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Abstract. A secure and practical CRT-based RSA signature scheme is
proposed against side channel attacks, including power analysis attack,
timing attack, and fault analysis attack. The performance advantage ob-
tained over other existing countermeasures is demonstrated. To prevent
from fault attack, the proposed countermeasure employs a fault diffu-
sion concept which is to spread the fault into the correct term during
the recombination process by using CRT. This new countermeasure is
also secure against differential power attack by using the message ran-
dom blinding technique on RSA with CRT.
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1 Introduction

We focus our attention on the CRT-based RSA signature [7,8]. Recently, this
system may be vulnerable to fault analysis attacks [2,4-6, 14] and the power
analysis attack [1]. We introduce several attacks mainly based on two reasonable
assumptions. Firstly, an adversary can insert a random fault during the compu-
tation of a signature and get a fault output. He tries to find a secret prime p
or q in RSA with CRT. Secondly, he can input the chosen messages directly to
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its system for power attacks. These assumptions have been widely used in many
attacks for several cryptosystems.

To prevent from side-channel attacks including the fault analysis attack and
the timing attack, some countermeasures by using fault detection or fault toler-
ance have been reported in many papers [11-13]. However, they suffer from some
disadvantages such as computational load, production of undetectable error, or
less compatibleness with existing systems. Moreover, Boer et al. reported that
they can be broken by a differential power analysis attack [1].

In this paper, the main purpose is to present a countermeasure against the
existing two fault attacks. The core idea is that a fault induced during a term
computation processing spread the fault over another term in recombination us-
ing CRT. To prevent from DPA attack, we employ the message random blinding
technique on this system. Also, the proposed countermeasure is a more efficient
and robust method than existing countermeasures, and is strong against some
side channel attacks.

2 Preliminary

2.1 The CRT-Based RSA System

Consider the RSA system [9] without the Chinese remainder theorem (CRT).
Let N = p- ¢ be a product of two prime integers each |N|/2 bits long. To sign a
given message m using RSA system computes S = mg mod N, where d is a secret
key of signer. To succeed in detecting the secret key d from public information,
an attacker tries to find p and ¢ by factoring N in prime factors.

The main computational operation of signing using RSA is the modular ex-
ponentiation of a message, m. The RSA without CRT scheme has more com-
putational loads than other signature schemes, DSS and ECDSA. So, the CRT
algorithm is used to compute more effectively the signature S = m? mod N. The
RSA with CRT algorithm was proposed to speed up the original RSA signature
or decryption computation [7,8]. In the RSA with CRT, they first computed
S, = m% mod p and S, = m% mod ¢, where d, = d mod (p — 1) and d, = d
mod (¢ — 1). Then the signature, S, can be computed by the following recombi-
nation algorithm which is often called Gauss’s algorithm.

S=(Sp-q-(¢"" mod p)+Sg-p-(p~" mod q)) mod N

1 1

where both ¢7" mod p and p~
computational loads.

The computing time of S, requires 1/8 the time of computing S. Thus, com-
puting both S, and S, takes 1/4 the time to compute S directly. The RSA with
CRT is about four times faster than direct exponentiation algorithm. This is why
RSA with CRT is widely adopted as an implementation method in processors
with limited computing power such as smart cards.

mod ¢ can be pre-computed to reduce the



2.2 Vulnerability to Fault Attack

The RSA system with CRT which has been naively implemented is vulnerable
to fault attacks. A fault cryptanalysis which has lately attracted attention is a
method of intentionally causing faults to occur in hardware or software during
operation of a smart card or processor and detecting particular secret informa-
tion using faulty output.

The fault attack-I proposed by Boneh et al. is based on a theory that when
either S, or S, is not a correct value during signature generation based on RSA
with CRT, the N can be factored in prime factors using two signatures (one
is correct signature and the other is faulty signature) with respect to a same
message [2]. It is assumed that a fault occurs in S, during computation of the
signature, which results in faulty signature S due to a faulty §p and a correct
Sq-

S = (§p ~q-(¢"* mod p)+ S, -p- (p~* mod ¢)) mod N

Then, the computation of
ged((S = 8),N) = ¢

will give the secret prime ¢, so N is easily factored.

The attack II proposed by Lenstra allows fault cryptanalysis to be accom-
plished using only one faulty signature [6]. It is also assumed that a fault occurs
under the same fault as above, that is,

Sp # §p mod p.

Then, this fault enables to factor N by computing

~

ged((S¢ —m) mod N,N) =g¢q

where e is the public exponent used to verify the signature S. Consequently,
(S¢ —m) is not a multiple of p but is a multiple of q. Accordingly, the secret
prime ¢ is detected. The secret prime p can be also detected from a faulty
signature on a faulty S, and a correct S,.

2.3 Shamir’s Countermeasure and Its Improvement

In order to protect against such fault attacks, the following various algorithms
have been developed. Since these fault attacks are based on the assumption that a
fault has occurred in \S;, or Sy, it is checked to find whether a fault has occurred
during generation of a signature by computing S, or S, two times. However,
this approach requires a large amount of computation. Moreover, in the case of
a system having a permanent fault, there is no way of verifying whether a fault
has occurred during generation of a signature.

In another approach, an original message m = S¢ mod N is recovered through
signature verification with respect to a signature value, and it is checked to find



whether a fault has occurred. In this way, if a large number, public exponent e
or modulus N, is used for verification, then a large amount of computation is
required. Therefore, it increases the computational load when compared to the
previous countermeasure and the naively implemented scheme.

Shamir proposed a simple countermeasure against these fault attacks [11,12].
According to this method, a random prime r will be selected. After computing
p'=p-rand ¢ = q-r, the following two values are computed
' mod p/
d

Sy, =m
S,/ =m ' mod ¢

where d,,’ = d mod (p—1)-(r—1) and d,/ = d mod (g—1)-(r—1). Then we check
whether S," = S,” mod r, and if the checking is correct then it is determined
that no fault has occurred in generation of a signature. In this case a signature
is generated by computing

S=(Sp-q-(¢"" mod p)+S;-p-(p~" mod q)) mod N

where S, = S,’ mod p and S, = S," mod gq.

However, the method proposed by Shamir has the following problems. First,
a probability of a fault that cannot be theoretically detected is 1/r. Here, if a
large r is selected, the probability of a fault that cannot be detected can be re-
duced. However, operating efficiency decreases because a modular computation
on large modulus must be performed. In contrast, if a small r is selected, oper-
ating efficiency increases, but a probability of a faulty occurrence that cannot
be detected increases.

Second, since the size of modulus is extended from |p| or |g| to |p - 7| or
|q - 7|, respectively, this method is not compatible with existing systems such as
smart cards or general purpose processors. Moreover, two exponents, dp/ and dq/,
increased by the random number r increases the computational load by about r
bits compared with the naively implemented scheme.

3 A New Countermeasure Against Side Channel Attacks

This section presents the secure and practical CRT-based RSA signature scheme
against side channel attacks, including the timing attack, differential power anal-
ysis (DPA), simple power analysis (SPA), and fault attack. This scheme employs
three techniques to protect from side channel attacks. First, to prevent from SPA,
this protocol employs a dummy operation. Second, to prevent from a timing at-
tack and DPA, a randomization of the message and key is employed. Finally,
to prevent from fault attack, this protocol proposes the fault diffusion concept
which is to diffuse fault of an abnormal computed term into a normal computed
term.



3.1 The Proposed RSA with CRT

To solve the above problems of the previous countermeasure, the first target
is to present a digital signature method which does not require any additional
parameters, thereby allowing the method to be compatible with existing systems,
and providing protection against fault cryptanalysis.

We consider that existing fault cryptanalysis is based on the fact that a
fault occurs in either S, or S;. Our main idea is to extend a fault throughout
generation of a signature even if the fault occurs in only one of S, and S, to
prohibit an attacker from deriving a formula which can attack secret primes. For
example, when a fault occurs only in the S, the fault is induced into the other
terms to protect the secret prime q. We present a novel countermeasure to resist
against side channel attacks.

Input: m, d, p, q, N
Output: S.

1. Compute S, = m? mod p and S; = m?» mod ¢ with Ezp( ),
where d, = d mod p — 1 and dq = d mod ¢ — 1.

2. Compute T, = (m — Sp?) mod p and T; = (m — S,°¢) mod ¢,
where e, = e mod p— 1 and e, = e mod ¢ — 1.

3. Compute T' =T, & T, using XOR operation ¢.

4. Compute the signature S using enhanced Gauss’s algorithm.
S=(S-(¢g@®T)- (¢ mod p)+Sg- (p®T)- (p~" mod q)) mod N.

5. Check both S =S, mod p and § = S, mod q.
If these are true then send out the computed signature S.

Fig. 1. Proposed RSA with CRT immune to side channel attacks

In the above computation of the figure 1, when S, and S; are normally
generated, as T, = (m — 5,°?) mod p = 0 and T, = (m — 5,°¢) mod ¢ = 0, a
correct signature is generated. However, when a faulty §p and a normal S, are
generated, a checking value T, = (m — 5,?) mod p is not zero. This value T,
includes at least one non-zero bit. As a result, (S, - (¢7! mod p) is multiplied
not by ¢ but by another value (¢ & T) and S, - (p~* mod ¢) is not by p but by
(p® T). Therefore the fault occurring in S, is spread to the term including S,.
In the case where the attacker uses a fault attack, it is assumed that a correct
signature S and a fault signature S are as follows.

S=(8 ¢ (¢ modp)+ S, p-(p~" mod q)) mod N
S = (§p (qoT)- (¢! mod p) +5,- (paT) - (p~! mod q)) mod N

which results in faulty signature S due to a faulty §p and a correct S;. Then, a
formula used by the attacker is not valid, as shown.

S — 8 #uy(S, —5S,)



where we can assume that u, is a multiple of ¢q. Therefore the attacker cannot
obtain the secret prime ¢ using ged((S — §), N) in fault attack-I.

In case fault attack-1I, the attacker calculate whether (§e —m) mod N is
multiple of g. Applying fault §p or §q will give a faulty signature S , SO (§ € —m)
which becomes neither a multiple of p nor a multiple of g. As a result, the attacker
cannot eventually take any secret prime by computing ged((S — S) mod N, N).

Finally, we suppose that a computational fault and memory access fault is
induced when computing signature S in step 4 by using the enhanced Gauss’s
algorithm [7]. Even though both S, and S, are correct in step 1, which generates
T = 0, when an attacker inserts a fault such as S,, Sy, p, ¢, ¢~! mod p or p~*
mod ¢ during recombining in step 4 then computes a faulty signature. This fault
signature can give a secret key to an attacker, so the checking in step 5 can
detect a fault generated during recombination computation.

In the above computation, however, if S, and S; in step 1 are generally
computed without countermeasure against power attacks, then an adversary can
obtain the secret prime by using a DPA attack that uses byte-wise hypotheses
on the remainder after the modular reduction with one of the primes [1]. This
attack uses special data called Modular reduction on equidistant data (MRED).
Therefore, the message m should be blinded by a random number r. The detailed
process of this algorithm is described in the figure 2.

Input: m, dp7 p (OI‘ dQ7 q)
Output: Sp (or Sy).

1. Randomly choose a number 7.

2. C=m-rmodp

3. Temp[0] =~ mod p and Temp[l] = m -r~' mod p
4. for i =n — 1 downto 0{

4.1 C =C? mod p

42 C=C- Templdp,] mod p

5. S, =C - Temp[0] mod p
6. Return(Sy)

Fig. 2. Exponentiation algorithm immune to DPA, SPA, Timing attack: Exp( )

Intermediate results during the exponentiation algorithm, Exp( ), is always a
value multiplied by r, and moreover, Temp[1] substitutively employed message
m which is also blinded by r~!. Therefore, MRED attack and timing attack
don’t work when m/ =m -7~ mod p or m' =m - r~! mod q.

In the exponentiation of S, = m% mod p, since this processing is depend
on the secret value dj,, an attacker can find the secret value d,, from a measured
power consumption signal by using SPA. But figure 2 shows a countermeasure to
SPA attack, where the instructions conducted during a cryptographic algorithm



do not depend on the data being processed. It is similar to Coron’s simple SPA
countermeasure [3].

3.2 Consideration on permanent fault attack

In the permanent attack in the figure 1, we assume that some parameters are
permanently corrupted by the attacker. Firstly, we consider that p is damaged
and it becomes fault value p. In this case the signature S is computed as follow.

S=(Sy (g T) (¢ mod p) + Sy (& T) - (p~* mod q)) mod (5- q)

Therefore, it can be verified that the step 5 well works, that is, S # S, mod p
because ¢ - (¢~! mod p) # 1 mod p. This is similar with the case of permanent
fault q.

Secondly, we assume that a permanent fault induced on

¢! mod p. The fault signature S is computed as follow.

—

S=(S, (q®T)- (¢! mod p)+ S, (p&T) - (p~" mod q)) mod (p- q)

It can be detected in step 5, that is, S # Sp mod p because g - (F mod p) #
1 mod p. R R

Thirdly, a permanent fault on d will cause faults both S, and S,. Therefore
fault attack is in vain. However, a permanent fault on d, will cause a fault §p
but a correct S;. By this fault, temporary value 7T}, is not zero, so the signature
is represented as follow.

S=(S, (q®T)- (¢  mod p)+ S, - (p&T) - (p~" mod q)) mod (p- q)

This means that fault §p is spread over two terms and detected in S #* §p mod p
because (p & 7T) - (p~! mod q)) # 0 mod p.

3.3 Performance of the Proposed RSA with CRT

In the proposed RSA signature scheme in the figure 1, new system parameters
are not needed. Furthermore, the computation in step 1 and 2 can be computed
in parallel if two processors are used. In real implementation, some temporary
registers are needed to store ey, eq, Ty, Ty, and T'.

We compare the performance as computational time compared with the con-
ventional RSA system with CRT. Additional computational loads are occurred
in step 2, 3, and 5. However computational time for step 3 and 5 is minor due
to its simple operation. In step 2, we need two modular exponentiations using
public exponent e. If this public key is very small, then additional computa-
tional time is negligible. However, the worse performance of our method is the
case using a long integer having similar length with d. It can be cleared that the
computational time will take about twice as much compared to the original RSA
with CRT. Even in this worst case, our method computes about two times faster
than direct RSA system without CRT. Furthermore, this protocol can avoid the
disadvantages of producing an undetectable error such as Shamir’s method.
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Concluding Remarks

We proposed a secure and practical implementation of CRT-based RSA signature
to resist side channel attacks. The basic idea of this scheme is the message
random blinding technique and the fault diffusion concept. Also, this scheme does
not need any additional system parameter. Additional computational overhead
necessary to prevent from side channel attacks is negligible when compared with
the conventional RSA with CRT. Furthermore, in order to speed up the modular
exponentiation algorithm, combining either the m-ary or the sliding window
techniques to Exp( ) can be possible.
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