
 1

Similarity Discovery in Structured P2P Overlays

Hung-Chang Hsiao Chung-Ta King*

Department of Computer Science
National Tsing-Hua University

Hsinchu, Taiwan 300
hchsiao@cs.nthu.edu.tw

Abstract

Peer-to-peer (P2P) overlays are appealing, since they can aggre-
gate resources of end systems without relying on sophisticated
infrastructures. Services can thus be rapidly deployed over such
overlays. Primitive P2P overlays only support searches with sin-
gle keywords. For queries with multiple keywords, presently only
unstructured P2P systems can support by extensively employing
message flooding.

In this study, we propose a similarity information retrieval sys-
tem called Meteorograph for structured P2P overlays without
relying on message flooding. Meteorograph is fault-resilient,
scalable, responsive and self-administrative, which is particularly
suitable for an environment with an explosion of information and
a large number of dynamic entities. An information item stored in
Meteorograph is represented as a vector. A small angle between
two vectors means that the corresponding items are characterized
by some identical keywords. Meteorograph further stores similar
items at nearby locations in the P2P overlay. To retrieve similar
items, only nodes in nearby locations are located and consulted.
Meteorograph is evaluated with simulation. The results show that
Meteorograph can effectively distribute loads to the nodes. Dis-
covering a single item and a set (in size k) of similar items takes

()NO log and ()NOc
k log)(⋅ messages and hops respectively,

where N is the number of nodes in the overlay and c is the storage
capacity of a node.

1. Introduction
Peer-to-peer (P2P) overlays have recently attracted much at-
tention due to features such as self-administration, reliability
and responsiveness. They can efficiently aggregate resources
across the Internet without sophisticated management. Each
node in a P2P system contributes some resources (storage
space or processor cycles, for example) to the system. Func-
tionally, the nodes are identical—they can act as a client, a
server or a router. Participating nodes from various administra-
tive domains may dynamically join and depart the system. Ex-
ample P2P systems include CAN [14], Chord [16], Freenet [3],
Gnutella [9], Pastry [15], Tapestry [19] and Tornado [11].

P2P overlays can be classified as unstructured and struc-
tured. Unstructured P2P overlays such as Gnutella and Freenet
do not embed a logical and deterministic structure to organize
the peer nodes. Consequently, they need a certain kind of mes-
sage flooding to search for interested items stored in the over-
lay. For example, Gnutella adopts a breath-first approach to
flood the requests, while Freenet uses a depth-first approach.
To prevent the high cost of flooding the entire network, both

systems use a time-to-live (TTL) value to limit the scope of a
search.

In contrast, structured P2P overlays such as CAN, Chord,
Pastry, Tapestry and Tornado manage the peer nodes with an
implicit logical and deterministic structure. CAN is based on a
multi-dimensional coordinate space, and the others are based
on an m-way tree. These systems provide powerful lookup
services by managing hash key and value pairs. A hash key is
generated by applying a uniform hash function to the searched
keyword. Given a hash key, a lookup request can be resolved
by a node whose hash key is the closest to the requested key.

Structured P2P overlays offer several desirable features.
First, they do not rely on the flooding mechanism and, there-
fore, do not generate large network traffic. A lookup request in
most proposed overlays takes)(log NO hops and messages.
Second, a lookup request can be resolved with a high probabil-
ity and the associated cost is predictable. On the other hand,
unstructured overlays cannot discover a requested item if this
item is out of the search scope. Even if requested items can be
discovered, the cost is unpredictable. Third, results of a search
are deterministic in structured overlays. In unstructured over-
lays, different peers may receive different results when issuing
the same search request.

A serious problem with structured overlays is that they can
only support searches with a single keyword. For example,
they can search for and return all papers with the keyword
“distributed processing”. This is done by first obtaining the
hash key of “distributed processing”, and then storing all such
papers in a peer node whose node ID is the closest to the hash
key. This creates several problems. First, if there are many
papers on “distributed processing”, then the hosting peer node
will be overloaded. Second, if a paper on “distributed process-
ing” can also be characterized as “computer architecture”, then
we have to decide which keyword to use to publish the paper.
This then precludes the use of the other keyword to find the
paper, unless we duplicate the paper to both sites. Third, we
cannot issue a search with multiple keywords, such as <“dis-
tributed processing”, “computer architecture”>, and find all
papers that exactly match this query. It is even difficult to find
papers characterized by <“distributed processing”, “computer
architecture”, “something else”>.

One solution is to build multiple sub-overlays on top of the
structured overlay. Each sub-overlay handles items that are
characterized by the same keyword. To search with multiple
keywords, the corresponding sub-overlays are consulted and
each return items that match a specific keyword. The inquirer
then examines the received items and filters out those that do

* This work was supported in part by the National Science Council,
R.O.C., under Grant NSC 90-2213-E-007-076 and by the Ministry of
Education, R.O.C., under Grant MOE 89-E-FA04-1-4.

 2

not match all the specified keywords. Clearly, this approach
will result in large traffic in transmitting items that do not fully
match the specified keywords. Besides, if the number of key-
words in the system is large, this approach requires a huge
number of overlays. A node that participates in k overlays will
require k times the overhead to maintain these sub-overlays.

In this study, we propose a novel information retrieval sys-
tem, Meteorograph, for searches with multiple keywords (or
similarity searches). It is based on a structured P2P “storage”
overlay called Tornado [11]. Meteorograph characterizes an
item as a vector in the vector space model [1] and stores the
item in a single structured overlay. To map items into the struc-
tured overlay, each item in Meteorograph is transformed to a
single value called the absolute angle. Two items are “similar”
if they share some common keywords, and the two correspond-
ing vectors in the vector space have a very small angle. By
controlling the locations, represented by absolute angles, in
which items are stored, Meteorograph can rapidly locate a
search item. Moreover, it can aggregate similar items together
at nearby locations in the overlay.

The contributions of this study are as follows.
• A reliable information retrieval system, Meteorograph, is

proposed. It can be built on top of structured P2P overlays,
especially those using a linear hash addressing space.

• Meteorograph can aggregate similar items in an overlay. It
can thus provide similarity searches that cannot be sup-
ported by a naive structured overlay. The evaluation re-
sults indicate that Meteorograph takes only ()NOc

k log)(⋅
messages and hops to discover k items, where N is the
number of peers in an overlay and c is the space capacity
of a node. Moreover, Meteorograph can discover all items
stored in an overlay that match the specified keywords.

• Meteorograph avoids problems commonly found in un-
structured P2P overlays for similarity searchers. Note that
many such unstructured P2P overlays have been proposed,
e.g., associative overlay [4], PlanetP [7], routing index [5],
semantic overlay [6] and YAPPERS [8]. Their problems
are large network traffic due to message flooding, limited
search scope, and nondeterministic research results. Mete-
orograph avoids these problems.

• In a P2P system, if loads are not uniformly distributed to
the system, some nodes may be overloaded with published
items. Meteorograph can evenly distribute items into the
structured overlay. The load-balancing feature enables a
search of single items to complete in)(log NO hops and
messages.

• Meteorograph supports ranked searches, such as finding
the k most similar items of a given key.

One problem with the vector space model used in Meteoro-
grapah is that to add a new item may result in expansion of the
vector space. Each published item then must be republished.
Meteorograpah can simply employ a universal set of keywords
in a dictionary to characterize each item without using a high-
dimensional vector space. It thus needs not republish items.

To our knowledge, Meteorograph is the first system to im-
plement similarity searches for structured P2P overlays that
especially employ single-dimensional hash address space (such
as Chord [16], Pastry [15], Tapestry [19] and Tornado [11]).

We also provide an extensive experimental study on the per-
formace of Meteorograph. The remainder of the paper is organ-
ized as follows. Section 2 overviews the design concept of
Meteorograph. Section 3 presents the Meteorograph design.
Evaluation for Meteorograph is given in Sections 4, and Sec-
tion 5 discusses the related works. Conclusions of the paper are
given in Section 6, with possible future research directions.

2. Overview
In the vector space model [1], given a set of items S =

},,,,{ 321 ntttt , a set of keywords K = },,,,{ 321 mkkkk ,
and the associated weights W = },,,,{ 321 mwwww , each
item it in S can be represented as a vector =id
[]mvvvv ,,,, 321 , where jj wv = (mj ≤≤1) if jk can
characterize id ; 0=jv otherwise. Thus, the set M =

},,,,{ 321 ndddd can be used to represent S.
Given a query vector []mqqqqq ,,,, 321= to search for a

set of similar items U from S, we can apply the dot product
(denoted by •) to q and each id in S, obtaining the result

idqr •= . The angle ∂ between q and id is calculated by
()r1cos−=∂ . Note that 1800 ≤∂≤ . Cosine is thus a one-

to-one and onto function, and the inverse function, 1cos− , ex-
ists. The value ∂ can then be used to evaluate whether the two
vectors are similar. If ∂ is smaller than a predefined threshold
τ , we say that q and id are similar and thus id must be in
the set of U. Other similarity measurements are possible, for
instance, finding top-ten items similar to a query from S.

Meteorograph is based on the vector space model and em-
ploys the dot-product concept. It logically maintains a set of
nodes in a half circle over a 2-dimensional X-Y space. Each
item (denoted by the vector d) in Meteorograph is represented
as an angle ϖ with respect to the axis Y = 0 by ()xd •= −1cosϖ . x is the projection vector of d in the vec-
tor space M. Items in S that are similar will have nearly identi-
cal angle ϖ and will thus be published in the same vicinity of
the half circle (i.e., the nearby nodes). To retrieve a set of items
by the giving query vector, Meteorograph calculates the angle
between the query vector and the unity 1 . Then it locates the
node (or a set of nearby nodes) in the circle to retrieve those
items closely matching the query.

3. Meteorograph
Meteorograph is based on Tornado. However, due to space con-
strain, Tornado can be referred to [11].

3.1 Absolute Angle
Given a vector],,,,[321 mddddd = in an m-dimensional
space M, we define the absolute angle, θ , as

m
m
22

3
2
2

2
1 θθθθθ ++++= , (1)

where iθ is the angle between d and the unit vector
[]miiiiI 0,,0,1,0,,0 111 +−= , for mi ≤≤1 . Note that

1800 ≤≤ θ . The angle iθ is calculated as

()

()

 •
= −

iproj

iproj
i

dd

dd1cosθ , (2)

 3

where ()],,,,[321 miiiiiproj ddddd = is the projection vector
of d onto the subspace spanned by iI . Let ∑= =

m
i idd 1

2
and () ∑= =

m
k kiiproj dd 1

2 . We have () ki
m
k iiproj dddd ∑=• =1 ,

where ()iprojd is

()
i

i

i

i
iproj I

I
I
Idd

•= . (3)

Figure 1 illustrates an example of a 3-diminsional vector
space and the angles between a vector d and the linear sub-
spaces spanned by 1I , 2I and 3I .

Using the vector space model, we can see that items with
similar vector representations have nearly identical absolute
angles. Meteorograph exploits this property to aggregate simi-
lar items by publishing them to logically clustered nodes in
Tornado.

3.2 Naming
Given a vector],,,,[321 mvvvvv = that represents a query
or an item, Meteorograph computes its absolute angle vθ using
Equation 1. The corresponding hash key, v of v in Tornado
is then calculated as follows

ℜ

=

π
θv

v . (4)

From Equations 2 and 3, v ’s projection vector in the sub-
space spanned by iI is ()]0,,0,,0,,0[iiproj vv = for

mi ≤≤1 . Thus Equation 4 can be further simplified as

ℜ

∑=

−
=

π

2
1

2
2

1
1

1cos
mvA

v

i

im
iv , (5)

where ∑= =
m
i ivA 1

2 .

3.3 Publishing and Searching
To publish an item represented by the vector p , Meteorograph
performs the following steps.
• Step 1: Resolve the item’s hash key p via Equation 5.

• Step 2: Publish the item to a node pn with the hash key
closest to p .

• Step 3: If pn cannot satisfy the publishing request due to
a shortage in its storage space, pn replaces the least alike
item with the published item p . Node pn then asks its
closest neighbor to help store the replaced item. That
neighbor then performs similar operations. Note that the
originating node of the publishing request can specify a
hop count value to constrain the maximum number of
neighbors visited. If the publishing request can be accom-
plished within the specified hop count, the publishing is
successful. Otherwise, the originating node informs the
application of the failure of publishing.

The replacement policy in Step 3 guarantees that most simi-

Figure 1: An example of a 3-dimensional vector
space

_publish (vector p , payload d, integer hop)
// resolve p ’s hash key via Equation 5

=p _resolve (p);
// issue a message with the publishing request from s to n
// towards the node closest to p
if (_forward (s, n, p , d, hop, “publish”) is failed)

inform the application of the failure of publishing;

_retrieve (vector q , integer amount)

// resolve q ’s hash key via Equation 5
=q _resolve (q);

// issue a message with the retrieving request from s to n
// towards the node closest to q
return _forward (s, n, q , q , amount, “retrieve”);

_forward (node s, node n, key id, payload d, integer c, re-
quest type)

// Does there exist a node with the hash key closest to id?
if (∈∃t n’s routing table such that p is closer to id)

// forward to the node with the hash key closer to id
_forward (s, t, p , d, hop, “publish”);

else
// n is the node with the hash key closest to id
switch (type)

case “publish”:
if (0=c)

reply a publishing failure to s;
return;

if (n’ storage space is not available)
replace the least similar item u in n with d;
b = n’s closest neighbor;
_forward (s, b, u , u, 1−c , “publish”);

else
// adopt VSM or LSI for local indexing
store d in n;

case “retrieve”:
// manipulate the local index of n

=r the number of most relevant items to d ;
send the resultant matched items to s;
if (0>− rc)

b = n’s closest neighbor;
_forward (s, b, q , d , rc − , “retrieve”);

Figure 2: The publishing and retrieving algo-
rithms

 4

lar items are clustered together and stored in the same node or
the nearby nodes. Figure 2 presents the algorithm (see the
_publish). As mentioned in Section 3.1, similar items have
nearly identical absolute angles. They thus have similar hash
keys and are published to the nearby nodes. Note that nodes
may further implement the vector space model (VSM) or the
latent semantic indexing (LSI) to manipulate the items stored
locally.

To search for items that match the given keywords, the issu-
ing node simply calculates the hash key representing the query
vector q (see the _retrieve). Then, it forwards the search re-
quest to node qn whose hash key is the closest to the hash key
of q. Depending on the “amount” of items requested, qn can
simply look up its local index to retrieve the requested items. If

qn cannot fulfill the designated amount, it consults its closest
neighbor to further process the query. Since items that are
more alike will replace those more dissimilar (see the _publish
algorithm), the most similar items must be stored in a node or a
set of close nodes. Meteorograph exploits this aggregation
feature and combines it with the linear ordering relationship
between nodes of Tornado. It can thus discover the most simi-
lar k items for a given key.

3.4 Load Balance
A naive structured overlay names each participating peer by a
uniform hash function. It publishes an item to a peer whose
hash key is the closest to the key representing that item. If the
distribution of the items’ hash keys is uniform, each peer will
host about the same amount of items. However, if some key-
words are particularly popular, the distribution of the items
may be biased towards some particular peers. This thus causes
unbalanced load in the peer nodes and renders the hash ad-
dressing space underutilized.

By investigating a small sampled data set, Meteorograph tri-
es to evenly scatter hash keys to the whole hash addressing
space (Section 3.4.1). To further relieve the hot regions in the
hash addressing space, Meteororgraph places more nodes into
those regions to share the load (Section 3.4.2). We assume that

the sample data set examined by Meteorograph can be obtained
from an operating overlay such as Gnutella in advance.

3.4.1 Exploiting Unused Hash Space
Items may share some identical keywords. Popular keywords
may result in skew distribution of the absolute angles. Figure 3
depicts a cumulative distribution function (CDF) of the number
of items versus hash keys that represent 0.5% of the items out
of the collected traces (see Section 4). It shows that near 65%
and 20% of items are represented by keys from 162 to 182
and from 182 to 202 , respectively. These hash keys only takes
1.9% and 7.8% of the hash addressing space. That means 85%
of items will be published to 5.9% of nodes that participate in
the system.

Meteorograph tries to evenly scatter items into the system
without scrambling those similar items that are aggregated. As
Figure 3 shows, Meteorograph firstly identifies several points
of knees (i.e.,),(11 ba ,),(22 ba ,),(33 ba ,),(44 ba
and),(55 ba) for the distribution. A hash key, h, of an item is
recalculated by applying a linear function f that is defined as
follows

()

−
−−+ℜ=

ij

i
iji bb

bhaaahf)(, (6)

where ji bhb <≤ ,)(ii bCDFa = and)(jj bCDFa = .
In this study, five points of knees are selected, that are

)0,0(,)2,079.0(16 ,)2,079.0(16 ,)2,75.0(18 ,)2,957.0(20
and)10,1(8 .

3.4.2 Relieving Hot Regions
Figure 4 shows the CDF function after each item is named by
applying Equation 6. It indicates that Meteorograph thoroughly
exploits the hash keys provided by the structured overlay. Ide-
ally, the CDF should scale linearly with a slope equal to one.
That means the hash keys that actually represent items are uni-
formly distributed and therefore each peer node in the system
perceives nearly identical workload.

Since some keywords are particularly hot, the hash keys of
those items characterizing by those hot keywords are thus not
uniformly scattered. Consequently, some particular regions
(denoted as hot regions) in the hash addressing space may con-
tain excessive items. Meteorograph solves this problem by
introducing more nodes into those hot regions.

The idea is to firstly identify several points of knees, e.g.,
),(11 BB yx ,),(22 BB yx ,),(33 BB yx ,),(11 CC yx ,),(22 CC yx

and),(33 CC yx in Figure 4, for the corresponding hot regions
(B and C). Meteorograph then maps more nodes to hash keys
in the range between 1Bx and 2Bx than those between 2Bx
and 3Bx for the hot region B. Similarly, for region C more
nodes with hash keys between 1Cx and 2Cx are mapped.

Figure 5 shows the naming algorithm for a joining node.
The joining node employs a uniform hash function to name
itself when the hash key received is outside a hot hash region.
Otherwise, it will use a hash key within a hot region to join. It
thus recalculates its representing hash key based on a probabil-
ity (i.e., r) and the degree of hotness in that hot region. For
instance, suppose in Figure 4 that node v randomly obtains a
hash key k which is between 1Bx and 2Bx within the hot re-
gion B. Assume that the degrees of hotness in B are 0.8 and 0.2

215 216 217 218 219 220 221 222 223 224

0

20

40

60

80

100

near 108

(a5, b5)(a4, b4)(a3, b3)

(a2, b2)
(a1, b1)

C

D
F

(%
 o

f N
um

be
r o

f I
te

m
s)

Hash IDs of Items (Max Key = 108-1)

Figure 3: The CDF versus hash keys that repre-
sent 0.5% of the items out of the collected traces

 5

for the two sub-regions),[21 BB xx and),[32 BB xx , respec-
tively. Node v randomly regenerates its representing hash key
within),[21 BB xx if it evaluates the probabilistic value (r) and
finds it less than 0.8. Otherwise, it generates a hash key in

),[32 BB xx .
Let),(iaia yx and),(ibib yx be the two subsequent points

of knees that identify a sub-region),[ibia xx of a hot region iG .
The degree of hotness, iap , is defined as

1iit

iaib
ia yy

yyp
−
−= , (7)

where ibia xx < , ity is the largest CDF value in iG . Clearly,
11 =∑ <≤ tj ijp . The degree of hotness is proportional to the

difference of CDFs corresponding to the two subsequent knees.
Consequently, with a higher probability, Meteorograph enables
nodes with hash keys within the hot sub-regions to participate
in the system.

This study identifies two hot regions (i.e., B and C) based
on the sampled item set. For B, 12 knees are used, that are
(7102 ⋅ , 18), (7105.2 ⋅ , 31), (7103 ⋅ , 38), (7105.3 ⋅ , 46),
(7104 ⋅ , 52), (7105.4 ⋅ , 57), (7105 ⋅ , 62), (7105.5 ⋅ , 66),
(7106 ⋅ , 69), (7105.6 ⋅ , 72), (7107 ⋅ , 73) and (7105.7 ⋅ , 75).
For C, six knees are selects, that include (7105.7 ⋅ , 75),
(7108 ⋅ , 86), (7105.8 ⋅ , 91), (7109 ⋅ , 94), (7105.9 ⋅ , 95) and
(810 , 100).

Note that a node intending to join in a structured overlay
needs to consult first a bootstrap node. This bootstrap node is
responsible for maintaining information of the investigated
items. The information includes the identified knees to exploit
the unused hash addressing space (Section 3.4.1) and to relieve
the hot regions (Section 3.4.2). When a joining node receives
such information from the bootstrap node, it calculates its rep-
resenting hash key using Equation 7. After it joins the system,
it publishes items using Equation 6 based on this statistical
information.

3.5 Optimizations for Similarity Search
3.5.1 First Hop
Consider a search using multiple keywords. Meteorograph
resolves the representing vector and then issues a query with

the corresponding hash key of the vector (_retrieve in Figure
2). However, if the number of keywords specified by the query
is far smaller than that characterizing the published items, the
resultant hash key of the query vector will be distant from
those of the matching items.

Our solution for this problem is as follows. Before a node
issues a search with multiple keywords, it first selects an item
that matches the designated keywords from a given sample
data set such that this item’s representing hash key is the
smallest. This node then sends this query with the designated
keywords towards a node whose hash key is the closest to the
resolved hash key. The latter node then performs a local search
and uses the _forward algorithm to forward the query.

We expect that the size of the sampled data set in a node is
small. This data set can be stored in the bootstrap node and
downloaded to a new node at joining.

3.5.2 Directory Pointers
Meteorograph uniformly distributes items to the system in
which each node obtains its represented hash key using a ran-
domly uniform hash function except those appearing in hot
regions. This uniformity leads to discover items that match
specified keywords by crawling the entire system. Rather than
merely publishing items with represented hash keys by apply-
ing Equation 6, each Meteorograph node additionally publishes
a directory pointer associated with each published item. A
directory pointer comprises of the associated item’s repre-
sented hash key that is resolved by Equation 6 and the key-
words that characterize the item. The represented hash key of a
directory pointer, however, is the associated item’s represented
hash key by applying Equation 5. Consequently, Meteorograph
aggregates directory pointers of similar items, but evenly dis-
tribute items into the system. A similarity search can be thus
firstly forwarded to a node whose hash key is closest to the key
resolved by applying Equation 5 to the corresponding query
vector. The node that receives the query then performs a local
search on locally stored items and directory pointers. If the
associated keywords with a directory pointer satisfy the query,
the node forwards this query to a node whose hash key is clos-
est to the hash key indicated by the directory pointer.

0 2x107 4x107 6x107 8x107 1x108

0

20

40

60

80

100

(xB3, yB3)

(xC3, yC3)
(xC2, yC2)

(xC1, yC1)

(xB2, yB2)

(xB1, yB1)

C

B

A

 Ideal
 Measured

C
D

F
(%

, N
um

be
r o

f I
te

m
s)

Hash IDs of Items (Max Key = 108-1)

Figure 4: The CDF versus hash keys after apply-
ing Equation 6 to name the sampled items

// given a set of hot regions denoted by }{ iGG ∪= and a set
// of knees }{ iKK ∪= , where each region iG is associated
// with a)},(,),,(),,{(2211 ititiiiii yxyxyxK =
_name ()

// pick a hash key k by a randomly hash function, e.g., SHA-1
k = _random ();
// determine k whether is within a hot region of hash address
if (k is within a hot region iG)

1

)1(

iit

ijji
ij yy

yy
p

−
−

= + , for all tj <≤1 ;

Let r be a random value between 0 and 1;

Let 11 −<≤ ts such that ∑<≤∑
+

==

1

11

s

u
iu

s

u
iu prp ;

while ()1(+<≤ siis xkx is not true)
k = _random ();

return k;
Figure 5: The naming algorithm for a peer node

 6

We believe that a directory pointer is quite small in size and
Tornado [11] has provided directory pointers that can thus
leverage similarities searches. Clearly, to discover a node that
stores an item matching the search keywords takes

)(log2 NO⋅ hops and messages, i.e.,)(log NO hops and
messages to discover a node responsible for the directory poin-
ter and)(log NO hops and messages to locate a node that
stores the matching item. Hence, consider a similarity search in
size k (i.e., discover k items). Assume a worst setting in which
k similar items are stored in k various nodes. Such a search in
Meteorograph takes)(log)1(NOk ⋅+ messages1, i.e., it takes

)(log NO messages to send the query to the node hosting the
directory pointer and)(log NOk ⋅ messages to discover all k
items. Possibly, these k discovery requests can be issued in
parallel and this leads to)(log2 NO⋅ hops to search these k
items. Meteorograph, however, does not blindly issue query
request in parallel since k parallel discovery requests may
redundantly sent to those nodes that have received the query if
some of k items are stored at the same node. Instead, node a
responsible for those matched directory pointers issues one
query at a time to node b that can provide the matched items.
Node a waits for a reply that involves the number (say k ′) of
items matching the keywords specified by the query from node
b and these items’ represented hash keys by Equation 5. Node
a then issues the same query to another node d for those undis-
covered items if 0>′− kk . The search is complete, otherwise.
This scheme concludes that a similarity search takes

)(log)()(log)(log)1(NONONO c
k

c
k ⋅+=⋅+ messages and

sequential hops, where c is per node mean storage space2.

3.6 Reliability
Meteorograph leverages data reliability by constantly replicat-
ing and maintaining k replicas for each data item. The prob-
ability of completely losing a given data item is thus kp1 ,
where p is a ratio to lose a particular replica. Once a virtual
home receives a publishing request, it will firstly construct

1−k routes to 1−k virtual homes whose IDs are numerically
closest to itself. To publish replicas from a virtual home, 1−k
publishing requests with the hashing keys are routed to the
replication homes. The virtual home will periodically monitor
these replicas via the associated 1−k vectors. Since a data
owner will periodically republish data items it generated, the
corresponding virtual home also needs to periodically repub-

1 Ideally, a Gnutella-like flooding scheme without TTL requires

1−N messages. This is assumed that each node has a global
knowledge about which node has received the query request and
knows how to forward the query to those nodes that have not re-
ceived the query.

2 Given a constant c, When Nck << , Meteorograph considerably
outperforms a Gnutella-like system in terms of messages since

1)(log)(log)1(−<≈⋅+ NNONOc
k . When Nck >> ,

≈⋅+)(log)1(NOc
k NNOk >>⋅)(log . Note that all the

nodes along a query route in Meteorograph may be the clos-
est neighbor (Figure 2) of each other. Such a query will then
take nearly)(log2 NON ⋅ messages rather than)(log NOk ⋅
if each node can forward the query according to its directory
pointers.

lishing replicas to 1−k nodes. If a virtual home fails, subse-
quent requests to the virtual home will be forwarded to one of
its replicas by utilizing Tornado’s routing infrastructure, i.e.,
one of the virtual homes responsible for the replications will
have the numerically closest home ID to the requested data ID.

3.7 Changes of Vector Space
Consider adding a new item to a vector space. Possibly, since
the keywords characterizing the newly introduced item may
not appear in the keyword set K, K must be expanded to in-
clude those new keywords. This thus varies each absolute an-
gle of those previously published items. That means items need
to be republished. If the number of published items is huge,
this may overwhelm an overlay by generating a huge amount
of traffic for republishing.

Meteorograph does not need to republish each item stored
in an overlay. It simply uses a comprehensive set of keywords
from a dictionary. This is based on the assumption that each
item can be characterized by the words that appear in the dic-
tionary. To publish an item or search a set of items, the abso-
lute angle that represents an item can be simply calculated by
Equation 5. Clearly, a vector that represents an item in Mete-
orograph must be quite sparse and thus needs no sophisticated
computations to calculate the corresponding absolute angle.

4. Performance Evaluation
Meteorograph is evaluated by simulation. Since there is no
publicly available keyword-item data set, we use another simi-
larly structured “market-basket” data set, the Web access log
from the World Cup Web Site on July 24 in 1998, to synthe-
size the desired workload. The Web log comprises of a large
number of requests and each logs a Web object (for example, a

0 4000 8000 12000 16000 20000 24000
0

50

100

150

200

250
2000
4000
6000
8000

10000
12000

July 24, 1998 from World Cup Web Site

N
um

be
r o

f W
eb

 O
bj

ec
ts

 T
ou

ch
ed

Client IDs

Figure 6: The number of web objects accessed
in decreasing order versus the client IDs

Table 1: The statistics of the World Cup Web
logs on July 24, 1998
Number of clients 2,760K
Number of Web objects accessed 89K
Average number of Web objects accessed by a client 43
Maximum number of Web objects accessed by a client 11,868
Minimum number of Web Objects accessed by a client 1

 7

Web page, an icon, etc.) accessed by a client. We refer to those
Web objects as the keywords and clients as the items published
by nodes. This thus allows constructing a matrix of Web ob-
jects (keywords) versus clients (items), where the number of
Web objects and clients are about 89K and 2,760K, respec-
tively. We assume that each item has the identical size. Figure
6 shows the distribution of the number of Web objects versus
the accessing IDs of clients. The resulting statistics is summa-
rized in Table 1. Each client accesses 43 Web objects in aver-
age, i.e., each item is characterized by 43 keywords.

The structured P2P overlay (i.e., Tornado) simulated has the
number of peers from 1,000 to 10,000 nodes (N). The 2,760K
items with associated 89K keywords are published to the simu-
lated overlays. Note that ideally each peer node simulated can
be responsible for Nc 000,760,2≈ items. The hop count of each
publishing is infinite, i.e., all 2,760K items are completely pub-
lished to the system.

4.1 Discovery of a Single Item
We firstly investigate the performance of exactly searching by
randomly picking a node from the overlay to retrieve a ran-
domly selected item from 2,760K ones. The simulator meas-

ures the number of hops taken by each query. There are total
100K queries studied and the metrics (i.e., the number of hops)
measured are averaged.

Figure 7 depicts the simulation results. Notably, each node
simulated is equipped with infinite storage space (the effect of
limited storage capacity is presented later). “None” denotes
that the system is not optimized by any schemes for placement
of items while “Unused Hash Space” and “Unused Hash Space
+ Hot Regions” represent the system is optimized by the nam-
ing scheme for an item (Section 3.4.1) and the one for a node
(Section 3.4.2), respectively. The results present that “None”,
“Unused Hash Space” and “Unused Hash Space + Hot Re-
gions” can retrieve a particular item in)(log NO hops and
thus messages.

The workload of each node in terms of a ratio from the
number of items the node stores to c is further investigated.
Figure 8 illustrates the results for a system with 1000 nodes. It
shows that “None” cannot uniformly place items to each peer.
Most items are stored at a few of nodes in the system. “Unused
Hash Space”, however, can more evenly scatter items into the
system. “Unused Hash Space + Hot Regions” delivers more
even distribution than those provided by “Unused Hash Space”.
Both enable near 75% of nodes in the system host no more 2c
items (ideally, each host hosts c items), and near 98.7% of no-
des host 8c items.

As aforementioned, an item is published to the node i with
the hash key closest to the key that represents the item. Node i
may be overflowed due to limited storage space and thus a
most un-similar item, stored in node i is migrated from node i
to node i’s closest neighbor peer. Consequently, an item re-
quested might not be stored in the node whose hash key is
closest to this item. Figure 9 shows the effect of limited storage
capacity for “None” and “Unused Hash Space + Hot Regions”.
Each node simulated in this experiment can host up to 8c items.
“Closest” indicates the number of hops required to route a
query to a node whose hash key is closest to the one that repre-
sents a randomly requested item. “Neighbors” denotes the
number of hops to discover a requested item along neighbor
pointers. The results presents that to search a particular item
still takes)(log NO hops (i.e., with high probability a node

0 2000 4000 6000 8000 10000
0
2
4
6
8

10
12
14
16
18
20
22
24

N

um
be

r o
f H

op
s

Number of Nodes

 LogN
 None
 Unused Hash Space
 Unused Hash Space + Hot Regions

Figure 7: The performance of searching for a
single keyword

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

500

600

Ideal

~8c

 None
 Unused Hash Space
 Unused Hash Space + Hot Regions

N
or

m
al

iz
ed

 to
 c

Node IDs (Sorted According to Workloads)

Figure 8: The load of each node

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100
200
300
400
500
600

Number of Nodes

0
2
4
6
8

10
12
14

None

Unused Hash Space + Hot Regions

N
um

be
r o

f H
op

s

N
um

be
r o

f H
op

s Closest
 Neighbors

Figure 9: The effect of load balancing

 8

whose hash key is closest can resolve a query) when Meteoro-
graph exploits unused hash space and places relatively more
amounts of nodes into hot hash regions. However, if no
schemes for balancing load are adopted, the performance to
access a particular item becomes quite poor.

4.2 Discovery of Similar Items
Given a keyword, we measures the number of hops traversed
versus the number of items that match this designated keyword.
Queries with the n-th popular keyword from 43 ones are inves-
tigated, where n is one, two, four and eight. Figure 10 illus-
trates the simulation results for an overlay with 10,000 nodes.
“Percentage of Cumulative Discovered items” indicates a ratio
from the number of items that are found to match a specified
keyword to the total number of items that appear in an overlay
and involve the same specified keyword. Notably, each node
simulated in this experiment can host at most 8c items.

The results (Figure 10(a)) firstly show Meteorograph can
discover all items that match a specified keyword. Secondly,

each of over 97% of similar items can be located by)(log NO
91.6= hops and thus messages. Figure 10(b) depicts the num-

ber of messages required to discover k similar items. Since
items involving a specified keyword (1st, 2nd, 4th and 8th popular
ones) is smaller than the system size (10,000 nodes). Thus the
overheads of messages by discover k similar items are

()NOc
k log)(⋅ , which linearly scale with k.

4.3 Effects of Failure
The experiment replicates each item that is published to Mete-
orograph with 10,000 nodes by generating 1, 2, 4 and 8 copies
of each item. Nodes dynamically depart from Meteorograph.
Queries to a dynamically selected item (the experiment studies
queries to a single item) from those published ones are ran-
domly generated. A successful query means Meteorograph
effectively use the routing that is provided by Tornado to issue
a query to one of those nodes that store replicas; this replica
matches specified keywords.

The results show that when 50% of nodes fail,
Meteorograph delivers up to 80% of availability of items if
each item has two copies in the system. When the number of
replicas is increased to four, up to 95% of queries are
successful. The percentage further improves up to 99% when
there are eight replicas. Notably, even 90% of nodes depart the
system, there are still 20%, 30% and 45% of successful ratios
for each item with 2, 4 and 8 copies, respectively.

5. Related Works
Service discovery frameworks such as Jini [12] and SLP [18]
depend on the client and server model. They use a centralized
server to host all resources that register themselves into this
server. As aforementioned, this approach suffers from a single
point of failures and introduces a performance bottleneck. Ad-
ditionally, they rely on IP multicast.

In contrast, [4], [5], [6], [8] and [13] recently proposed are
based on the peer-to-peer model. They enhance searches in
unstructured P2P overlays (particularly for Gnutella [9]). They
extensively rely on a flooding mechanism. To search items,
query messages are flooded to nodes that have high probability
to deliver matched items. The forwarding is based on either the
random probability [13] or some heuristics [5]. Although
works in [4], [6], [8] use multiple overlays to constrain scopes
of searches, their searches still rely on the flooding mechanism
in each sub-overlay. As aforementioned, they introduce three
major issues. (1) These works considerably generate network
traffic. The cost (the number of messages, for instance) of a
search is unpredictable. (2) They cannot guarantee in success-
fully searching for a singly specified item that does appear in
an overlay. (3) Results from a search are not deterministic ([8]
can deliver complete results, but it broadcasts query to a sub-
overlay). Consequently, these works do not guarantee quality
of a search in terms of performance and results. Based on the
vector space model, [7] can provide similarity search. It, how-
ever, is based on an unstructured overlay and relies on a flood-
ing mechanism.

Perhaps, the work most relevant to Meteorograph is
pSearch [17]. pSearch is also based on the vector space model
and uses a structured P2P overlay (i.e., CAN [14]). CAN struc-
tures an overlay using a highly dimensional coordinate space

0 20 40 60 80 100

2

4

6

8

10

12

14

16

18

20

22

24

 1st

 2nd

 4th

 8th

N
um

be
r o

f M
es

sa
ge

s
Pe

r I
te

m

Percentage of Cumulative Discovered Items (%)

(a)

0 20 40 60 80 100
0

5000

10000

15000

20000

25000

30000

35000

 1st

 2nd

 4th

 8th

N
um

be
r o

f M
es

sa
ge

s

Percentage of Cumulative Discovered Items (%)

(b)

Figure 10: (a) The number of hops required per
discovery of a similar item and (b) the total mes-
sages required of discovery of a set of similar
items

 9

and requires employ multiple hash addressing space (i.e., m
hash addressing spaces are necessitated by an m-dimensional
coordinate space). Clearly, based on an structure overlay using
a coordinate space with fixed m, in pSearch if a new item is
added, then the coordinate space needs to be restructured and
each item that are stored in the overlay must be republished. It
is impossible that to choose a large m by adopting a universal
dictionary set that is employed by Tornado. Additionally, when
pSearch locates a particulate peer, it must use an expanded ring
search (i.e., a localized flooding mechanism) to discover re-
quested items from neighbor peers. This is because peers in
CAN do not maintain a linear ordering for participating peers.
Perhaps, the most important issue is that it is unclear how to
apply pSearch to other structured overlays such as Chord, Pas-
try, Tapestry and Tornado that particularly use a single-
dimensional hash space. Moreover, pSearch cannot deliver
ranked results for a search. It is also unclear the performance of
pSearch without a detailed experimental study.

The detailed comparisons for various designs can be found
in [10].

6. Conclusions and Future Works
This study proposes a similarity information search system
called Meteorograph to discover resources in a P2P computing
environment. Meteorograph is based on a vector space model
and implemented on top of the structured P2P overlay, Tor-
nado. It can search for a particular item in ()NO log
hops/messages and a set of similar items in ()NOc

k log)(⋅
hops/messages. Meteorograph provides ranked searches and
can discover all items that match designated keywords. Based
on a structured P2P overlay, Meteorograph guarantees that
results from a search are deterministic. Moreover, it can evenly
distribute items to the participating nodes. Although this study
is based on Tornado, we believe that the concept can also be
applied to other overlays (for instance, Chord, Pastry and Tap-
estry) that have a linear hash addressing space.

Currently, Meteorograph does not support range searches,
such as discovering machines that have memory in size be-
tween 1G and 8G bytes. Mapping the range of values into the
linear structure provided by Tornado may solve this problem.
Meteorograph does not support notification to resource con-
sumers either. Notification can rapidly transfer the states of
resources to subscribed consumers. We are currently extending
Meteorograph to support the above features. We also try to
incorporate security mechanisms into Meteorogrpah.

Acknowledgements
We thank Chunqiang Tang for his valuable and insightful
comments on discussing the designs of pSearch and Meteoro-
graph.

References

[1] M. F. Arlitt and C. L. Williamson. “Web Server Workload
Characterization: The Search for Invariants,” In ACM SIG-
METRICS, pages 126-137, May 1996.

[2] M. W. Berry, Z. Drmac, and E. R. Jessup. “Matrices, Vector
Spaces, and Information Retrieval,” SIAM Review 41(2):335-
362, 1999.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. “Freenet:
A Distributed Anonymous Information Storage and Retrieval
System,” In Workshop on Design Issues in Anonymity and
Unobservability, pages 311-320, July 2000.

[4] E. Cohen, A. Fiat, and H. Kaplan. “A Case for Associative
Peer to Peer Overlays,” In ACM Workshop on Hot Topics in
Networks, October 2002.

[5] A. Crespo and H. Garcia-Molina. “Routing Indices for Peer-
to-Peer Systems,” In International Conference on Distributed
Computing Systems, pages 19-28, July 2002.

[6] A. Crespo and H. Garcia-Molina. “Semantic Overlay Net-
works”, In Submission for Publication, 2002.

[7] F. M. Cuenca-Acuna and T. D. Nguyen. “Text-Based Con-
tent Search and Retrieval in ad hoc P2P Communities,” In In-
ternational Workshop on Peer-to-Peer Computing, May 2002.

[8] P. Ganesan, Q. Sun, and Hector Garcia-Molina. “YAPPERS:
A Peer-to-Peer Lookup Service Over Arbitrary Topology,” In
IEEE INFOCOM, March 2003.

[9] Gnutella. http://www.gnutella.com/.
[10] H.-C. Hsiao and C.-T. King. “Similarity Discovery in Struc-

tured Peer-to-Peer Overlays,” Technical Report, October
2002. http://www.cs.nthu.edu.tw/~hchsiao/projects.htm.

[11] H.-C. Hsiao and C.-T. King. “Tornado: Capability-Aware
Peer-to-Peer Storage Networks,” In IEEE International Con-
ference on Parallel and Distributed Processing Symposium,
April 2003.

[12] Jini™. http://www.sun.com/jini/.
[13] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. “Search and

Replication in Unstructured Peer-to-Peer Networks,” In In-
ternational Conference on Supercomputing, pages 84-95,
June 2002.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shen-
ker. “A Scalable Content-Addressable Network,” In ACM
SIGCOMM, pages 161-172, August 2001.

[15] A. Rowstron and P. Druschel. “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” In IFIP/ACM International Conference on Dis-
tributed Systems Platforms, November 2001.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications,” In ACM SIGCOMM, pages
149-160, August 2001.

[17] C. Tang, Z. Xu, and M. Mahalingam. “pSearch: Information
Retrieval in Structured Overlays,” In ACM Workshop on Hot
Topics in Networks, October 2002.

[18] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. “Service
Location Protocol,” June 1997. RFC2165.
http://www.ietf.org/rfc/rfc2165.txt.

[19] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry:
An Infrastructure for Fault-Tolerant Wide-Area Location and
Routing,” Technical Report UCB/CSD-01-1141, April 2000.

	Introduction
	Overview
	Meteorograph
	Absolute Angle
	Naming
	Publishing and Searching
	Load Balance
	Exploiting Unused Hash Space
	Relieving Hot Regions

	Optimizations for Similarity Search
	First Hop
	Directory Pointers

	Reliability
	Changes of Vector Space

	Performance Evaluation
	Discovery of a Single Item
	Discovery of Similar Items
	Effects of Failure

	Related Works
	Conclusions and Future Works

