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Abstract—The concept of knowledge-based software architecture has recently emerged as a new way to improve our ability to
effectively construct and maintain complex large-scale software systems. Under this new paradigm, software engineers are able to
do evolutionary design of complex systems through architecture specification, design rationale capture, architecture validation and
verification, and architecture transformation. This paper surveys some of the important techniques that have been developed to
support these activities. In particular, we are interested in knowledge/requirement acquisition and analysis. We survey some tools
that use the knowledge-based approach to solve these problems. We also discuss various software architecture styles, architecture
description languages (ADLs), and features of ADLs that help build better software systems. We then compare various ADLs based
on these features. The efficient methods that were developed for verification, validation, and high assurance of architectures are
also discussed. Based on our survey results, we give a basis for comparing the various knowledge-based systems and list these

comparisons in the form of a table.

Index Terms—Knowledge-based system, software architecture, knowledge acquisition, architecture specification language,

architecture style, formal verification, compositional verification.

1 INTRODUCTION

I N the late 1960s, software engineers and system design-
ers were faced with what was then termed the “software
crisis.” This crisis was the direct result of the introduction
of a new generation of computer hardware. The new com-
puters were substantially more powerful than hardware
available up until then, making large applications and
software systems feasible. However, the strategies and
skills employed in designing software for the new systems
did not match the new hardware capabilities. The results
were delayed projects (often for years), considerable cost
overruns, and unreliable and poorly performing applica-
tions. The need arose for new techniques and methodolo-
gies to design large-scale software systems.

The methodology proposed as an answer to the soft-
ware crisis was the Waterfall paradigm. This methodology
was first proposed by Royce [1] and later modified by
Boehm [2], Jensen and Tonies [3], and others. The water-
fall paradigm has seen many variations, amendments, and
deletions, but all these share the basic assumption that
software is developed in a sequence of distinct stages,
namely requirements phase, design and coding phase,
validation and verification phase, operation and mainte-
nance validation phase.

The main assumption of the waterfall paradigm is that it
begins with well-understood requirements and that those
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requirements and thus the design specification, are fixed.
Tools supporting this paradigm usually enforce this rigidity
by static type-checking and interface descriptions. In prac-
tice, though, standard techniques do not allow one to arrive
at exact specifications. Often, the user does not know, and
cannot anticipate his exact requirements. (The user’s infor-
mal requirements description is more aspiration than speci-
fication.) Since the user has no experience on which to
ground those aspirations, it is only by exploring the prop-
erties of some putative solutions that the user can find out
what is really needed [4].

These problems are serious, and many critics have called
for a replacement of the software life-cycle methodologies
by new paradigms for software engineering. Three new
methodologies emerged:

1) rapid prototyping,
2) executable specification, and
3) transformational implementation.

In rapid prototyping, a working model of the system
is built for requirement validation. In the second ap-
proach, a system model is built which is executed to
generate the system behavior in early stages of the soft-
ware development. In transformational implementation, a
concrete system is derived from a series of transforma-
tions, using automated support. By using these ap-
proaches, the system behavior can be observed and vali-
dated at early stages.

However, as the user gains a better understanding of his
needs, the requirements need to be refined. The system de-
velopers have to handle the informal and incomplete user
requirements and at the same time, maintain and evolve a
consistent and formal internal representation of the user
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requirements. For this, every stage of the software life-cycle
model must be formalized and a knowledge base for each
stage should be developed. The representation of the
knowledge base should be extensible and should support
inferencing under various logic semantics (like, non-
monotonic logic). The development systems must also sup-
port correct transformation and refinement of constructs
across different levels of abstractions [5].

As computers and networking technologies are getting
more powerful and cheaper, more and more application
softwares have been developed. Many industries, such as
telecommunications, avionics, banking, hospital, automo-
tive, semiconductors, oil, pharmaceuticals, are all highly
dependent on computers for their basic functioning. How-
ever, the techniques and tools to design and maintain com-
plex software systems lag behind the growth of size and
complexity of those systems [6].

Recently, knowledge-based software architecture para-
digms have been proposed as better ways to support
component-based technology. Software architectures bridge
the gap between the user’s needs and the desired solution
(target system). At this level of design, the specification of
the overall system structure (composed of components,
communication protocols and control structures) is more
significant than the low level algorithms and computations.
This gives a correspondence between the system require-
ments and the elements of the constructed system. Some
architectures support extensive typed systems in which the
elements are represented in a hierarchy of types. This sup-
ports evolution through reuse, refinement and instantiation
of the architectural elements.
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Based on this new software paradigm, the development
system may consist of the following sequence of phases:

« knowledge/requirement acquisition,

« knowledge/requirements specification,

« architecture description in an ADL,

« validation and verification for high assurance, and

« the transformation to implementation level code upon
which the target system is built (Fig. 1).

The knowledge-base assistance is provided to the formal re-
quirements, ADL and validation phases. As the system is
validated for high assurance, the requirements and ADL
description are incrementally refined. This feature supports
the specification evolution. In this paper, important tech-
niques developed to support the knowledge-based software
architecture paradigm, namely, knowledge/requirement
acquisition, architecture description languages, and verifi-
cation will be surveyed. (Readers can refer to [93] for the
related transformation techniques.)

2 KNOWLEDGE/REQUIREMENTS ACQUISITION
SYSTEMS

Software design is a knowledge intensive activity which
requires a great amount of knowledge from different
sources. In each phase of software life-cycle, there are spe-
cialists responsible for performing their tasks involving the
clients who are usually the experts in the problem domains,
but might have no idea in software development. The tre-
mendous quantity of information is collected and processed
by these specialists and used in these phases. In order to
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assist these specialists, there are many knowledge-based
software engineering tools introduced both in the market
and in the research community. In this section, we survey
and compare some of important knowledge/requirement
acquisition systems. From the survey, we can get a better
understanding on the techniques and models used by vari-
ous knowledge-based systems.

2.1 ARIES

ARIES [7] is an environment for supporting analysts in
modeling target domains and in entering and formalizing
system requirements. It can be viewed as applying the no-
tion of a presentation architecture to the domain of software
engineering and incorporating a strong coupling to a trans-
formation system. The key feature of the approach is to
have a single highly expressive underlying representation
with notations of differing degrees of expressiveness. The
process of constructing a requirements specification is
viewed as

« acquisition,

* reasoning,

« evolution, and

« presentation.

A modularized central repository approach is used for
gathering together of all relevant requirements information
into a common, shared framework [8]. The structure called
folder has a set of declarations (type, relation, event, in-
stance, and invariant declarations). The reusable folders are
organized into hierarchies according to their degree of
specificity to a particular task. A single, highly expressive
knowledge representation scheme places a heavy emphasis
on organization and use of domain knowledge in require-
ments analysis. Analysis is performed to uncover errors in
the specification and fix them. The interface and the simu-
lator for ARIES have also been developed [9], [10].

2.2 Attempto

Attempto is a system which translates specification written
in Attempto Controlled English (ACE) into discourse repre-
sentation structures and Prolog [11]. The purpose of ACE is
to provide a formal specification without requiring the user
to have a training in a formal language. ACE is a subset of
English and has nouns, verbs, adjectives, numbers, and
technical symbols as vocabulary. Declarative sentences are
used as the basic construct of the specifications. Attempto is
a knowledge-based system which provides lexical editor
and a translator. The lexical editor interactively allows the
user to modify and extend the lexicon incrementally. The
knowledge base contains the translated form of the specifi-
cation and allows the user to query the knowledge base.
The knowledge base is also used for simulation and
prototyping purposes.

2.3 Critter

It is an interactive model of composite system design incor-
porating deficiency-driven design, formal analysis, incre-
mental design and rationalization, and design reuse [12].
Critter supplies knowledge of composite system design

strategies and concepts; the designer supplies domain spe-
cific knowledge to validate these strategies and concepts in
a particular application domain [13]. By using off-the-shelf
formal languages, their goal is to solve the problems in the
stage between the requirements acquisition process and the
implementation process. They have used Petri nets for this
purpose. The Critter model is the sum of the following
components:

« design state representation: possible behaviors and
constraints.

« solution (consistent) state or leaf-node checker.

« move or design operators: transforming one composite
design state to another (analysis = deficiency =
remedy).

« heuristics for selecting design operators: human designer.

+ tools: a Petri-net editor, design components manager,
browser, etc.

Associated to Critter, a system called OPIE, uses scenarios
for analysis and modification of a specification [14].

2.4 JANUS

The JaNus system [15] implements the concept or domain-
oriented design environments. The system uses an ap-
proach that embeds human-computer cooperative problem-
solving tools into knowledge-based design environments
that work in conjunction with human software designers in
specific application domains [16]. The system is an inte-
grated environment that can support the co-evolution of
specification and construction. By integrating the upstream
and downstream activities, designers are simultaneously
articulating “what” they need to design and “how” to de-
sign it. It assists the user to locate design information, com-
prehend the retrieved information, and modify it according
to their current needs. This idea is implemented in subsys-
tems, called CATALOGEXPLORER, EXPLAINER, and MODIFIER.
Through integration of cooperative problem-solving ap-
proaches with knowledge-based techniques, it is a concep-
tual framework for supporting co-evolution of problem
specifications and software implementation that focuses on
the role of human designers.

2.5 RAKES

RAKES is a requirements analysis system which interviews
the clients in order to produce specifications for functional
specification and nonfunctional specification [17]. It is in-
cluded in the FRORL methodology [5], which uses the for-
mal language, called FRORL [18], in every aspect of the
software development phases. This helps in organizing the
reusable components for the future specification in the
same domain and gathering the domain knowledge from
the specification. The same technique for organizing and
retrieving the knowledge base can be used. This leads to
simplifying maintenance.

The information collected in RAKES can be used through-
out our software development methodology. The informa-
tion is transformed to the knowledge base and it can help
the developer understand the problems appearing in the
latter phase by providing the user with the background of
what has happened before.
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2.6 KAOS

KAOS [19] provides a goal-directed approach to require-
ments acquisition. There are three components in this ap-
proach, namely:

1) the conceptual model, which provides metamodels that
are abstractions for the requirements models to be ac-
quired, including both functional and nonfunctional
requirements;

2) acquisition strategies, which are the steps for acquiring
components of the requirements model as instances of
metamodel components; and

3) the acquisition assistant, which provides automated
support in acquisition steps.

Higher level abstractions such as

« goal,
 operationalization,

« ensuring action,
 agent,

« responsibility, or

« alternative assignment

are the attributes considered as the conceptual models. The
basic idea of the acquisition strategies is the goal-directed
traversal of the metamodel graph. More detailed informa-
tion is supplied from visiting the nodes in the graph. The
steps gear toward identifying and refining

« goals,
 agents,

» constraints,
* objects, and
» actions.

The reuse of both metalevel and domain-level knowledge is
also investigated.

2.7 KBMS

KBMS is a knowledge-based system for modeling software
system specifications [20]. The end users can communicate
with the computer system at the higher level of mathemati-
cal models with a simple, restricted vocabulary. Their goal
is to acquire and transform a user’s informal application
knowledge into an accurate software application model,
and the software model is based on a simple state transition
framework. The information that they are interested in is

« characteristics of components,

* ranges of values,

« relationships between the components,

« initial and final states of the system, and
* actions.

It is carried out in two stages:

1) the requirements elicitation stage, and
2) the requirements modeling stage.

The system is supported by a knowledge base, which
contains domain specific knowledge and software engi-
neering knowledge. The inference mechanism carries out
these four steps:

1) the focus procedures step,

2) the filter procedures step,

3) the selection procedures step, and
4) the execution procedure step.

The input to the system is entity descriptions and process
definitions with their constraints, and the output is a
structural and behavioral model of an application ex-
pressed in an English-like text.

2.8 LEAP

LEAP [21] is an asset-based synthesis system, and its assets
are in the form of templates used to automatically synthe-
size source-level programming-language code. This ap-
proach allows software production to be incrementally
automated and in large part produced by system engineers
rather than software engineers. Using the templates and
existing component descriptions, the developers interac-
tively compose, elaborate, and refine descriptions on the
basis of feedback from testing and analysis of partially de-
veloped designs. When a description is sufficiently de-
tailed, LEAP can synthesize an implementation for that
description as code in a high level design language, called
the Common Intermediate Design Language (CIDL). LEAP
then translates the CIDL code into Ada, C, or Lisp. Synthe-
sis generally involves reusing existing code and construct-
ing new code. As a description evolves, LEAP resynthesizes
the implementation, automatically maintaining consistency
between descriptions and their implementation.

The LEAP system descriptions offer relief from the well-
known difficulty that users cannot write formal specifica-
tions. Composing a description from component descrip-
tions allows well-understood component descriptions to be
provided with complete implementable specifications. The
user does not have to write these specifications, only mod-
ify them to accommodate specific application needs. LEAP
has been used in small and medium size applications [22].

2.9 Marvel

The Marvel [23] software development environment uses a
rule-based model of the development process. It provides
automated help by applying forward and backward chain-
ing among the rules, automatically invoking activities that
are part of the development process. One distinguishing
feature of Marvel is its integration of object-oriented data
modeling and rule-based process modeling [24].

Marvel allows a project administrator to create and tailor
an environment by defining a data model and a process
model. Using the Marvel Strategy Language (MSL), the
administrator writes specifications of the models and loads
them into the kernel. Software artifacts (such as code and
documentation) are abstracted as instances of classes,
which are defined in the data model and stored in an object
base. It allows so-called “structural” queries in the rules to
traverse the object base structure. The query language con-
sists of Boolean combinations of three structural primitives
(Member, LinkTo, and Ancestor) and standard relational
operators (<, =, and so on), which allow the query to navi-
gate through the object base.
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2.10 NATURE

NATURE is a project funded by the ESPRIT Il program
[25]. The program began in 1992, and the goal is to develop
theories in knowledge representation, domain engineering,
and process engineering. Prototypical models and tools are
developed around Telos [26]. The experience from the
DAIDA project [27] is expanded in this NATURE project.

The knowledge representation theory supports the com-
bination of formal specification languages, semiformal
methods, and informal aides for representing requirements.
Formal languages like in the logic or algebraic forms offer
preciseness and reasoning support. The semiformal meth-
ods, such as data flow or entity-relation diagrams, are good
tools for communication between users and developers.
Representations in text or pictures can be considered infor-
mal aides which are more familiar to the users.

The domain theory focuses on the cognitive studies of
software engineering and semantic richness of specification
languages. Two aspects of domain theory investigated are
its basic structuring principles which supports abstraction
and similarity-based reuse which organizes the descriptions
of previous software components for later use. The prob-
lems to be considered are the granularity problem, coverage
problem, the problems in acquiring, and modifying and
classifying descriptions.

The process theory is based on the process models, such
as activity-oriented models which find and execute a plan
of actions leading to the solution, product-oriented models
which represent the development process through the
evolution of the product, and decision-oriented models
which integrate the semantics attached to the evolutionary
aspects of the design.

2.11 Process-Oriented Approach

A comprehensive framework for representing and using
nonfunctional requirements during the development proc-
ess has been proposed in [28]. The project emerged from the
experience learned from the development of Telos, a lan-
guage for representing knowledge about information sys-
tems [26]. Instead of evaluating the final product, the em-
phasis is on trying to rationalize the development process
in terms of nonfunctional requirements.

Other than accuracy requirements, performance requirements
are considered during the implementation phase when de-
signs are mapped onto implementations [29]. Performance
goals often focus on response time and throughput, and are
developed for particular applications systems. A set of in-
tentional operators are used in modeling the background
information like “why.” The nonfunctional requirements
are well modeled, but the graph may result in complex
goal-graph structures. Furthermore, it needs a theoretical
foundation for representation and reasoning.

2.12 Requirements Apprentice

Requirements Apprentice (RA) [30] is the latest demonstra-
tion system for Programmer’s Apprentice project. The pur-
pose of the system is to gap between informal and formal
specifications. By interacting with the user, it updates a re-
quirements knowledge base and produces a requirements
document. RA consists of three modules:

1) Cake [31], which is a knowledge representation and
reasoning system containing truth maintenance, Boo-
lean constraint propagation, equality, types, algebra,
frames, and plan calculus;

2) Executive, which is an interface handling interaction
with the user and providing high level control of the
reasoning provided by Cake; and

3) Cliche Library, which is a collection of requirements
relevant to the application domain.

The user starts with abstract requirements, and RA re-
sponses with its understanding. The user then incremen-
tally define more requirements. Through these sessions, RA
collects requirements from the user.

2.13 REMAP

The REMAP project [32] recognized the importance of
capturing process knowledge to reason about the conse-
quences of changing conditions and requirements in sys-
tems design and maintenance. The most important compo-
nent of this process knowledge is the knowledge about rea-
sons behind design decisions or design rationales which
shape the design. The prototype has been implemented
based on Telos and has been incorporated to a knowledge-
based rapid prototyping system, called CAPS [33].

This model provides primitives to capture the knowl-
edge about refinement, elaboration, and modification of
initial requirements which lead to design solutions. The
temporal knowledge keeps the information of versions of
requirements specifications updated at different times and
is useful in providing support in several areas including
project management, design replay, and maintenance. De-
ductive rules can be used for modifying and inferring val-
ues of attributes.

In REMAP, a dependency network is used to report de-
pendencies of constraints on design decisions as well as
dependencies of design artifacts on constraints. With such
an extended network, the belief status of a set of assump-
tions can be propagated to a set of design objects. They be-
lieve that changing requirements and assumptions neces-
sitate changes to software systems, so changes to design
rationale will automatically trigger changes in the belief
status of design solutions, and this suggests redesign. As
the dependencies among process knowledge and design
artifacts are maintained by a reason maintenance system, a
future revision in the belief status of relevant assumptions
will automatically be propagated into changes in status of
design solutions.

During various phases of the lifecycle, facilities to retrace
the progression of steps that the design process went
through can be beneficial. Design history information is
useful in replaying the steps to facilitate understanding the
evolution of the system as well as identifying the choice
points where alternative decisions could lead to different
solution paths. Design replay can be chronological or de-
pendency directed.

2.14 RSML Tools

A set of tools are developed for analyzing the specifica-
tions written in RSML, which is a formal, state-based speci-
fication language [34]. The tools performs simulation and
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analysis on the specifications which are based on function
decomposition to check for completeness and consistency.
The specifications are built on the features in RSML as
states, decomposition, transition, and tables. The analysis is
based on the compositional properties—union, serial, and
parallel composition. The approach can be carried out in
pieces and in an incremental fashion. Without the need of a
large, global graph, each focused piece of specification can
be analyzed thoroughly.

2.15 RTGIL Tools

The support tools for Real-Time Graphical Interval Logic
(RTGIL) includes a graphical environment for a syntax-
directed editor, an automated theorem prover, and a data-
base and proof manager [35]. RTGIL is a propositional in-
terval temporal logic for specifying real-time systems. The
graphical editor assists the user in constructing a spec-
ification. The automated theorem prover uses a tableau
form in checking the validity of the proofs while producing
counter-examples. The database and proof manager is re-
sponsible for storing the valid proofs and reuse them effi-
ciently. The types of properties supported are initial prop-
erty, henceforth property, eventuality property, searches,
and duration. The user is requested to select a set of prem-
ises to establish the theorem, and the tableau-theoretic
method is carried out in the proof procedure.

2.16 SCR Tools

The automated support for the Software Cost Reduction
(SCR) requirements method involves:

« aspecification editor,
« asimulator, consistency checker, and
« averifier [36].

Specifications are created and modified through the specifi-
cation editor while the resulting specification is executed on
the simulator. The specification then is checked by the con-
sistency checker and the verifier for its properties. The SCR
requirements method uses a formal language in a tabular
form to specify the requirements. The properties that the
consistency checker are interested include syntax, type,
mode, value, reachability, disjointness, coverage, and cir-
cularity. The deterministic nature of the specifications al-
lows the system to efficiently perform the static checks.

2.17 SPECIFIER

SPECIFIER [37] is a specification derivation system from
the informal descriptions provided by the user, and it is an
intelligent assistant to the requirements analyst interested
in developing formal software specifications. It consists of

» a preprocessor, which accepts an informal definition of
the problem expressed as a restricted subset of natural
language,

« areasoner, which produces a formal specification, and

« a postprocessor, which simplifies the axioms of the for-
mal specification.

The approach can also be extended to software reuse [38].
A knowledge base mainly supports the reasoner for pro-

ducing an informal specification by either schemas or anal-

ogy. A schema is an abstract representation of commonly

occurring operations, along with the knowledge needed for
instantiating it to particular cases. Analogy is a method
which maps the current problem to the past results of
similar problems maintained in the knowledge base. The
formal specification languages used is based on a first-
order theory and consists of

1) precondition,
2) postcondition, and
3) required definitions.

We summarize the above survey in this section by com-
paring the systems by the properties as follows:

Input the interface language between the user and the
system

Output what the systems produce

Formal analysis degree of the formal analysis
capability

Acquisition Method how the user requirements are
collected

Where Used the phase in the software lifecycle, in
which the system is used.

Table 1 shows the result of this comparison. The entry N.L.
means natural language. From the table, we can see that
there are three systems using general natural languages,
five using structural natural languages (restricted natural
languages), three using mixed representations, four using
logic, and two using graphs for their input. As for output,
there are seven systems producing a formal specification
with accessories like natural languages or graphs, five pro-
ducing just formal specifications (including Prolog), one
producing a program, one for pseudo code, one for nets,
and two producing just the analysis results. There are
eleven systems which have some formal analysis capability.
The methods are either incrementally building the require-
ments or interactively collecting the requirements.

3 ARCHITECTURE STYLE AND ARCHITECTURE
DESCRIPTION LANGUAGES

The component-based software architecture technique has
gained a lot of importance these days. The architecture
based development of software systems focuses on the ar-
chitectural elements and their overall interconnection
structure. The architecture of a system fills the gap between
the high level box-and-line diagram and the low level pro-
grams used to implement the system. A system architecture
is specified as having a set of components, connectors, a
configuration and a set of constraints and is written in an
Architecture Description Language (ADL). An ADL is the
interface language between the user and the system. ADLs
differ in terms of the aspects of the architecture that they
can represent, tools they support for understanding and
analyzing the architectural description and the overall level
of support they provide to the system developers. De-
pending on the knowledge of the system that the user has,
the user has to decide on the ADL to be used, so that the
important aspects of the system can be better repre-
sented. Once the architectural information is captured from
the user, the architecture is instantiated to the system that
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TABLE 1
COMPARISON OF KNOWLEDGE/REQUIREMENTS ACQUISITION AND ANALYSIS SYSTEMS
| Project Name | Input | Output | Formal Ana. | Acq. Meth. ‘ Where Used |
ARIES restricted N.L. Yes Incremental | Requirements
N.L. Gist
Attempto restricted | Prolog No Incremental | Requirements
N.L.
Critter Gist Gist weak Incremental | Requirements
Nets Nets Design
JANUS N.L. Code No Interactive | Requirements
KAOS Frames Frames weak Incremental | Requirements
Logic Logic
KBMS N.L. Pseudo No Interactive | Requirements
LEAP Graph Graph Yes Incremental Code
Axiom Synthesis
NATURE Mixed Mixed Yes Interactive | Requirements
Marvel Logic Logic No Incremental Code
Synthesis
POA Telos Telos No Interactive | Non-Functional
Requirements
RA N.L. Plan weak Incremental | Requirements
Calculus
RAKES restricted | FRORL Yes Interactive | Requirements
N.L. Pseudo Incremental
REMAP restricted | Nets & No Incremental Design
N.L. Telos
RSML RSML RSML Yes Incremental Analysis
RTGIL Graph RTGIL Yes Interactive | Requirements
Incremental
SCR SCR SCR Yes Incremental Analysis
SPECIFIER | restricted | Logic weak Interactive | Requirements
N.L. Pseudo

is to be implemented. The user can then verify that the
implementation conforms to the specification and can ana-
lyze the various properties.

Many software systems exhibit commonalities in their
architecture. Such systems are said to conform to a style. An
architecture style represents a family of systems which
share a common vocabulary of components, connectors and
configurations, the underlying computation model, the se-
mantic model and invariant properties. Some common ar-
chitecture styles are pipe-filter, client-server, event-based,
object-oriented, rule-based, hypertext, and layered systems
[88]. Architecture styles guide in the design of large scale
systems since most systems resemble one or more of these
styles and the styles support the reuse of the style-specific
solutions with well-defined properties and specialized
analyses. The styles help in improved analysis and code
reuse. It is also easy to understand the system organization
once the standard styles are used. Another benefit is that
the style-specific graphical and textual descriptions aid in
the architectural design.

Pipe-filter style consists of components that read streams
of data, apply local transformations to them and produce
data on their outputs. The connectors (pipes) are simple
conduits that transfer data from output of one filter to input
of another. The pipes may be bounded or may restrict the
type of data that can be transmitted through them. This
style supports reuse, since two or more filters can be com-
posed, and systems built in this style are easy to maintain
and refine since filters can be replaced or new filters can be
added with ease. Also, throughput and deadlock analysis
can be performed on such systems.

In event-based architecture style, also known as implicit
invocation systems, the components broadcast events in
addition to communication via procedure calls. The con-
nectors map event announcements by one component to
procedure invocations in other components. An important
property of this style is that a component does not know
the identity of other components that react to its events. The
style supports reuse and system evolution since new com-
ponents can be added and old ones updated without modi-
fying other elements in the architecture.
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Object-oriented architectures help in building more flexi-
ble and extendible systems. Such architectures support de-
scription of systems at a level of abstraction closer to the
problem domain and away from the low-level details. Since
the individual objects of the architecture hide their imple-
mentation, they can be easily refined without affecting
other architecture elements. But, if a component’s (object)
interface is changed, we need to modify all other compo-
nents that invoke the services provided by this component.

Client-server architecture style is a kind of distributed
processing system in which there are only two kinds of
processes (components), a server and a set of clients. The
server provides services to the clients, but may not know
the identity of its clients. However, every client has the
identity of the server to which it requests services.

Hierarchical layered systems is another instance of ar-
chitecture styles based on call-return techniques. In this
architecture style, each layer in the system provides services
to the next higher layer and is provided services by the
layer below it and is hidden from other layers. Operating
systems and database systems use this architecture style.
This style helps designing systems at many levels of ab-
straction. Also, it supports enhancement and reuse since
modifying a layer affects only the immediate layers and
different implementations can be used for a layer as long as
it provides the same interface to its adjacent layers. How-
ever, for a system to be represented in this style, it has to be
decomposed into multiple layers or levels of abstraction,
which sometimes is a hard task.

Architecture description languages are used to support
the architecture-based system development. An ADL is
expected to exhibit the following features:

« ability to model components with property assertions,
 interfaces and implementations,

« ability to model connectors with protocols,

+ property assertions and implementations,

« ability to model abstraction,

« encapsulation,

+ types,

 type checking, and

« support for analysis.

Also for the ADL to be usable, it should support tools for
understandable specification, multiple views, refinement,
code generation, and dynamism [71].

Since the user requirements change from time to time,
architecture components evolve. The ADL should support
this evolution by allowing subtyping and refinement of
components. The protocols for component interactions also
keep changing. Hence, ADL should support reusability of
connectors by allowing their subtyping and refinement. On
treating these architecture elements as first-class objects, it
becomes easy to reuse them as we can distinguish between
types of these elements and their instances.

In the inheritance of element types, we can have both re-
finement and restriction of types. In case of restricted sub-
typing, certain properties of the component supertype are
overridden, which can be handled if the ADL semantics can
support nonmonotonicity of property assertions. Some of

the ADLs that have been proposed for modeling domain-
specific or general-purpose architectures are: Aesop [72],
ArTek, C2 [79], Darwin [80], Unicon [71], Rapide [82],
Wright [81], and MetaH [83]. We survey a few of them in
this section.

In general, there are two important aspects that should
be reflected in any ADL: It must have a simple, under-
standable syntax on one hand, and a formal syntax and
semantics and analysis tools on the other hand. There have
been attempts to identify important characteristics and re-
quirements that an ADL should have [87]. Also, the basic
features that need to be satisfied by all ADLs were pro-
posed [87]. Shaw and Garlan [87] specifies the following
kinds of features that an ADL should provide: abstraction,
reusability, composition, configuration, heterogeneity, and
analysis. This distinguishes ADLs from module intercon-
nection languages, formal specification languages and pro-
gramming languages. Clements [85] discusses the features
that make ADLSs different from requirements, programming
and modeling languages.

While most of the ADLs provide an extensive support
for modeling components as they treat them as first-class
entities, the same is not true for connectors. Darwin,
MetaH, and Rapide specify connectors as instances that
cannot refined or reused in the future. Architectures may
describe large complex systems that evolve over time. The
changes to an architecture may not be predictable. The
ADLSs must support features for evolution and dynamism.
Architectural configurations should be able to provide
communication between people that participate in devel-
opment of the system at different stages of development.
Languages like Aesop, C2, Darwin, MetaH, Rapide, and
Unicon support semantically sound graphical notations for
architectural configurations.

The support for hierarchical composition is important
when it is required to describe systems at different levels
of granularity i.e., either explicit representation of compo-
nent behaviors or behaviors hidden in individual compo-
nents and connectors that are abstracted away. Since archi-
tectures are intended to represent systems at higher level
of abstraction than the implementation modules, the rela-
tionship between elements of the architectural description
and those of the resulting executable system may not be
one-to-one [73]. This is because, changes made to the low-
level elements cannot be easily mapped or traced back
to the architectural elements. Also, scalability is another
important issue. An ADL must be able to support devel-
opment of systems that may grow in size.

Wright is an ADL that models interface points as ports,
whose interaction semantics is specified in CSP. It has an
extensible type system but doesn’t support evolution of
components. Wright models configurations as explicit at-
tachments which aids evolution from partial specifications,
but it provides no support for application families.

Unicon has a predefined, enumerated set of types, the
component semantics is represented as event traces. The
connector semantics is implicit in the connector type. The
constraints are given as restrictions on type of players
(component interface points) that can be used in a given
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role (connector interface points). Unicon supports compo-
sition of configurations, system generation, scalability, but
no evolution of configurations as it doesn’t support partial
architectures or application families.

Rapide is an event-based ADL used for defining and
simulating behaviors of system architectures. The compo-
nents in Rapide are characterized as interfaces and the in-
terface points consist of “provides,” “requires,” “action,”
and “services.” It has no explicit connectors, it only char-
acterizes them via “connection components”. The seman-
tics are given in terms of partially ordered event sets.
Rapide has an extensible type system, supports parameter-
ization of types and inheritance through structural sub-
typing. It also allows the behavior associated with a spe-
cific type to be parameterized by specifying event pat-
terns. It supports mapping between architectures at dif-
ferent levels of abstraction. Architectures can be mapped
to interfaces, hence the support for composition. Again, in
Rapide too, there is no support for partial architectures or
application families. The events poset execution model al-
lows modeling of timing information.

ACME [84] is an architecture interchange language used
to map architectural specifications across different ADLs. It
supports an extensible type system, with parameterization,
for components and connectors (based on protocols). But it
has no support for semantics for these elements, it can use
other ADLs’ semantic models. Attachments can be under-
stood via explicit and concise textual specifications. ACME
allows composition and heterogeneity, but no refinement.
Evolution is possible due to explicit configurations, but
there is no support for application families.

Darwin uses zcalculus to model the component interac-
tion and composition properties. The connectors are speci-
fied as bindings but are not first-class entities (hence, no
support for reuse, subtyping). Due to the hard-wired con-
figurations, Darwin doesn’t support evolution and scal-
ability but allows composition of configurations.

C2 has extensible typed system for components and
connectors. The interfacing is through messages and the
causal relationships between input and output messages
gives the semantics. It supports evolution of components
by allowing name, interface and behavior subtyping.
Dynamism is possible in terms of addition, deletion and
reconfigurations.

Aesop [72] is a system for developing style-oriented ar-
chitectural design environments. It is important to support
architectural descriptions and analysis with tools and envi-
ronments. Aesop system characterizes architecture styles as
specializations of a generic object model through subtyp-
ing. This helps in generating style-specific design environ-
ments and hence, aid in construction of families of systems
which come under the scope of that style. Wright provides
explicit features for representation of different styles. Other
ADLs like ArTek, Resolve, Unicon, and Demeter support
certain generic features which can be used to indirectly
achieve this capability.

OOADL [77] uses object-oriented paradigm as its back-
bone. The components in OOADL are characterized as

objects which further decomposed into “internal behavior”
and “architectural behavior” parts. The “internal behavior”
part corresponds to the computation or action of the com-
ponent with the semantics based on Z. It has no explicit
connectors, connectors are implicitly characterized in the
“architectural behavior” part with “export” and “import”
specifications attached to it. This language provides
“a_kind_of”, “a_part_of”, and “an_instance_of” keywords
to represent the generalization, aggregation and instantia-
tion relationships of the OO paradigm. Another feature of
this language is that it provides a set of predefined most
popular architecture structures which can be directly inher-
ited by users and thus provides the refinement and reuse
aspects of OO paradigm. But since, OOADL as no explicit
connectors, no evolution for connectors is available and
also nonfunctional properties are not supported for both
components and connectors.

A system may be composed of multiple styles, in which
case it becomes a heterogeneous architecture. The hetero-
geneous composition of architectures causes several prob-
lems since each style has its own properties, there is no
common representation language for specifying the various
constraints and attributes, and there is no unique way to
compose these different styles. This issue has been ad-
dressed and some solutions proposed in [86]. Clements [85]
compares various ADLs on the basis of;

« ability to represent styles;

« ability to handle dynamic architectures;

« ability to handle real-time issues; and

« support for creation, validation, refinement, analysis
and support for building applications.

In this paper, we summarize our survey using the crite-
rion, such as understandability, composition, scalability, refine-
ment, and evolution, as shown in Table 2. In the table, by
the term *“hard-wired” we mean that the connectors are
specified as instances and hence, cannot be refined or re-
used later.

4 VERIFICATION OF KNOWLEDGE-BASED SOFTWARE
ARCHITECTURES

Studies have repeatedly shown that most of the cost of
software development stems from design (or requirements)
defects. Defects in design can cost hundred times more to
fix in testing and maintenance phases than in the design
phase. If we can identify those defects in the early stage of
the software life-cycle, then we can eliminate these prob-
lems earlier and significantly reduce the cost of debugging,
maintenance, and redevelopment. In addition the correct-
ness of high assurance systems must be verified in order to
avoid disastrous consequences.

Testing and debugging involves the process of detecting,
locating, analyzing, isolating, and correcting suspected
faults. Testing uses the runtime information of a program to
examine its execution behavior. However, testing is not suf-
ficient to prove the correctness of systems. In contrast, static
analysis provides a methodology to verify the correctness
of systems. In general, static analysis is supported by for-
malisms to specify the system precisely. Formal verification
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TABLE 2
COMPARISON OF ADLS SURVEYED
ADL Understandability | Composition Scalability Refinement Evolution
of Specifications
. o Y but fixed .
Wright explicit textual No iiﬁbir é;xe No partlallarchs.
Toles can evolve
Unicon explicit textual Yes Yes Yes possible due to
and graphical explicit configs.
Yes,can map
Rapide provides graphical | can map archs.| No archs. at No, due to hard-
notation to interfaces different wired configs.
levels
Darwin provides graphical Yes No Yes No, due to hard-
notation wired configs.
C2 explicit textual Yes Yes No partial archs.
and graphical can evolve
o ) Yes,but fixed i
ACME explicit textual Yes, using number of No possible due to
templates roles explicit configs.
Aesop explicit graphical Yes Yes,but fized No possible due to
number of explicit configs.
roles

methods are then applied to prove the logical correctness of
the developed system with respect to the specification.
However, most formal verification methods suffer from
state explosion problem. Current research focus is how to
deal with this problem. We will present and compare vari-
ous methods in this section.

4.1 Formal Verification Methods

State space (or reachability) analysis provides a promis-
ing and automated method for the static analysis and veri-
fication of systems. However because of the complexity of
the state-space explosion, efficient analysis by state space
is restricted to small system models. With increasing com-
puting power, larger and more complex systems are
continuously developed. Techniques and tools need to be
developed to analyze on large-scale systems. However,
formal verification method is more applicable to architec-
ture level of a software system since this level is closer to
the problem domain and more abstract. Many techniques
have been proposed to cope with the state explosion prob-
lem. Equivalence is the main concept shared in these tech-
niques. Two system models are considered to be equivalent
if no distinction can be made between them. Based on the
concept of equivalence, it is possible to analyze a system
model using another equivalent system model or state space.
For example, Petri-net models can be analyzed using reach-
ability graphs because Petri nets and reachability graphs
are equivalent with respect to almost all dynamic behaviors
and interesting properties. The notion of equivalence is very
useful when we focus on particular behaviors/properties of
systems. The following summarizes existing approaches to
the state explosion problem.

Transformation of System Models. Many transforma-
tion techniques have been developed from the concept of
equivalence in order to synthesize and/or reduce system
models [51], [52]. A synthesized system model is equivalent
to the original one. Therefore, the verification of synthe-
sized system models can be eliminated. On the contrary,
structural reduction is used to generate a reduced sys-
tem model which is equivalent to the original one. Conse-
quently, the analysis can be performed on a reduced sys-
tem model. Synthesis and structural reduction of system
models are powerful, but in some cases they are applica-
ble only to special situations or special subclasses of speci-
fication formalisms.

Bit-Hash Technique. Holzmann [46] proposed a bit-hash
technique to significantly reduce the memory requirement
of state space analysis. In his technique, a hash function is
employed to give a compact representation of state infor-
mation. However, the analysis result may not be reliable
because of hash collisions in some cases.

Symmetry Methods. Symmetry methods [44] exploit
regularity of system structure and store mutually symmet-
ric states as one. Symmetry methods require more complex
analysis algorithms and cannot facilitate the analysis of
nonsymmetric systems.

Symbolic Model Checking. Symbolic model checking
[40], [41], [43] uses a fixed-point algorithm over a symbolic
representation of state and transition relation (BDDs [39]).
Symbolic model checking has been shown useful especially
for the verification of hardware. However, its application to
software systems may be affected by the effort in finding a
compact encoding.
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Partial Order Techniques. Partial order techniques in-
vestigate only a partial ordering of concurrent and inde-
pendent events. The explored state space is equivalent in
terms of certain properties, e.g., deadlocks and event occur-
rences. Persistent (or stubborn) sets [47] and sleep sets [45] are
two main techniques proposed in the literature. Neverthe-
less, in the worse case, the state space remains exponential
in the size of processes. A lot of research is focusing on the
design of heuristic rules to reduce analysis complexity.

Compositional Verification Techniques. In composi-
tional verification techniques, a system is considered as a
collection of subsystems (processes). The main goal of com-
positional verification techniques is to hierarchically and
efficiently generate equivalent and much smaller state spaces
which are more amenable to analysis. There have been
a considerable amount of studies on the compositional veri-
fication, especially in the area of process algebras [48],
[49], [50]. However, current techniques are effective only
for loosely coupled modules (i.e., subsystems with simple
interfaces).

Incremental Verification Techniques. Many systems
frequently undergo modifications to suite new user re-
quirements or to satisfy the desired properties. Their speci-
fications and hence, internal representations keep chang-
ing from time to time. However, due to the huge size of
the state-space, it is very expensive to verify the require-
ments and constraints of the system after every small modi-
fication to the specification. The incremental approach is to
make the cost of verification of the modified system pro-
portional to the size of the change made to it rather than the
size of the representation (the state-space) of the whole
system [75], [76].

Hybrid Techniques. It has been suggested that more
cost-effective techniques can be derived by integrating dif-
ferent verification techniques. For example, partial order
techniques and structural reduction can be combined to
further reduce analysis cost [67], symbolic state space
search is combined with partial-order reduction methods
for invariant checking [42], etc.

We summarize the above survey by comparing the for-
mal verification methods as shown in Table 3. The compari-
son is made in terms of

1) the approach used to reduce state-spaces,
2) the applicability in general cases, and
3) their main drawbacks.
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4.2 Compositional Verification

Among the formal verification techniques discussed above,
compositional verification is considered more suitable for
verifying component-based software systems or architec-
ture specifications of a target system [78]. In this paper,
we will focus on the important concepts and techniques in
this approach. In compositional verification, a system is
first divided into hierarchical modules (subsystems). State
spaces of modules are then recursively constructed from
reduced state spaces of submodules. As a reduced state
space could be much smaller than the original one, the
compositional verification technique provides an attrac-
tive approach for analyzing large-scale systems. Composi-
tional verification techniques resemble structural-reduction
techniques for system models [51]. Nevertheless, composi-
tional verification techniques are applied to state spaces
instead of system models. Compositional verification tech-
niques are more effective than structural-reduction tech-
niques since state spaces explicitly describe the dynamic
behaviors of systems.

The main goal of compositional verification techniques is
to hierarchically and efficiently generate equivalent and
much smaller state spaces. However, the concept of equiva-
lence does not consider compositional mechanisms. It is
possible that the interesting properties of systems are not
preserved after we replace one module with another
equivalent module. In order to hierarchically generate an
equivalent state space, the concept of congruence is essential.
Two models m; and m; are said to be congruent if for all
systems S =f(my, ... m; ..., my)and &’ = f(m;, ... m{ ..., m,), S
and S’ are equivalent, where f is an operator (or function). In
other words, after one model is replaced with another
congruent model, the new global state space is equivalent
to the old one.

Various compositional verification techniques have been
proposed for the algebraic treatment of processes by using
equations and inequalities for processes expressions. These
approaches to the algebraic treatment of processes can be
identified by an acceptance of synchronized communica-
tion as the primitive means of interaction among processes
[53]. Primary process algebras include for example, Mil-
ner’s CCS [53], Hoare’s CSP [49], and Bergstra and Klop’s
ACP [50]. Equivalences and congruences of processes are well
founded in those process algebras for event-based systems.

Several works [68], [69], [64], [70] have addressed the
general interest for asynchronous communication as the

TABLE 3
COMPARISON OF FORMAL VERIFICATION METHODS SURVEYED
| Method Name | Approach ‘ Applicability | Drawback
Transformation | Model reduction or synthesis Weak Limited application
Bit-hash Packed state-spaces Strong Hash collisions
Symmetry Packed state-spaces Weak Limited application
Symbolic Packed state-spaces Hardware Difficulty in encoding
Partial order Partial ordering Strong Larger state-spaces
Compositional Abstraction Strong Simple interfaces
Incremental Reuse data Strong No reduction
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natural interaction of systems. In those formalisms, senders
and receivers do not mutually synchronize their communi-
cation. The fact that output actions are nonblocking distin-
guishes those formalisms from primary process algebras.
I/0 automata and their variants [68] provide formalisms
for modeling and verifying events systems which continu-
ously receive input from and react to their environment.
The distinguished character of 10-automata is the fairness
assumption, i.e., there is no input-blocking in the model. In
contrast, the assumption of input-blocking is used in some
formalisms [69], [64], [70]. Boer et al. [69] proposed an ab-
stract language (L) which is a generalized result obtained
from several works. The language L had been applied to
concurrent constraint programming [69]. In [64], [70], the
semantic of nonblocking output actions is acquired using
Petri nets whose compositionality is based on a fusion of
places. Valmari [64] uses CFFD equivalence to derive congru-
ent state spaces of modules (subsystems). Basten and
Voorhoeve [70] presented an algebra semantics for hierar-
chical P/T nets in terms of an ACP-like algebra [50]. They
also provided an equational theory for weak bisimulation (or
observable equivalence) of hierarchical P/T nets.

We will discuss research issues and status of composi-
tional verification techniques (except for 1/0 automata and
their variants [68]) in the following sections.

4.2.1 Effectiveness of Compositional Verification
Techniques

The analysis complexity of a formal verification tool de-
cides it’s usage in real applications. In the case of composi-
tional verification, the execution time depends on the effec-
tiveness and time complexity of condensation (reduction)
algorithms. The time complexity of condensation algo-
rithms determines how fast the state space of one module
can be condensed. The effectiveness of condensation algo-
rithms decides how well we can condense the state space of
one module. The effectiveness of condensation algorithms
also dramatically affects the execution time because the size
of a composite state space is determined by the size (com-
plexity) of condensed state spaces used in the composition.

Bisimilarity-based [53] and failure-based [49] equivalences
are popular in contemporary process algebra verification of
concurrent systems. The strength of bisimilarity-based
equivalences is in their lower time complexity of reduction
algorithms [63], while failure-based equivalences could lead
to much smaller condensed state spaces. Since it is very
difficult to preserve the state-oriented information using
bisimilarity-based equivalences, we focus on failure-based
equivalences technique in this paper.

In formal verification techniques—Stable failure equiva-
lence [65], CFFD equivalence [64], CSP-failure equivalence [49],
and 1OT-failure equivalence [61]—are all defined in terms of
trace semantics. Therefore, they all suffer from the PSPACE-
complete problem [63], when we want to generate mini-
mum state spaces. To avoid the high time-complexity of
state-space condensation, rule-based methodology has been
proposed in several research projects. For example, Sabnani
et al. proposed three rules to reduce the number of states in
a finite state machine, while maintaining its observational

equivalence [56]; Shatz, Murata, et al. [57] had introduced
several special reduction rules for Ada nets; Valmari intro-
duced three rules for the compositional verification of
deadlock [58]; Juan, Tsai, and Murata developed a set of
condensation rules [59], [60], [61] based on IOT-state equiva-
lence, 10T-state equivalence, and firing-dependence theory to
support compositional verification. Most of their conden-
sation rules resemble traditional reduction rules for Petri
nets [51] in that rule preconditions and rule application
consider only a small portion of the state space for conden-
sation. The state space can be reduced after one or more
rules succeed. The condensation rules in [59], [60], [61] are
more effectiveness and lower overhead based on their ex-
periments. They have also developed an automated ana-
lyzer, called IOTA, using their condensation rules which
show the effectiveness and efficiency in analyzing large-
scale systems.

4.2.2 State-Oriented Information

Current compositional verification techniques are devel-
oped mainly for even-based systems without preserving
state-oriented information. The reachability property of
states has been considered as a convenient way for analyz-
ing critical conditions of systems, e.g., buffer overflow. In
addition, the reachability property of states provides useful
information for the understanding and modification of
systems. The reachability property of states is even much
more important in the practicality of compositional verifi-
cation techniques. In compositional verification techniques,
most of event occurrences are discarded in order to provide
a small state space for analysis. Since most of analysis data
(the event occurrences) are lost, it will be extremely difficult
for developers to effectively debug and modify an im-
proper system design. This difficulty could be minimized
by using the reachability property of states, since a state
indicates detailed conditions of the whole system.

In addition, state-oriented information provides a con-
venient way to distinguish different semantics of deadlock
property. With the use of the deadlock property, we can
identify deadlocking systems which cannot do anything.
Nevertheless, we cannot tell whether a system fails or suc-
cessfully terminates. Therefore, explicit representations of
deadlock, divergence, and successful termination, are pro-
posed for event-based systems [62]. In the IOTA system,
they distinguish failure from successful termination by the
conditions of deadlock, i.e., deadlock states. IOTA can gen-
erate a smaller state space because it is not necessary to re-
tain the occurrences of successfully terminating events for
vast processes in a large-scale system.

5 CONCLUSION AND FUTURE RESEARCH

In this paper, we have surveyed various knowledge- and
requirements-acquisition systems. We also discussed some
architecture styles and made a comparative study of vari-
ous ADLs. Finally, we discussed some efficient verifica-
tion techniques for high assurance of large system archi-
tectures. The important topics for further research in this
area include:
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techniques and tools for the acquisition of design ra-
tionale and knowledge in a heterogenous, multime-
dia, distributed and mobile multiagents environment;
the correctness and consistency of the captured re-
quirements and design knowledge [89], [90];

the interaction, communication, negotiation, and co-
operation among various models and metamodels;
the design of effective and efficient transformation
systems [91], [92]; and

scalable formal verification techniques.
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