keyword. To search with multiple 
keywords, the corresponding sub-overlays are consulted and 
each return items that match a specific keyword. The inquirer 
then examines the received items and filters out those that do 
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not match all the specified keywords. Clearly, this approach 
will result in large traffic in transmitting items that do not fully 
match the specified keywords. Besides, if the number of key-
words in the system is large, this approach requires a huge 
number of overlays. A node that participates in k overlays will 
require k times the overhead to maintain these sub-overlays. 

In this study, we propose a novel information retrieval sys-
tem, Meteorograph, for searches with multiple keywords (or 
similarity searches). It is based on a structured P2P “storage” 
overlay called Tornado [11]. Meteorograph characterizes an 
item as a vector in the vector space model [1] and stores the 
item in a single structured overlay. To map items into the struc-
tured overlay, each item in Meteorograph is transformed to a 
single value called the absolute angle. Two items are “similar” 
if they share some common keywords, and the two correspond-
ing vectors in the vector space have a very small angle. By 
controlling the locations, represented by absolute angles, in 
which items are stored, Meteorograph can rapidly locate a 
search item. Moreover, it can aggregate similar items together 
at nearby locations in the overlay.  

The contributions of this study are as follows. 
• A reliable information retrieval system, Meteorograph, is 

proposed. It can be built on top of structured P2P overlays, 
especially those using a linear hash addressing space.  

• Meteorograph can aggregate similar items in an overlay. It 
can thus provide similarity searches that cannot be sup-
ported by a naive structured overlay. The evaluation re-
sults indicate that Meteorograph takes only ( )NOc

k log)( ⋅  
messages and hops to discover k items, where N is the 
number of peers in an overlay and c is the space capacity 
of a node. Moreover, Meteorograph can discover all items 
stored in an overlay that match the specified keywords. 

• Meteorograph avoids problems commonly found in un-
structured P2P overlays for similarity searchers. Note that 
many such unstructured P2P overlays have been proposed, 
e.g., associative overlay [4], PlanetP [7], routing index [5], 
semantic overlay [6] and YAPPERS [8]. Their problems 
are large network traffic due to message flooding, limited 
search scope, and nondeterministic research results. Mete-
orograph avoids these problems.  

• In a P2P system, if loads are not uniformly distributed to 
the system, some nodes may be overloaded with published 
items. Meteorograph can evenly distribute items into the 
structured overlay. The load-balancing feature enables a 
search of single items to complete in )(log NO  hops and 
messages. 

• Meteorograph supports ranked searches, such as finding 
the k most similar items of a given key. 

One problem with the vector space model used in Meteoro-
grapah is that to add a new item may result in expansion of the 
vector space. Each published item then must be republished. 
Meteorograpah can simply employ a universal set of keywords 
in a dictionary to characterize each item without using a high-
dimensional vector space. It thus needs not republish items. 

To our knowledge, Meteorograph is the first system to im-
plement similarity searches for structured P2P overlays that 
especially employ single-dimensional hash address space (such 
as Chord [16], Pastry [15], Tapestry [19] and Tornado [11]). 

We also provide an extensive experimental study on the per-
formace of Meteorograph. The remainder of the paper is organ-
ized as follows. Section 2 overviews the design concept of 
Meteorograph. Section 3 presents the Meteorograph design. 
Evaluation for Meteorograph is given in Sections 4, and Sec-
tion 5 discusses the related works. Conclusions of the paper are 
given in Section 6, with possible future research directions. 

2. Overview 
In the vector space model [1], given a set of items S = 

},,,,{ 321 ntttt , a set of keywords K = },,,,{ 321 mkkkk , 
and the associated weights W = },,,,{ 321 mwwww , each 
item it  in S can be represented as a vector =id  
[ ]mvvvv ,,,, 321 , where jj wv =  ( mj ≤≤1 ) if jk  can 
characterize id ; 0=jv  otherwise. Thus, the set M = 

},,,,{ 321 ndddd  can be used to represent S. 
Given a query vector [ ]mqqqqq ,,,, 321=  to search for a 

set of similar items U from S, we can apply the dot product 
(denoted by • ) to q  and each id  in S, obtaining the result 

idqr •= . The angle ∂  between q  and id  is calculated by 
( )r1cos−=∂ . Note that 1800 ≤∂≤ . Cosine is thus a one-

to-one and onto function, and the inverse function, 1cos− , ex-
ists. The value ∂  can then be used to evaluate whether the two 
vectors are similar. If ∂  is smaller than a predefined threshold 
τ , we say that q  and id  are similar and thus id  must be in 
the set of U. Other similarity measurements are possible, for 
instance, finding top-ten items similar to a query from S. 

Meteorograph is based on the vector space model and em-
ploys the dot-product concept. It logically maintains a set of 
nodes in a half circle over a 2-dimensional X-Y space. Each 
item (denoted by the vector d ) in Meteorograph is represented 
as an angle ϖ  with respect to the axis Y = 0 by ( )xd •= −1cosϖ . x  is the projection vector of d  in the vec-
tor space M. Items in S that are similar will have nearly identi-
cal angle ϖ  and will thus be published in the same vicinity of 
the half circle (i.e., the nearby nodes). To retrieve a set of items 
by the giving query vector, Meteorograph calculates the angle 
between the query vector and the unity 1 . Then it locates the 
node (or a set of nearby nodes) in the circle to retrieve those 
items closely matching the query. 

3. Meteorograph  
Meteorograph is based on Tornado. However, due to space con-
strain, Tornado can be referred to [11]. 

3.1 Absolute Angle 
Given a vector ],,,,[ 321 mddddd =  in an m-dimensional 
space M, we define the absolute angle, θ , as 

m
m
22

3
2
2

2
1 θθθθθ ++++= , (1)
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where  ( ) ],,,,[ 321 miiiiiproj ddddd =  is the projection vector 
of d  onto the subspace spanned by iI . Let ∑= =

m
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Figure 1 illustrates an example of a 3-diminsional vector 
space and the angles between a vector d and the linear sub-
spaces spanned by 1I , 2I  and 3I . 

Using the vector space model, we can see that items with 
similar vector representations have nearly identical absolute 
angles. Meteorograph exploits this property to aggregate simi-
lar items by publishing them to logically clustered nodes in 
Tornado. 

3.2 Naming 
Given a vector ],,,,[ 321 mvvvvv =  that represents a query 
or an item, Meteorograph computes its absolute angle vθ using 
Equation 1. The corresponding hash key, v  of v  in Tornado 
is then calculated as follows 
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From Equations 2 and 3, v ’s projection vector in the sub-
space spanned by iI  is ( ) ]0,,0,,0,,0[ iiproj vv =  for 

mi ≤≤1 . Thus Equation 4 can be further simplified as 
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3.3 Publishing and Searching 
To publish an item represented by the vector p , Meteorograph 
performs the following steps. 
• Step 1: Resolve the item’s hash key p  via Equation 5. 

• Step 2: Publish the item to a node pn  with the hash key 
closest to p . 

• Step 3: If pn  cannot satisfy the publishing request due to 
a shortage in its storage space, pn  replaces the least alike 
item with the published item p . Node pn  then asks its 
closest neighbor to help store the replaced item. That 
neighbor then performs similar operations. Note that the 
originating node of the publishing request can specify a 
hop count value to constrain the maximum number of 
neighbors visited. If the publishing request can be accom-
plished within the specified hop count, the publishing is 
successful. Otherwise, the originating node informs the 
application of the failure of publishing. 

The replacement policy in Step 3 guarantees that most simi-

 
 
Figure 1: An example of a 3-dimensional vector 
space 

_publish (vector p , payload d, integer hop) 
// resolve p ’s hash key via Equation 5 

=p _resolve ( p ); 
// issue a message with the publishing request from s to n 
// towards the node closest to p  
if (_forward (s, n, p , d, hop, “publish”) is failed) 

inform the application of the failure of publishing; 
 
 
_retrieve (vector q , integer amount) 

// resolve q ’s hash key via Equation 5 
=q _resolve ( q ); 

// issue a message with the retrieving request from s to n 
// towards the node closest to q  
return _forward (s, n, q , q , amount, “retrieve”); 

 
 
_forward (node s, node n, key id, payload d, integer c, re-
quest type) 

// Does there exist a node with the hash key closest to id? 
if ( ∈∃t  n’s routing table such that p is closer to id) 

// forward to the node with the hash key closer to id 
_forward (s, t, p , d, hop, “publish”); 

else 
// n is the node with the hash key closest to id 
switch (type) 

case “publish”: 
if ( 0=c ) 

reply a publishing failure to s; 
return; 

if (n’ storage space is not available) 
replace the least similar item u in n with d; 
b = n’s closest neighbor; 
_forward (s, b, u , u, 1−c , “publish”); 

else 
// adopt VSM or LSI for local indexing 
store d in n;  

case “retrieve”: 
// manipulate the local index of n 

=r  the number of most relevant items to d ;  
send the resultant matched items to s; 
if ( 0>− rc ) 

b = n’s closest neighbor; 
_forward (s, b, q , d , rc − , “retrieve”); 

Figure 2: The publishing and retrieving algo-
rithms 
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lar items are clustered together and stored in the same node or 
the nearby nodes. Figure 2 presents the algorithm (see the 
_publish). As mentioned in Section 3.1, similar items have 
nearly identical absolute angles. They thus have similar hash 
keys and are published to the nearby nodes. Note that nodes 
may further implement the vector space model (VSM) or the 
latent semantic indexing (LSI) to manipulate the items stored 
locally. 

To search for items that match the given keywords, the issu-
ing node simply calculates the hash key representing the query 
vector q (see the _retrieve). Then, it forwards the search re-
quest to node qn  whose hash key is the closest to the hash key 
of q. Depending on the “amount” of items requested, qn  can 
simply look up its local index to retrieve the requested items. If 

qn  cannot fulfill the designated amount, it consults its closest 
neighbor to further process the query. Since items that are 
more alike will replace those more dissimilar (see the _publish 
algorithm), the most similar items must be stored in a node or a 
set of close nodes. Meteorograph exploits this aggregation 
feature and combines it with the linear ordering relationship 
between nodes of Tornado. It can thus discover the most simi-
lar k items for a given key. 

3.4 Load Balance 
A naive structured overlay names each participating peer by a 
uniform hash function. It publishes an item to a peer whose 
hash key is the closest to the key representing that item. If the 
distribution of the items’ hash keys is uniform, each peer will 
host about the same amount of items. However, if some key-
words are particularly popular, the distribution of the items 
may be biased towards some particular peers. This thus causes 
unbalanced load in the peer nodes and renders the hash ad-
dressing space underutilized. 

By investigating a small sampled data set, Meteorograph tri-
es to evenly scatter hash keys to the whole hash addressing 
space (Section 3.4.1). To further relieve the hot regions in the 
hash addressing space, Meteororgraph places more nodes into 
those regions to share the load (Section 3.4.2). We assume that 

the sample data set examined by Meteorograph can be obtained 
from an operating overlay such as Gnutella in advance. 

3.4.1 Exploiting Unused Hash Space 
Items may share some identical keywords. Popular keywords 
may result in skew distribution of the absolute angles. Figure 3 
depicts a cumulative distribution function (CDF) of the number 
of items versus hash keys that represent 0.5% of the items out 
of the collected traces (see Section 4). It shows that near 65% 
and 20% of items are represented by keys from 162  to 182  
and from 182  to 202 , respectively. These hash keys only takes 
1.9% and 7.8% of the hash addressing space. That means 85% 
of items will be published to 5.9% of nodes that participate in 
the system. 

Meteorograph tries to evenly scatter items into the system 
without scrambling those similar items that are aggregated. As 
Figure 3 shows, Meteorograph firstly identifies several points 
of knees (i.e., ),( 11 ba , ),( 22 ba , ),( 33 ba , ),( 44 ba  
and ),( 55 ba ) for the distribution. A hash key, h, of an item is 
recalculated by applying a linear function f that is defined as 
follows 

( ) 










−
−−+ℜ=

ij

i
iji bb

bhaaahf )( , (6)

where ji bhb <≤ , )( ii bCDFa =  and )( jj bCDFa = . 
In this study, five points of knees are selected, that are 

)0,0( , )2,079.0( 16 , )2,079.0( 16 , )2,75.0( 18 , )2,957.0( 20  
and )10,1( 8 . 

3.4.2 Relieving Hot Regions 
Figure 4 shows the CDF function after each item is named by 
applying Equation 6. It indicates that Meteorograph thoroughly 
exploits the hash keys provided by the structured overlay. Ide-
ally, the CDF should scale linearly with a slope equal to one. 
That means the hash keys that actually represent items are uni-
formly distributed and therefore each peer node in the system 
perceives nearly identical workload. 

Since some keywords are particularly hot, the hash keys of 
those items characterizing by those hot keywords are thus not 
uniformly scattered. Consequently, some particular regions 
(denoted as hot regions) in the hash addressing space may con-
tain excessive items. Meteorograph solves this problem by 
introducing more nodes into those hot regions. 

The idea is to firstly identify several points of knees, e.g., 
),( 11 BB yx , ),( 22 BB yx , ),( 33 BB yx , ),( 11 CC yx , ),( 22 CC yx  

and ),( 33 CC yx  in Figure 4, for the corresponding hot regions 
(B and C). Meteorograph then maps more nodes to hash keys 
in the range between 1Bx  and 2Bx  than those between 2Bx  
and 3Bx  for the hot region B. Similarly, for region C more 
nodes with hash keys between 1Cx  and 2Cx  are mapped. 

Figure 5 shows the naming algorithm for a joining node. 
The joining node employs a uniform hash function to name 
itself when the hash key received is outside a hot hash region. 
Otherwise, it will use a hash key within a hot region to join. It 
thus recalculates its representing hash key based on a probabil-
ity (i.e., r) and the degree of hotness in that hot region. For 
instance, suppose in Figure 4 that node v randomly obtains a 
hash key k which is between 1Bx  and 2Bx  within the hot re-
gion B. Assume that the degrees of hotness in B are 0.8 and 0.2 
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Figure 3: The CDF versus hash keys that repre-
sent 0.5% of the items out of the collected traces 
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for the two sub-regions ),[ 21 BB xx  and ),[ 32 BB xx , respec-
tively. Node v randomly regenerates its representing hash key 
within ),[ 21 BB xx  if it evaluates the probabilistic value (r) and 
finds it less than 0.8. Otherwise, it generates a hash key in 

),[ 32 BB xx . 
Let ),( iaia yx  and ),( ibib yx be the two subsequent points 

of knees that identify a sub-region ),[ ibia xx of a hot region iG . 
The degree of hotness, iap , is defined as 

1iit

iaib
ia yy

yyp
−
−= , (7)

where ibia xx < , ity  is the largest CDF value in iG . Clearly, 
11 =∑ <≤ tj ijp . The degree of hotness is proportional to the 

difference of CDFs corresponding to the two subsequent knees. 
Consequently, with a higher probability, Meteorograph enables 
nodes with hash keys within the hot sub-regions to participate 
in the system. 

This study identifies two hot regions (i.e., B and C) based 
on the sampled item set. For B, 12 knees are used, that are 
( 7102 ⋅ , 18), ( 7105.2 ⋅ , 31), ( 7103 ⋅ , 38), ( 7105.3 ⋅ , 46), 
( 7104 ⋅ , 52), ( 7105.4 ⋅ , 57), ( 7105 ⋅ , 62), ( 7105.5 ⋅ , 66), 
( 7106 ⋅ , 69), ( 7105.6 ⋅ , 72), ( 7107 ⋅ , 73) and ( 7105.7 ⋅ , 75). 
For C, six knees are selects, that include ( 7105.7 ⋅ , 75), 
( 7108 ⋅ , 86), ( 7105.8 ⋅ , 91), ( 7109 ⋅ , 94), ( 7105.9 ⋅ , 95) and 
( 810 , 100). 

Note that a node intending to join in a structured overlay 
needs to consult first a bootstrap node. This bootstrap node is 
responsible for maintaining information of the investigated 
items. The information includes the identified knees to exploit 
the unused hash addressing space (Section 3.4.1) and to relieve 
the hot regions (Section 3.4.2). When a joining node receives 
such information from the bootstrap node, it calculates its rep-
resenting hash key using Equation 7. After it joins the system, 
it publishes items using Equation 6 based on this statistical 
information. 

3.5 Optimizations for Similarity Search 
3.5.1 First Hop 
Consider a search using multiple keywords. Meteorograph 
resolves the representing vector and then issues a query with 

the corresponding hash key of the vector (_retrieve in Figure 
2). However, if the number of keywords specified by the query 
is far smaller than that characterizing the published items, the 
resultant hash key of the query vector will be distant from 
those of the matching items. 

Our solution for this problem is as follows. Before a node 
issues a search with multiple keywords, it first selects an item 
that matches the designated keywords from a given sample 
data set such that this item’s representing hash key is the 
smallest. This node then sends this query with the designated 
keywords towards a node whose hash key is the closest to the 
resolved hash key. The latter node then performs a local search 
and uses the _forward algorithm to forward the query. 

We expect that the size of the sampled data set in a node is 
small. This data set can be stored in the bootstrap node and 
downloaded to a new node at joining. 

3.5.2 Directory Pointers 
Meteorograph uniformly distributes items to the system in 
which each node obtains its represented hash key using a ran-
domly uniform hash function except those appearing in hot 
regions. This uniformity leads to discover items that match 
specified keywords by crawling the entire system. Rather than 
merely publishing items with represented hash keys by apply-
ing Equation 6, each Meteorograph node additionally publishes 
a directory pointer associated with each published item. A 
directory pointer comprises of the associated item’s repre-
sented hash key that is resolved by Equation 6 and the key-
words that characterize the item. The represented hash key of a 
directory pointer, however, is the associated item’s represented 
hash key by applying Equation 5. Consequently, Meteorograph 
aggregates directory pointers of similar items, but evenly dis-
tribute items into the system. A similarity search can be thus 
firstly forwarded to a node whose hash key is closest to the key 
resolved by applying Equation 5 to the corresponding query 
vector. The node that receives the query then performs a local 
search on locally stored items and directory pointers. If the 
associated keywords with a directory pointer satisfy the query, 
the node forwards this query to a node whose hash key is clos-
est to the hash key indicated by the directory pointer. 
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Figure 4: The CDF versus hash keys after apply-
ing Equation 6 to name the sampled items 

// given a set of hot regions denoted by }{ iGG ∪=  and a set 
// of knees }{ iKK ∪= , where each region iG  is associated 
// with a )},(,),,(),,{( 2211 ititiiiii yxyxyxK =  
_name () 

// pick a hash key k by a randomly hash function, e.g., SHA-1
k = _random (); 
// determine k whether is within a hot region of hash address
if (k is within a hot region iG ) 

1

)1(

iit

ijji
ij yy

yy
p

−
−

= + , for all tj <≤1 ; 

Let r be a random value between 0 and 1; 

Let 11 −<≤ ts  such that ∑<≤∑
+

==

1

11

s

u
iu

s

u
iu prp ; 

while ( )1( +<≤ siis xkx  is not true)  
k = _random (); 

return k; 
Figure 5: The naming algorithm for a peer node 
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We believe that a directory pointer is quite small in size and 
Tornado [11] has provided directory pointers that can thus 
leverage similarities searches. Clearly, to discover a node that 
stores an item matching the search keywords takes 

)(log2 NO⋅  hops and messages, i.e., )(log NO  hops and 
messages to discover a node responsible for the directory poin-
ter and )(log NO  hops and messages to locate a node that 
stores the matching item. Hence, consider a similarity search in 
size k (i.e., discover k items). Assume a worst setting in which 
k similar items are stored in k various nodes. Such a search in 
Meteorograph takes )(log)1( NOk ⋅+  messages1, i.e., it takes 

)(log NO  messages to send the query to the node hosting the 
directory pointer and )(log NOk ⋅  messages to discover all k 
items. Possibly, these k  discovery requests can be issued in 
parallel and this leads to )(log2 NO⋅  hops to search these k 
items. Meteorograph, however, does not blindly issue query 
request in parallel since k  parallel discovery requests may 
redundantly sent to those nodes that have received the query if 
some of k items are stored at the same node. Instead, node a 
responsible for those matched directory pointers issues one 
query at a time to node b that can provide the matched items. 
Node a waits for a reply that involves the number (say k ′ ) of 
items matching the keywords specified by the query from node 
b and these items’ represented hash keys by Equation 5. Node 
a then issues the same query to another node d for those undis-
covered items if 0>′− kk . The search is complete, otherwise. 
This scheme concludes that a similarity search takes 

)(log)()(log)(log)1( NONONO c
k

c
k ⋅+=⋅+  messages and 

sequential hops, where c is per node mean storage space2. 

3.6 Reliability 
Meteorograph leverages data reliability by constantly replicat-
ing and maintaining k replicas for each data item. The prob-
ability of completely losing a given data item is thus kp1 , 
where p  is a ratio to lose a particular replica. Once a virtual 
home receives a publishing request, it will firstly construct 

1−k  routes to 1−k  virtual homes whose IDs are numerically 
closest to itself. To publish replicas from a virtual home, 1−k  
publishing requests with the hashing keys are routed to the 
replication homes. The virtual home will periodically monitor 
these replicas via the associated 1−k  vectors. Since a data 
owner will periodically republish data items it generated, the 
corresponding virtual home also needs to periodically repub-

                                                                 
1 Ideally, a Gnutella-like flooding scheme without TTL requires 

1−N  messages. This is assumed that each node has a global 
knowledge about which node has received the query request and 
knows how to forward the query to those nodes that have not re-
ceived the query. 

2 Given a constant c, When Nck << , Meteorograph considerably 
outperforms a Gnutella-like system in terms of messages since 

1)(log)(log)1( −<≈⋅+ NNONOc
k . When Nck >> , 

≈⋅+ )(log)1( NOc
k  NNOk >>⋅ )(log . Note that all the 

nodes along a query route in Meteorograph may be the clos-
est neighbor (Figure 2) of each other. Such a query will then 
take nearly )(log2 NON ⋅  messages rather than )(log NOk ⋅  
if each node can forward the query according to its directory 
pointers. 

lishing replicas to 1−k  nodes. If a virtual home fails, subse-
quent requests to the virtual home will be forwarded to one of 
its replicas by utilizing Tornado’s routing infrastructure, i.e., 
one of the virtual homes responsible for the replications will 
have the numerically closest home ID to the requested data ID. 

3.7 Changes of Vector Space 
Consider adding a new item to a vector space. Possibly, since 
the keywords characterizing the newly introduced item may 
not appear in the keyword set K, K must be expanded to in-
clude those new keywords. This thus varies each absolute an-
gle of those previously published items. That means items need 
to be republished. If the number of published items is huge, 
this may overwhelm an overlay by generating a huge amount 
of traffic for republishing. 

Meteorograph does not need to republish each item stored 
in an overlay. It simply uses a comprehensive set of keywords 
from a dictionary. This is based on the assumption that each 
item can be characterized by the words that appear in the dic-
tionary. To publish an item or search a set of items, the abso-
lute angle that represents an item can be simply calculated by 
Equation 5. Clearly, a vector that represents an item in Mete-
orograph must be quite sparse and thus needs no sophisticated 
computations to calculate the corresponding absolute angle. 

4. Performance Evaluation 
Meteorograph is evaluated by simulation. Since there is no 
publicly available keyword-item data set, we use another simi-
larly structured “market-basket” data set, the Web access log 
from the World Cup Web Site on July 24 in 1998, to synthe-
size the desired workload. The Web log comprises of a large 
number of requests and each logs a Web object (for example, a 
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Figure 6: The number of web objects accessed 
in decreasing order versus the client IDs 
 
Table 1: The statistics of the World Cup Web 
logs on July 24, 1998 
Number of clients  2,760K
Number of Web objects accessed 89K
Average number of Web objects accessed by a client 43
Maximum number of Web objects accessed by a client 11,868
Minimum number of Web Objects accessed by a client 1
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Web page, an icon, etc.) accessed by a client. We refer to those 
Web objects as the keywords and clients as the items published 
by nodes. This thus allows constructing a matrix of Web ob-
jects (keywords) versus clients (items), where the number of 
Web objects and clients are about 89K and 2,760K, respec-
tively. We assume that each item has the identical size. Figure 
6 shows the distribution of the number of Web objects versus 
the accessing IDs of clients. The resulting statistics is summa-
rized in Table 1. Each client accesses 43 Web objects in aver-
age, i.e., each item is characterized by 43 keywords. 

The structured P2P overlay (i.e., Tornado) simulated has the 
number of peers from 1,000 to 10,000 nodes (N). The 2,760K 
items with associated 89K keywords are published to the simu-
lated overlays. Note that ideally each peer node simulated can 
be responsible for Nc 000,760,2≈  items. The hop count of each 
publishing is infinite, i.e., all 2,760K items are completely pub-
lished to the system. 

4.1 Discovery of a Single Item 
We firstly investigate the performance of exactly searching by 
randomly picking a node from the overlay to retrieve a ran-
domly selected item from 2,760K ones. The simulator meas-

ures the number of hops taken by each query. There are total 
100K queries studied and the metrics (i.e., the number of hops) 
measured are averaged. 

Figure 7 depicts the simulation results. Notably, each node 
simulated is equipped with infinite storage space (the effect of 
limited storage capacity is presented later). “None” denotes 
that the system is not optimized by any schemes for placement 
of items while “Unused Hash Space” and “Unused Hash Space 
+ Hot Regions” represent the system is optimized by the nam-
ing scheme for an item (Section 3.4.1) and the one for a node 
(Section 3.4.2), respectively. The results present that “None”, 
“Unused Hash Space” and “Unused Hash Space + Hot Re-
gions” can retrieve a particular item in )(log NO  hops and 
thus messages. 

The workload of each node in terms of a ratio from the 
number of items the node stores to c is further investigated. 
Figure 8 illustrates the results for a system with 1000 nodes. It 
shows that “None” cannot uniformly place items to each peer. 
Most items are stored at a few of nodes in the system. “Unused 
Hash Space”, however, can more evenly scatter items into the 
system. “Unused Hash Space + Hot Regions” delivers more 
even distribution than those provided by “Unused Hash Space”. 
Both enable near 75% of nodes in the system host no more 2c 
items (ideally, each host hosts c items), and near 98.7% of no-
des host 8c items. 

As aforementioned, an item is published to the node i with 
the hash key closest to the key that represents the item. Node i 
may be overflowed due to limited storage space and thus a 
most un-similar item, stored in node i is migrated from node i 
to node i’s closest neighbor peer. Consequently, an item re-
quested might not be stored in the node whose hash key is 
closest to this item. Figure 9 shows the effect of limited storage 
capacity for “None” and “Unused Hash Space + Hot Regions”. 
Each node simulated in this experiment can host up to 8c items. 
“Closest” indicates the number of hops required to route a 
query to a node whose hash key is closest to the one that repre-
sents a randomly requested item. “Neighbors” denotes the 
number of hops to discover a requested item along neighbor 
pointers. The results presents that to search a particular item 
still takes )(log NO  hops (i.e., with high probability a node 
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whose hash key is closest can resolve a query) when Meteoro-
graph exploits unused hash space and places relatively more 
amounts of nodes into hot hash regions. However, if no 
schemes for balancing load are adopted, the performance to 
access a particular item becomes quite poor. 

4.2 Discovery of Similar Items 
Given a keyword, we measures the number of hops traversed 
versus the number of items that match this designated keyword. 
Queries with the n-th popular keyword from 43 ones are inves-
tigated, where n is one, two, four and eight.  Figure 10 illus-
trates the simulation results for an overlay with 10,000 nodes. 
“Percentage of Cumulative Discovered items” indicates a ratio 
from the number of items that are found to match a specified 
keyword to the total number of items that appear in an overlay 
and involve the same specified keyword. Notably, each node 
simulated in this experiment can host at most 8c items. 

The results (Figure 10(a)) firstly show Meteorograph can 
discover all items that match a specified keyword. Secondly, 

each of over 97% of similar items can be located by )(log NO  
91.6=  hops and thus messages. Figure 10(b) depicts the num-

ber of messages required to discover k similar items. Since 
items involving a specified keyword (1st, 2nd, 4th and 8th popular 
ones) is smaller than the system size (10,000 nodes). Thus the 
overheads of messages by discover k similar items are 

( )NOc
k log)( ⋅ , which linearly scale with k.  

4.3 Effects of Failure 
The experiment replicates each item that is published to Mete-
orograph with 10,000 nodes by generating 1, 2, 4 and 8 copies 
of each item. Nodes dynamically depart from Meteorograph. 
Queries to a dynamically selected item (the experiment studies 
queries to a single item) from those published ones are ran-
domly generated. A successful query means Meteorograph 
effectively use the routing that is provided by Tornado to issue 
a query to one of those nodes that store replicas; this replica 
matches specified keywords. 

The results show that when 50% of nodes fail, 
Meteorograph delivers up to 80% of availability of items if 
each item has two copies in the system. When the number of 
replicas is increased to four, up to 95% of queries are 
successful. The percentage further improves up to 99% when 
there are eight replicas. Notably, even 90% of nodes depart the 
system, there are still 20%, 30% and 45% of successful ratios 
for each item with 2, 4 and 8 copies, respectively. 

5. Related Works 
Service discovery frameworks such as Jini [12] and SLP [18] 
depend on the client and server model. They use a centralized 
server to host all resources that register themselves into this 
server. As aforementioned, this approach suffers from a single 
point of failures and introduces a performance bottleneck. Ad-
ditionally, they rely on IP multicast. 

In contrast, [4], [5], [6], [8] and [13] recently proposed are 
based on the peer-to-peer model. They enhance searches in 
unstructured P2P overlays (particularly for Gnutella [9]). They 
extensively rely on a flooding mechanism. To search items, 
query messages are flooded to nodes that have high probability 
to deliver matched items. The forwarding is based on either the 
random probability [13] or some heuristics [5]. Although 
works in [4], [6], [8] use multiple overlays to constrain scopes 
of searches, their searches still rely on the flooding mechanism 
in each sub-overlay. As aforementioned, they introduce three 
major issues. (1) These works considerably generate network 
traffic. The cost (the number of messages, for instance) of a 
search is unpredictable. (2) They cannot guarantee in success-
fully searching for a singly specified item that does appear in 
an overlay. (3) Results from a search are not deterministic ([8] 
can deliver complete results, but it broadcasts query to a sub-
overlay). Consequently, these works do not guarantee quality 
of a search in terms of performance and results. Based on the 
vector space model, [7] can provide similarity search. It, how-
ever, is based on an unstructured overlay and relies on a flood-
ing mechanism. 

Perhaps, the work most relevant to Meteorograph is 
pSearch [17]. pSearch is also based on the vector space model 
and uses a structured P2P overlay (i.e., CAN [14]). CAN struc-
tures an overlay using a highly dimensional coordinate space 
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Figure 10: (a) The number of hops required per 
discovery of a similar item and (b) the total mes-
sages required of discovery of a set of similar 
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and requires employ multiple hash addressing space (i.e., m 
hash addressing spaces are necessitated by an m-dimensional 
coordinate space). Clearly, based on an structure overlay using 
a coordinate space with fixed m, in pSearch if a new item is 
added, then the coordinate space needs to be restructured and 
each item that are stored in the overlay must be republished. It 
is impossible that to choose a large m by adopting a universal 
dictionary set that is employed by Tornado. Additionally, when 
pSearch locates a particulate peer, it must use an expanded ring 
search (i.e., a localized flooding mechanism) to discover re-
quested items from neighbor peers. This is because peers in 
CAN do not maintain a linear ordering for participating peers. 
Perhaps, the most important issue is that it is unclear how to 
apply pSearch to other structured overlays such as Chord, Pas-
try, Tapestry and Tornado that particularly use a single-
dimensional hash space. Moreover, pSearch cannot deliver 
ranked results for a search. It is also unclear the performance of 
pSearch without a detailed experimental study.  

The detailed comparisons for various designs can be found 
in [10].  

6. Conclusions and Future Works 
This study proposes a similarity information search system 
called Meteorograph to discover resources in a P2P computing 
environment. Meteorograph is based on a vector space model 
and implemented on top of the structured P2P overlay, Tor-
nado. It can search for a particular item in ( )NO log  
hops/messages and a set of similar items in ( )NOc

k log)( ⋅  
hops/messages. Meteorograph provides ranked searches and 
can discover all items that match designated keywords. Based 
on a structured P2P overlay, Meteorograph guarantees that 
results from a search are deterministic. Moreover, it can evenly 
distribute items to the participating nodes. Although this study 
is based on Tornado, we believe that the concept can also be 
applied to other overlays (for instance, Chord, Pastry and Tap-
estry) that have a linear hash addressing space. 

Currently, Meteorograph does not support range searches, 
such as discovering machines that have memory in size be-
tween 1G and 8G bytes. Mapping the range of values into the 
linear structure provided by Tornado may solve this problem. 
Meteorograph does not support notification to resource con-
sumers either. Notification can rapidly transfer the states of 
resources to subscribed consumers. We are currently extending 
Meteorograph to support the above features. We also try to 
incorporate security mechanisms into Meteorogrpah. 
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