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Abstract

The Least Square Support Vector Machines (LS-SVM) formulation corresponds to
the solution of a linear system of equations. Several approaches to its numerical
solutions have been proposed in the literature. In this paper, we propose an improved
method to the numerical solution of LS-SVM and show that the problem can be
solved using one reduced system of linear equations. Compared with the existing
algorithm (Suykens et al., 1999) for LS-SVM, our approach is about twice as efficient.
Numerical results using the proposed method are provided for comparisons with
other existing algorithms.

Keywords: Least Square Support Vector Machines, Conjugate Gradient, Sequential
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1 Introduction

As an interesting variant of the standard support vector machines (Vapnik, 1995), least squares

support vector machines (LS-SVM) have been proposed by Suykens and Vandewalle (1999) for

solving pattern recognition and nonlinear function estimation problems. The links between LS-

SVM classifiers and kernel Fisher discriminant analysis have also been established by Van Gestel

et al. (2002). The LS-SVM formulation has been further extended to kernel principal component

analysis, recurrent networks and optimal control (Suykens et al., 2002). As for the training of

the LS-SVM, Suykens et al. (1999) proposed an iterative algorithm based on the conjugate
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gradient algorithm. Keerthi and Shevade (2003) adapted the Sequential Minimal Optimization

(SMO) algorithm for SVM (Platt, 1999) for the solution of LS-SVM.

In this paper, we propose an improved algorithm with conjugate gradient methods for LS-

SVM. We first show the optimality conditions of LS-SVM, and establish its equivalence to

a reduced linear system. Conjugate gradient methods can then be employed for its solution.

Compared with the algorithm proposed by Suykens et al. (1999), our algorithm is equally robust

and is at least twice as efficient.

We adopt the following notations. x ∈ Rd, D ∈ Rn×m are d-dimensional column vector and

n × m matrix of real entries respectively; xT is the transpose of x; 1n and 0n are n−column

vectors of entries 1 and 0 respectively. This paper is organized as follows. In section 2, we

review the optimization formulation of LS-SVM, and then show the simplification of the opti-

mality conditions to a reduced linear system. In section 3, we present the results of numerical

experiments using our proposed algorithm on some benchmark data sets of different sizes, and

compare with the results obtained using the conjugate method by Suykens et al. (1999) and the

SMO algorithm by Keerthi and Shevade (2003). We conclude in section 4.

2 LS-SVM and its Solution

Suppose that we are given a training data set of n data points {xi, yi}
n
i=1, where xi ∈ Rd is

the i-th input vector and yi is the corresponding i-th target. For binary classification problems

yi takes only two possible values {−1,+1}, whereas yi takes any real value, i.e. yi ∈ R, for

regression problems. We employ the idea to transform the input patterns into the reproducing

kernel Hilbert space (RKHS) by a set of mapping functions φ(x) (Suykens et al., 2002). The

reproducing kernel K(x, x′) in the RKHS is the dot product of the mapping functions at x and

x′, i.e.

K(x, x′) = 〈φ(x) · φ(x′)〉 (1)

In the RKHS, a linear classification/regression is performed. The discriminant function takes

the form f(x) =
∑n

i=1〈w · φ(x)〉 + b, where w is the weight vector in the RKHS, and b ∈ R is
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called the bias term. The discriminant function of LS-SVM classifier (Suykens and Vandewalle,

1999) is constructed by solving the following minimization problem:

min
w,b,ξ

P (w, b, ξ) =
1

2
〈w ·w〉+

C

2

n
∑

i=1

ξ2
i (2)

s.t. yi − (〈w · φ(xi)〉+ b) = ξi i = 1, · · · , n (3)

where C > 0 is the regularization factor and ξi is the difference between the output yi and f(xi).

Using standard techniques (Fletcher, 1987), the Lagrangian for (2)-(3) is:

L(w, b, ξ;α) =
1

2
〈w ·w〉+

C

2

n
∑

i=1

ξ2
i +

n
∑

i=1

αi (yi − (〈w · φ(xi)〉+ b)− ξi) (4)

where αi, i = 1, · · · , n are the Lagrangian multipliers corresponding to (3). The Karush-Kuhn-

Tucker (KKT) conditions (2) are:
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(5)

In the numerical solution proposed by Suykens et al. (1999), the KKT conditions of (5) are

reduced to a linear system by eliminating w and ξ, resulting in
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(6)

where Q ∈ Rn×n with ij-th entry Qij = K(xi, xj) +
1
C
δij,

1 y = [y1, y2, . . . , yn]
T and α =

[α1, α2, . . . , αn]
T . Note that Q is symmetric and positive definite since the matrix K ∈ Rn×n

with K ij = K(xi, xj) is semi-positive definite and the diagonal term 1
C

is positive. Solving (6)

for α and b, the discriminant function can be obtained from f(x) =
∑n

i=1 αiK(xi, x) + b.

1δij is 1 only when i = j, otherwise 0.
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Suykens et al. (1999) suggested the use of the conjugate gradient method for the solution

of (6). In addition, they reformulated (6) so as to exploit the positive definiteness of Q and

proposed to solve two systems of linear equations for α. More exactly, their algorithm can be

described as

1. Solve the intermediate variables η and ν from Q · η = y and Q · ν = 1n using conjugate

gradient methods.

2. Find solution b = (1n

T · η)/(1n

T · ν), and α = η − b · ν.

In step 1, the nth-order linear equations are solved twice, using conjugate gradient method,

for the solutions of η and ν. In the following, we propose a single step approach that solves the

linear system having n− 1 order. We begin by stating some known results.

Lemma 1 Consider the partition of the symmetric and positive definite matrixQ :=







Q̄ q

qT Qnn






,

where Q̄ ∈ R(n−1)×(n−1), q ∈ Rn−1 and Qnn ∈ R. Then

Q̃ := Q̄− 1n−1 · q
T − q · 1Tn−1 +Qnn · 1n−1 · 1

T
n−1 (7)

is positive definite.

Proof : Let M =







In−1 0n−1

−1Tn−1 1






and note that

MT ·Q ·M =


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
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
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−1Tn−1 1
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


=
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Q̃ q̃

q̃T Qnn
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
(8)

where Q̃ is as given by (7). Since Q is positive definite, so is the matrix at the right-hand side

of (8). As Q̃ is a sub-matrix of a positive definite matrix, the result follows.
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Lemma 2 Let α̃∗ be the solution of Q̃ · α̃ = ỹ − yn · 1n−1 with ỹ = [y1, y2, . . . , yn−1]
T and Q̃

as given by (7). Then the vector α∗ =







α̃∗

−1Tn−1 · α̃
∗






and b∗ = yn+Qnn · (1

T
n−1 · α̃

∗)− qT · α̃∗

are the solution of the optimization problem (2).

Proof : Since Q̃ is positive definite, α̃∗ is unique. Using Q̃ from (7) and Q̃ ·α̃∗ = ỹ−yn ·1n−1,

we have

Q̄ · α̃∗ − q · 1Tn−1 · α̃
∗ − ỹ = (qT · α̃∗ −Qnn · (1

T
n−1 · α̃

∗)− yn) · 1n−1 = −b∗ · 1n−1 (9)

where we have used

b∗ = yn +Qnn · (1
T
n−1 · α̃

∗)− qT · α̃∗ (10)

Rewriting (9) and (10) into matrix form, we have

Q ·α∗ + b∗ · 1n = y (11)

From (11) and the fact that 1Tn · α
∗ = 0, it follows that α∗ and b∗ are the solution of (6) and

hence satisfy the optimization problem (2)-(3).

Following Lemma 2, we can use the standard conjugate gradient algorithm (Fletcher, 1987)

for the solution of the reduced linear system Q̃ · α̃ = ỹ − yn · 1n−1. Clearly, compared with

the scheme proposed by Suykens et al. (1999), our algorithm can save at least 50% of the

computational effort. In addition, Q̃ is positive definite and the numerical stability of our

approach is the similar to that proposed by Suykens et al. (1999).

3 Numerical Experiments

For comparison purpose, we implemented our proposed algorithm with standard conjugate gra-

dient methods (CG), the algorithm proposed by Suykens et al. (1999), and the SMO algorithm

given by Keerthi and Shevade (2003). The stopping conditions used in all three algorithms are
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the same, and is based on the value of the duality gap, i.e., P (w, b, ξ)−D(α) ≤ εD(α), where

P (w, b, ξ) is defined as in (2), D(α) is the dual functional given by D(α) = 1
2
·αT ·Q ·α−αT ·y,

and ε = 10−6. Note that this is not the traditional stopping condition for conjugate gradient

algorithm. We have discounted the extra cost caused by computing the stopping condition in

CG for a fair comparison. In the implementations, the diagonal entries of Q were cached for effi-

ciency, and we also cached the vector q for our improved CG scheme. The programs used in the

experiments were written in ANSI C and executed on a Pentium III 866 PC running on Windows

2000 platform.2 Six benchmark data sets were used in these experiments: Banana, Waveform,

Image, Splice, MNIST and Computer Activity.3 The Gaussian kernel K(x, x′) = exp
(

−‖x−x′‖2

2σ2

)

was used as the kernel function. The values of σ2 used are based on the suggested values given

in Duan et al. (2003).

We carried out the numerical experiments on the six data sets with several different reg-

ularization factor C, and recorded their results in Table 1 and Table 2 respectively. All the

algorithms are stable and closely reach the same dual functional D(α). The computational

cost of our approach is about half of that used by the algorithm in Suykens et al. (1999). The

increase in computational cost of the SMO algorithm at large C values (greater than 103) is

sharp as seen from the results on Banana and Image data sets.4 For small to medium data sets,

the CG algorithm is more efficient than SMO. Experimentally, SMO scales better than the CG

methods based on the two large data sets that we have solved. Consequently, there is no clear

overall superiority in the performance for either of the methods. We suggest that CG algorithm

is suitable for small to moderate data sets i.e., the number of samples is less than two thousands,

while SMO is suitable for large data sets.

2The programs and their source code can be accessed at http://guppy.mpe.nus.edu.sg/∼chuwei/code/lssvm.zip.
3Image and Splice datasets can be accessed at http://ida.first.gmd.de/∼raetsch/data/benchmarks.htm. We

used the first partition in the twenty partitions. MNIST is available at http://yann.lecun.com/exdb/mnist/,
and we selected the samples of the digit 0 and 8 only to set up the binary classification problem. Computer
Activity dataset is available in DELVE at http://www.cs.toronto.edu/∼delve/, and it corresponds to a regression
problem.

4Keerthi and Shevade (2003) argued that too large C values might actually be out of our interest since the
optimal C is seldom greater than 103 in practice.
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4 Conclusion

In this paper, we proposed a new scheme for the numerical solution of LS-SVM using conjugate

gradient methods. The new scheme is simple and efficient and involves the solution of the linear

system of equations of n−1 order. Numerical results provided shows that the proposed scheme is

at least twice as efficient when compared with the algorithm proposed by Suykens et al. (1999).

It also has a comparable performance when compared with the SMO approach by Keerthi and

Shevade (2003).
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Table 1: Computational costs for SMO and CG algorithms (α = 0 initialization) on small-size
and medium-size data sets. Kernel denotes the number of kernel evaluations, in which each unit
denotes 106 evaluations. CPU denotes the CPU time in seconds consumed by the optimization.
D(α) denotes the dual functional at the optimal solution. σ2 is the parameter in Gaussian
kernel, which is chosen as in Duan et al. (2003). C is the regularization factor in (2).

Banana Dataset, 400 samples with 2-dimensional inputs, σ2 = 1.8221,

Suyken et al.’s CG Our CG Approach SMO

log10 C Kernel CPU D(α) Kernel CPU D(α) Kernel CPU D(α)

-4 0.320 0.080 0.0198 0.239 0.070 0.0198 0.902 0.290 0.0198
-3 0.479 0.120 0.197 0.239 0.070 0.197 0.825 0.260 0.197
-2 0.639 0.160 1.881 0.398 0.111 1.881 0.530 0.171 1.881
-1 1.277 0.380 15.544 0.715 0.221 15.546 0.509 0.160 15.546
0 2.235 0.641 97.214 1.192 0.320 97.232 0.710 0.200 97.232
+1 3.990 1.153 665.313 1.986 0.592 665.397 3.496 1.122 665.396
+2 7.821 2.294 5668.911 3.733 1.013 5669.293 31.350 10.054 5669.291
+3 15.641 4.444 52684.905 7.067 2.104 52687.397 319.759 103.199 52687.378
+4 32.718 9.484 494210.847 15.563 4.616 494245.928 3306.155 1070.269 494245.799

Waveform Dataset, 400 samples with 21-dimensional inputs, σ2 = 24.5325

Suyken et al.’s CG Our CG Approach SMO

log
10
C Kernel CPU D(α) Kernel CPU D(α) Kernel CPU D(α)

-4 0.320 0.150 0.0176 0.239 0.110 0.0176 0.929 0.450 0.0176
-3 0.479 0.210 0.173 0.239 0.090 0.173 0.910 0.441 0.173
-2 0.639 0.331 1.477 0.318 0.140 1.477 0.517 0.251 1.477
-1 1.118 0.501 9.398 0.636 0.291 9.398 0.413 0.200 9.398
0 2.394 1.112 55.415 1.192 0.560 55.415 0.557 0.250 55.415
+1 6.225 3.025 304.430 2.939 1.485 304.431 2.355 1.141 304.430
+2 14.684 6.541 972.925 7.147 3.183 972.925 10.600 5.138 972.925
+3 23.462 10.447 1428.193 11.514 5.327 1428.192 21.774 10.575 1428.193
+4 27.611 12.316 1510.109 13.340 6.101 1510.110 28.214 14.040 1510.110

Image Dataset, 1300 samples with 18-dimensional inputs, σ2 = 2.7183

Suyken et al.’s CG Our CG Approach SMO

log10 C Kernel CPU D(α) Kernel CPU D(α) Kernel CPU D(α)

-4 3.379 1.983 0.0635 2.532 1.642 0.0635 9.301 6.830 0.0635
-3 5.067 2.654 0.618 2.532 1.572 0.618 7.444 5.367 0.618
-2 8.445 4.897 5.050 4.218 2.364 5.050 5.166 3.776 5.050
-1 20.266 11.466 28.671 10.962 6.350 28.671 4.833 3.505 28.671
0 48.974 28.452 133.878 26.980 16.873 133.878 7.036 4.997 133.878
+1 135.097 78.922 574.150 70.819 39.212 574.150 33.935 24.225 574.150
+2 417.110 243.238 2554.951 216.667 137.470 2554.951 253.361 187.459 2554.950
+3 1269.904 740.442 11554.667 705.636 450.154 11554.666 1910.307 2802.560 11554.662
+4 4186.289 2446.655 39458.945 2256.850 1436.888 39458.946 11806.379 17331.135 39458.943

Splice Dataset, 1000 samples with 60-dimensional inputs, σ2 = 29.9641

Suyken et al.’s CG Our CG Approach SMO

log
10
C Kernel CPU D(α) Kernel CPU D(α) Kernel CPU D(α)

-4 1.000 2.113 0.0499 0.999 2.143 0.0499 4.726 8.262 0.0499
-3 1.999 4.216 0.497 1.498 3.215 0.497 4.364 7.551 0.497
-2 2.998 6.319 4.775 1.996 4.325 4.775 2.925 5.088 4.775
-1 5.995 12.628 36.459 3.492 7.531 36.459 3.120 5.408 36.459
0 12.988 27.350 159.990 6.483 14.001 159.990 3.120 5.348 159.990
+1 29.971 63.261 309.340 16.951 36.816 309.340 5.391 9.464 309.340
+2 65.935 138.911 348.659 35.396 77.757 348.659 10.767 18.697 348.659
+3 89.911 189.836 353.380 55.834 120.547 353.380 32.722 56.892 353.380
+4 111.889 232.535 353.866 62.813 134.298 353.865 119.222 207.278 353.866
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Table 2: Computational costs for SMO and CG algorithms (α = 0 initialization) on large-size
data sets. Computer activity is a regression problem. Kernel denotes the number of kernel
evaluations, in which each unit denotes 106 evaluations. CPU denotes the CPU time in seconds
consumed by the optimization. D(α) denotes the dual functional at the optimal solution. σ2 is
the parameter in Gaussian kernel, which is set to an appropriate value. C is the regularization
factor in (2).

MNIST Dataset, 11739 samples with 400-dimensional inputs, σ2 = 0.0025

Our CG Approach SMO

log10 C Kernel CPU D(α) Kernel CPU D(α)

-2 413.302 5611.010 56.136 401.397 3515.685 56.136
-1 757.752 10284.239 493.689 403.956 3540.721 493.689
0 1722.135 23495.622 2685.667 420.814 3688.304 2685.668
+1 4064.206 56682.010 4965.833 669.879 5872.334 4965.836
+2 9643.847 134222.101 5558.749 1257.794 11027.597 5558.752

Computer Activity, 8192 samples with 21-dimensional inputs, σ2 = 20

Our CG Approach SMO

log
10
C Kernel CPU D(α) Kernel CPU D(α)

-2 335.438 423.450 19.510 158.590 149.785 19.510
-1 805.028 1021.007 80.608 159.148 150.226 80.608
0 1710.666 2185.105 275.971 220.706 207.939 275.971
+1 4662.375 5880.373 1002.054 845.302 798.177 1002.054
+2 14221.886 17926.644 5453.505 6382.203 6028.509 5453.501
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